Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
88     real             *vftab;
89     __m128i          ewitab;
90     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     real             *ewtab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
115
116     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
124     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
125     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
126     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
152                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
153
154         fix0             = _mm_setzero_pd();
155         fiy0             = _mm_setzero_pd();
156         fiz0             = _mm_setzero_pd();
157         fix1             = _mm_setzero_pd();
158         fiy1             = _mm_setzero_pd();
159         fiz1             = _mm_setzero_pd();
160         fix2             = _mm_setzero_pd();
161         fiy2             = _mm_setzero_pd();
162         fiz2             = _mm_setzero_pd();
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vvdwsum          = _mm_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_pd(ix0,jx0);
184             dy00             = _mm_sub_pd(iy0,jy0);
185             dz00             = _mm_sub_pd(iz0,jz0);
186             dx10             = _mm_sub_pd(ix1,jx0);
187             dy10             = _mm_sub_pd(iy1,jy0);
188             dz10             = _mm_sub_pd(iz1,jz0);
189             dx20             = _mm_sub_pd(ix2,jx0);
190             dy20             = _mm_sub_pd(iy2,jy0);
191             dz20             = _mm_sub_pd(iz2,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
195             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
196             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
197
198             rinv00           = gmx_mm_invsqrt_pd(rsq00);
199             rinv10           = gmx_mm_invsqrt_pd(rsq10);
200             rinv20           = gmx_mm_invsqrt_pd(rsq20);
201
202             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
203             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
204             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210
211             fjx0             = _mm_setzero_pd();
212             fjy0             = _mm_setzero_pd();
213             fjz0             = _mm_setzero_pd();
214
215             /**************************
216              * CALCULATE INTERACTIONS *
217              **************************/
218
219             r00              = _mm_mul_pd(rsq00,rinv00);
220
221             /* Compute parameters for interactions between i and j atoms */
222             qq00             = _mm_mul_pd(iq0,jq0);
223             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
224                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
225
226             /* Calculate table index by multiplying r with table scale and truncate to integer */
227             rt               = _mm_mul_pd(r00,vftabscale);
228             vfitab           = _mm_cvttpd_epi32(rt);
229 #ifdef __XOP__
230             vfeps            = _mm_frcz_pd(rt);
231 #else
232             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
233 #endif
234             twovfeps         = _mm_add_pd(vfeps,vfeps);
235             vfitab           = _mm_slli_epi32(vfitab,3);
236
237             /* EWALD ELECTROSTATICS */
238
239             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
240             ewrt             = _mm_mul_pd(r00,ewtabscale);
241             ewitab           = _mm_cvttpd_epi32(ewrt);
242 #ifdef __XOP__
243             eweps            = _mm_frcz_pd(ewrt);
244 #else
245             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
246 #endif
247             twoeweps         = _mm_add_pd(eweps,eweps);
248             ewitab           = _mm_slli_epi32(ewitab,2);
249             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
250             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
251             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
252             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
253             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
254             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
255             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
256             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
257             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
258             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
259
260             /* CUBIC SPLINE TABLE DISPERSION */
261             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
262             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
263             GMX_MM_TRANSPOSE2_PD(Y,F);
264             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
265             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
266             GMX_MM_TRANSPOSE2_PD(G,H);
267             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
268             VV               = _mm_macc_pd(vfeps,Fp,Y);
269             vvdw6            = _mm_mul_pd(c6_00,VV);
270             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
271             fvdw6            = _mm_mul_pd(c6_00,FF);
272
273             /* CUBIC SPLINE TABLE REPULSION */
274             vfitab           = _mm_add_epi32(vfitab,ifour);
275             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
277             GMX_MM_TRANSPOSE2_PD(Y,F);
278             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
279             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
280             GMX_MM_TRANSPOSE2_PD(G,H);
281             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
282             VV               = _mm_macc_pd(vfeps,Fp,Y);
283             vvdw12           = _mm_mul_pd(c12_00,VV);
284             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
285             fvdw12           = _mm_mul_pd(c12_00,FF);
286             vvdw             = _mm_add_pd(vvdw12,vvdw6);
287             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             velecsum         = _mm_add_pd(velecsum,velec);
291             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
292
293             fscal            = _mm_add_pd(felec,fvdw);
294
295             /* Update vectorial force */
296             fix0             = _mm_macc_pd(dx00,fscal,fix0);
297             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
298             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
299             
300             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
301             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
302             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             r10              = _mm_mul_pd(rsq10,rinv10);
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq10             = _mm_mul_pd(iq1,jq0);
312
313             /* EWALD ELECTROSTATICS */
314
315             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
316             ewrt             = _mm_mul_pd(r10,ewtabscale);
317             ewitab           = _mm_cvttpd_epi32(ewrt);
318 #ifdef __XOP__
319             eweps            = _mm_frcz_pd(ewrt);
320 #else
321             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
322 #endif
323             twoeweps         = _mm_add_pd(eweps,eweps);
324             ewitab           = _mm_slli_epi32(ewitab,2);
325             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
326             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
327             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
328             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
329             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
330             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
331             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
332             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
333             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
334             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velecsum         = _mm_add_pd(velecsum,velec);
338
339             fscal            = felec;
340
341             /* Update vectorial force */
342             fix1             = _mm_macc_pd(dx10,fscal,fix1);
343             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
344             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
345             
346             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
347             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
348             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
349
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             r20              = _mm_mul_pd(rsq20,rinv20);
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq20             = _mm_mul_pd(iq2,jq0);
358
359             /* EWALD ELECTROSTATICS */
360
361             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
362             ewrt             = _mm_mul_pd(r20,ewtabscale);
363             ewitab           = _mm_cvttpd_epi32(ewrt);
364 #ifdef __XOP__
365             eweps            = _mm_frcz_pd(ewrt);
366 #else
367             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
368 #endif
369             twoeweps         = _mm_add_pd(eweps,eweps);
370             ewitab           = _mm_slli_epi32(ewitab,2);
371             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
372             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
373             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
374             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
375             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
376             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
377             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
378             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
379             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
380             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velecsum         = _mm_add_pd(velecsum,velec);
384
385             fscal            = felec;
386
387             /* Update vectorial force */
388             fix2             = _mm_macc_pd(dx20,fscal,fix2);
389             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
390             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
391             
392             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
393             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
394             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
395
396             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
397
398             /* Inner loop uses 169 flops */
399         }
400
401         if(jidx<j_index_end)
402         {
403
404             jnrA             = jjnr[jidx];
405             j_coord_offsetA  = DIM*jnrA;
406
407             /* load j atom coordinates */
408             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
409                                               &jx0,&jy0,&jz0);
410
411             /* Calculate displacement vector */
412             dx00             = _mm_sub_pd(ix0,jx0);
413             dy00             = _mm_sub_pd(iy0,jy0);
414             dz00             = _mm_sub_pd(iz0,jz0);
415             dx10             = _mm_sub_pd(ix1,jx0);
416             dy10             = _mm_sub_pd(iy1,jy0);
417             dz10             = _mm_sub_pd(iz1,jz0);
418             dx20             = _mm_sub_pd(ix2,jx0);
419             dy20             = _mm_sub_pd(iy2,jy0);
420             dz20             = _mm_sub_pd(iz2,jz0);
421
422             /* Calculate squared distance and things based on it */
423             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
424             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
425             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
426
427             rinv00           = gmx_mm_invsqrt_pd(rsq00);
428             rinv10           = gmx_mm_invsqrt_pd(rsq10);
429             rinv20           = gmx_mm_invsqrt_pd(rsq20);
430
431             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
432             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
433             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
434
435             /* Load parameters for j particles */
436             jq0              = _mm_load_sd(charge+jnrA+0);
437             vdwjidx0A        = 2*vdwtype[jnrA+0];
438
439             fjx0             = _mm_setzero_pd();
440             fjy0             = _mm_setzero_pd();
441             fjz0             = _mm_setzero_pd();
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             r00              = _mm_mul_pd(rsq00,rinv00);
448
449             /* Compute parameters for interactions between i and j atoms */
450             qq00             = _mm_mul_pd(iq0,jq0);
451             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
452
453             /* Calculate table index by multiplying r with table scale and truncate to integer */
454             rt               = _mm_mul_pd(r00,vftabscale);
455             vfitab           = _mm_cvttpd_epi32(rt);
456 #ifdef __XOP__
457             vfeps            = _mm_frcz_pd(rt);
458 #else
459             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
460 #endif
461             twovfeps         = _mm_add_pd(vfeps,vfeps);
462             vfitab           = _mm_slli_epi32(vfitab,3);
463
464             /* EWALD ELECTROSTATICS */
465
466             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
467             ewrt             = _mm_mul_pd(r00,ewtabscale);
468             ewitab           = _mm_cvttpd_epi32(ewrt);
469 #ifdef __XOP__
470             eweps            = _mm_frcz_pd(ewrt);
471 #else
472             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
473 #endif
474             twoeweps         = _mm_add_pd(eweps,eweps);
475             ewitab           = _mm_slli_epi32(ewitab,2);
476             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
477             ewtabD           = _mm_setzero_pd();
478             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
479             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
480             ewtabFn          = _mm_setzero_pd();
481             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
482             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
483             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
484             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
485             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
486
487             /* CUBIC SPLINE TABLE DISPERSION */
488             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
489             F                = _mm_setzero_pd();
490             GMX_MM_TRANSPOSE2_PD(Y,F);
491             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
492             H                = _mm_setzero_pd();
493             GMX_MM_TRANSPOSE2_PD(G,H);
494             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
495             VV               = _mm_macc_pd(vfeps,Fp,Y);
496             vvdw6            = _mm_mul_pd(c6_00,VV);
497             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
498             fvdw6            = _mm_mul_pd(c6_00,FF);
499
500             /* CUBIC SPLINE TABLE REPULSION */
501             vfitab           = _mm_add_epi32(vfitab,ifour);
502             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
503             F                = _mm_setzero_pd();
504             GMX_MM_TRANSPOSE2_PD(Y,F);
505             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
506             H                = _mm_setzero_pd();
507             GMX_MM_TRANSPOSE2_PD(G,H);
508             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
509             VV               = _mm_macc_pd(vfeps,Fp,Y);
510             vvdw12           = _mm_mul_pd(c12_00,VV);
511             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
512             fvdw12           = _mm_mul_pd(c12_00,FF);
513             vvdw             = _mm_add_pd(vvdw12,vvdw6);
514             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
515
516             /* Update potential sum for this i atom from the interaction with this j atom. */
517             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
518             velecsum         = _mm_add_pd(velecsum,velec);
519             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
520             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
521
522             fscal            = _mm_add_pd(felec,fvdw);
523
524             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
525
526             /* Update vectorial force */
527             fix0             = _mm_macc_pd(dx00,fscal,fix0);
528             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
529             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
530             
531             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
532             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
533             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             r10              = _mm_mul_pd(rsq10,rinv10);
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq10             = _mm_mul_pd(iq1,jq0);
543
544             /* EWALD ELECTROSTATICS */
545
546             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
547             ewrt             = _mm_mul_pd(r10,ewtabscale);
548             ewitab           = _mm_cvttpd_epi32(ewrt);
549 #ifdef __XOP__
550             eweps            = _mm_frcz_pd(ewrt);
551 #else
552             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
553 #endif
554             twoeweps         = _mm_add_pd(eweps,eweps);
555             ewitab           = _mm_slli_epi32(ewitab,2);
556             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
557             ewtabD           = _mm_setzero_pd();
558             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
559             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
560             ewtabFn          = _mm_setzero_pd();
561             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
562             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
563             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
564             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
565             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
566
567             /* Update potential sum for this i atom from the interaction with this j atom. */
568             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
569             velecsum         = _mm_add_pd(velecsum,velec);
570
571             fscal            = felec;
572
573             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
574
575             /* Update vectorial force */
576             fix1             = _mm_macc_pd(dx10,fscal,fix1);
577             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
578             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
579             
580             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
581             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
582             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
583
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             r20              = _mm_mul_pd(rsq20,rinv20);
589
590             /* Compute parameters for interactions between i and j atoms */
591             qq20             = _mm_mul_pd(iq2,jq0);
592
593             /* EWALD ELECTROSTATICS */
594
595             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
596             ewrt             = _mm_mul_pd(r20,ewtabscale);
597             ewitab           = _mm_cvttpd_epi32(ewrt);
598 #ifdef __XOP__
599             eweps            = _mm_frcz_pd(ewrt);
600 #else
601             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
602 #endif
603             twoeweps         = _mm_add_pd(eweps,eweps);
604             ewitab           = _mm_slli_epi32(ewitab,2);
605             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
606             ewtabD           = _mm_setzero_pd();
607             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
608             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
609             ewtabFn          = _mm_setzero_pd();
610             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
611             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
612             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
613             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
614             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
615
616             /* Update potential sum for this i atom from the interaction with this j atom. */
617             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
618             velecsum         = _mm_add_pd(velecsum,velec);
619
620             fscal            = felec;
621
622             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
623
624             /* Update vectorial force */
625             fix2             = _mm_macc_pd(dx20,fscal,fix2);
626             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
627             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
628             
629             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
630             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
631             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
632
633             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
634
635             /* Inner loop uses 169 flops */
636         }
637
638         /* End of innermost loop */
639
640         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
641                                               f+i_coord_offset,fshift+i_shift_offset);
642
643         ggid                        = gid[iidx];
644         /* Update potential energies */
645         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
646         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
647
648         /* Increment number of inner iterations */
649         inneriter                  += j_index_end - j_index_start;
650
651         /* Outer loop uses 20 flops */
652     }
653
654     /* Increment number of outer iterations */
655     outeriter        += nri;
656
657     /* Update outer/inner flops */
658
659     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*169);
660 }
661 /*
662  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_double
663  * Electrostatics interaction: Ewald
664  * VdW interaction:            CubicSplineTable
665  * Geometry:                   Water3-Particle
666  * Calculate force/pot:        Force
667  */
668 void
669 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_double
670                     (t_nblist * gmx_restrict                nlist,
671                      rvec * gmx_restrict                    xx,
672                      rvec * gmx_restrict                    ff,
673                      t_forcerec * gmx_restrict              fr,
674                      t_mdatoms * gmx_restrict               mdatoms,
675                      nb_kernel_data_t * gmx_restrict        kernel_data,
676                      t_nrnb * gmx_restrict                  nrnb)
677 {
678     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
679      * just 0 for non-waters.
680      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
681      * jnr indices corresponding to data put in the four positions in the SIMD register.
682      */
683     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
684     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
685     int              jnrA,jnrB;
686     int              j_coord_offsetA,j_coord_offsetB;
687     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
688     real             rcutoff_scalar;
689     real             *shiftvec,*fshift,*x,*f;
690     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
691     int              vdwioffset0;
692     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
693     int              vdwioffset1;
694     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
695     int              vdwioffset2;
696     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
697     int              vdwjidx0A,vdwjidx0B;
698     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
699     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
700     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
701     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
702     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
703     real             *charge;
704     int              nvdwtype;
705     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
706     int              *vdwtype;
707     real             *vdwparam;
708     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
709     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
710     __m128i          vfitab;
711     __m128i          ifour       = _mm_set1_epi32(4);
712     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
713     real             *vftab;
714     __m128i          ewitab;
715     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
716     real             *ewtab;
717     __m128d          dummy_mask,cutoff_mask;
718     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
719     __m128d          one     = _mm_set1_pd(1.0);
720     __m128d          two     = _mm_set1_pd(2.0);
721     x                = xx[0];
722     f                = ff[0];
723
724     nri              = nlist->nri;
725     iinr             = nlist->iinr;
726     jindex           = nlist->jindex;
727     jjnr             = nlist->jjnr;
728     shiftidx         = nlist->shift;
729     gid              = nlist->gid;
730     shiftvec         = fr->shift_vec[0];
731     fshift           = fr->fshift[0];
732     facel            = _mm_set1_pd(fr->epsfac);
733     charge           = mdatoms->chargeA;
734     nvdwtype         = fr->ntype;
735     vdwparam         = fr->nbfp;
736     vdwtype          = mdatoms->typeA;
737
738     vftab            = kernel_data->table_vdw->data;
739     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
740
741     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
742     ewtab            = fr->ic->tabq_coul_F;
743     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
744     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
745
746     /* Setup water-specific parameters */
747     inr              = nlist->iinr[0];
748     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
749     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
750     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
751     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
752
753     /* Avoid stupid compiler warnings */
754     jnrA = jnrB = 0;
755     j_coord_offsetA = 0;
756     j_coord_offsetB = 0;
757
758     outeriter        = 0;
759     inneriter        = 0;
760
761     /* Start outer loop over neighborlists */
762     for(iidx=0; iidx<nri; iidx++)
763     {
764         /* Load shift vector for this list */
765         i_shift_offset   = DIM*shiftidx[iidx];
766
767         /* Load limits for loop over neighbors */
768         j_index_start    = jindex[iidx];
769         j_index_end      = jindex[iidx+1];
770
771         /* Get outer coordinate index */
772         inr              = iinr[iidx];
773         i_coord_offset   = DIM*inr;
774
775         /* Load i particle coords and add shift vector */
776         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
777                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
778
779         fix0             = _mm_setzero_pd();
780         fiy0             = _mm_setzero_pd();
781         fiz0             = _mm_setzero_pd();
782         fix1             = _mm_setzero_pd();
783         fiy1             = _mm_setzero_pd();
784         fiz1             = _mm_setzero_pd();
785         fix2             = _mm_setzero_pd();
786         fiy2             = _mm_setzero_pd();
787         fiz2             = _mm_setzero_pd();
788
789         /* Start inner kernel loop */
790         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
791         {
792
793             /* Get j neighbor index, and coordinate index */
794             jnrA             = jjnr[jidx];
795             jnrB             = jjnr[jidx+1];
796             j_coord_offsetA  = DIM*jnrA;
797             j_coord_offsetB  = DIM*jnrB;
798
799             /* load j atom coordinates */
800             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
801                                               &jx0,&jy0,&jz0);
802
803             /* Calculate displacement vector */
804             dx00             = _mm_sub_pd(ix0,jx0);
805             dy00             = _mm_sub_pd(iy0,jy0);
806             dz00             = _mm_sub_pd(iz0,jz0);
807             dx10             = _mm_sub_pd(ix1,jx0);
808             dy10             = _mm_sub_pd(iy1,jy0);
809             dz10             = _mm_sub_pd(iz1,jz0);
810             dx20             = _mm_sub_pd(ix2,jx0);
811             dy20             = _mm_sub_pd(iy2,jy0);
812             dz20             = _mm_sub_pd(iz2,jz0);
813
814             /* Calculate squared distance and things based on it */
815             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
816             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
817             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
818
819             rinv00           = gmx_mm_invsqrt_pd(rsq00);
820             rinv10           = gmx_mm_invsqrt_pd(rsq10);
821             rinv20           = gmx_mm_invsqrt_pd(rsq20);
822
823             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
824             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
825             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
826
827             /* Load parameters for j particles */
828             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
829             vdwjidx0A        = 2*vdwtype[jnrA+0];
830             vdwjidx0B        = 2*vdwtype[jnrB+0];
831
832             fjx0             = _mm_setzero_pd();
833             fjy0             = _mm_setzero_pd();
834             fjz0             = _mm_setzero_pd();
835
836             /**************************
837              * CALCULATE INTERACTIONS *
838              **************************/
839
840             r00              = _mm_mul_pd(rsq00,rinv00);
841
842             /* Compute parameters for interactions between i and j atoms */
843             qq00             = _mm_mul_pd(iq0,jq0);
844             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
845                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
846
847             /* Calculate table index by multiplying r with table scale and truncate to integer */
848             rt               = _mm_mul_pd(r00,vftabscale);
849             vfitab           = _mm_cvttpd_epi32(rt);
850 #ifdef __XOP__
851             vfeps            = _mm_frcz_pd(rt);
852 #else
853             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
854 #endif
855             twovfeps         = _mm_add_pd(vfeps,vfeps);
856             vfitab           = _mm_slli_epi32(vfitab,3);
857
858             /* EWALD ELECTROSTATICS */
859
860             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
861             ewrt             = _mm_mul_pd(r00,ewtabscale);
862             ewitab           = _mm_cvttpd_epi32(ewrt);
863 #ifdef __XOP__
864             eweps            = _mm_frcz_pd(ewrt);
865 #else
866             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
867 #endif
868             twoeweps         = _mm_add_pd(eweps,eweps);
869             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
870                                          &ewtabF,&ewtabFn);
871             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
872             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
873
874             /* CUBIC SPLINE TABLE DISPERSION */
875             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
876             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
877             GMX_MM_TRANSPOSE2_PD(Y,F);
878             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
879             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
880             GMX_MM_TRANSPOSE2_PD(G,H);
881             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
882             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
883             fvdw6            = _mm_mul_pd(c6_00,FF);
884
885             /* CUBIC SPLINE TABLE REPULSION */
886             vfitab           = _mm_add_epi32(vfitab,ifour);
887             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
888             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
889             GMX_MM_TRANSPOSE2_PD(Y,F);
890             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
891             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
892             GMX_MM_TRANSPOSE2_PD(G,H);
893             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
894             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
895             fvdw12           = _mm_mul_pd(c12_00,FF);
896             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
897
898             fscal            = _mm_add_pd(felec,fvdw);
899
900             /* Update vectorial force */
901             fix0             = _mm_macc_pd(dx00,fscal,fix0);
902             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
903             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
904             
905             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
906             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
907             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
908
909             /**************************
910              * CALCULATE INTERACTIONS *
911              **************************/
912
913             r10              = _mm_mul_pd(rsq10,rinv10);
914
915             /* Compute parameters for interactions between i and j atoms */
916             qq10             = _mm_mul_pd(iq1,jq0);
917
918             /* EWALD ELECTROSTATICS */
919
920             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
921             ewrt             = _mm_mul_pd(r10,ewtabscale);
922             ewitab           = _mm_cvttpd_epi32(ewrt);
923 #ifdef __XOP__
924             eweps            = _mm_frcz_pd(ewrt);
925 #else
926             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
927 #endif
928             twoeweps         = _mm_add_pd(eweps,eweps);
929             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
930                                          &ewtabF,&ewtabFn);
931             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
932             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
933
934             fscal            = felec;
935
936             /* Update vectorial force */
937             fix1             = _mm_macc_pd(dx10,fscal,fix1);
938             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
939             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
940             
941             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
942             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
943             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
944
945             /**************************
946              * CALCULATE INTERACTIONS *
947              **************************/
948
949             r20              = _mm_mul_pd(rsq20,rinv20);
950
951             /* Compute parameters for interactions between i and j atoms */
952             qq20             = _mm_mul_pd(iq2,jq0);
953
954             /* EWALD ELECTROSTATICS */
955
956             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
957             ewrt             = _mm_mul_pd(r20,ewtabscale);
958             ewitab           = _mm_cvttpd_epi32(ewrt);
959 #ifdef __XOP__
960             eweps            = _mm_frcz_pd(ewrt);
961 #else
962             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
963 #endif
964             twoeweps         = _mm_add_pd(eweps,eweps);
965             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
966                                          &ewtabF,&ewtabFn);
967             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
968             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
969
970             fscal            = felec;
971
972             /* Update vectorial force */
973             fix2             = _mm_macc_pd(dx20,fscal,fix2);
974             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
975             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
976             
977             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
978             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
979             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
980
981             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
982
983             /* Inner loop uses 146 flops */
984         }
985
986         if(jidx<j_index_end)
987         {
988
989             jnrA             = jjnr[jidx];
990             j_coord_offsetA  = DIM*jnrA;
991
992             /* load j atom coordinates */
993             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
994                                               &jx0,&jy0,&jz0);
995
996             /* Calculate displacement vector */
997             dx00             = _mm_sub_pd(ix0,jx0);
998             dy00             = _mm_sub_pd(iy0,jy0);
999             dz00             = _mm_sub_pd(iz0,jz0);
1000             dx10             = _mm_sub_pd(ix1,jx0);
1001             dy10             = _mm_sub_pd(iy1,jy0);
1002             dz10             = _mm_sub_pd(iz1,jz0);
1003             dx20             = _mm_sub_pd(ix2,jx0);
1004             dy20             = _mm_sub_pd(iy2,jy0);
1005             dz20             = _mm_sub_pd(iz2,jz0);
1006
1007             /* Calculate squared distance and things based on it */
1008             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1009             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1010             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1011
1012             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1013             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1014             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1015
1016             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1017             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1018             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1019
1020             /* Load parameters for j particles */
1021             jq0              = _mm_load_sd(charge+jnrA+0);
1022             vdwjidx0A        = 2*vdwtype[jnrA+0];
1023
1024             fjx0             = _mm_setzero_pd();
1025             fjy0             = _mm_setzero_pd();
1026             fjz0             = _mm_setzero_pd();
1027
1028             /**************************
1029              * CALCULATE INTERACTIONS *
1030              **************************/
1031
1032             r00              = _mm_mul_pd(rsq00,rinv00);
1033
1034             /* Compute parameters for interactions between i and j atoms */
1035             qq00             = _mm_mul_pd(iq0,jq0);
1036             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1037
1038             /* Calculate table index by multiplying r with table scale and truncate to integer */
1039             rt               = _mm_mul_pd(r00,vftabscale);
1040             vfitab           = _mm_cvttpd_epi32(rt);
1041 #ifdef __XOP__
1042             vfeps            = _mm_frcz_pd(rt);
1043 #else
1044             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1045 #endif
1046             twovfeps         = _mm_add_pd(vfeps,vfeps);
1047             vfitab           = _mm_slli_epi32(vfitab,3);
1048
1049             /* EWALD ELECTROSTATICS */
1050
1051             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1052             ewrt             = _mm_mul_pd(r00,ewtabscale);
1053             ewitab           = _mm_cvttpd_epi32(ewrt);
1054 #ifdef __XOP__
1055             eweps            = _mm_frcz_pd(ewrt);
1056 #else
1057             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1058 #endif
1059             twoeweps         = _mm_add_pd(eweps,eweps);
1060             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1061             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1062             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1063
1064             /* CUBIC SPLINE TABLE DISPERSION */
1065             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1066             F                = _mm_setzero_pd();
1067             GMX_MM_TRANSPOSE2_PD(Y,F);
1068             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1069             H                = _mm_setzero_pd();
1070             GMX_MM_TRANSPOSE2_PD(G,H);
1071             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1072             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1073             fvdw6            = _mm_mul_pd(c6_00,FF);
1074
1075             /* CUBIC SPLINE TABLE REPULSION */
1076             vfitab           = _mm_add_epi32(vfitab,ifour);
1077             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1078             F                = _mm_setzero_pd();
1079             GMX_MM_TRANSPOSE2_PD(Y,F);
1080             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1081             H                = _mm_setzero_pd();
1082             GMX_MM_TRANSPOSE2_PD(G,H);
1083             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1084             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1085             fvdw12           = _mm_mul_pd(c12_00,FF);
1086             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1087
1088             fscal            = _mm_add_pd(felec,fvdw);
1089
1090             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1091
1092             /* Update vectorial force */
1093             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1094             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1095             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1096             
1097             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1098             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1099             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             r10              = _mm_mul_pd(rsq10,rinv10);
1106
1107             /* Compute parameters for interactions between i and j atoms */
1108             qq10             = _mm_mul_pd(iq1,jq0);
1109
1110             /* EWALD ELECTROSTATICS */
1111
1112             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1113             ewrt             = _mm_mul_pd(r10,ewtabscale);
1114             ewitab           = _mm_cvttpd_epi32(ewrt);
1115 #ifdef __XOP__
1116             eweps            = _mm_frcz_pd(ewrt);
1117 #else
1118             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1119 #endif
1120             twoeweps         = _mm_add_pd(eweps,eweps);
1121             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1122             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1123             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1124
1125             fscal            = felec;
1126
1127             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1128
1129             /* Update vectorial force */
1130             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1131             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1132             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1133             
1134             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1135             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1136             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1137
1138             /**************************
1139              * CALCULATE INTERACTIONS *
1140              **************************/
1141
1142             r20              = _mm_mul_pd(rsq20,rinv20);
1143
1144             /* Compute parameters for interactions between i and j atoms */
1145             qq20             = _mm_mul_pd(iq2,jq0);
1146
1147             /* EWALD ELECTROSTATICS */
1148
1149             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1150             ewrt             = _mm_mul_pd(r20,ewtabscale);
1151             ewitab           = _mm_cvttpd_epi32(ewrt);
1152 #ifdef __XOP__
1153             eweps            = _mm_frcz_pd(ewrt);
1154 #else
1155             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1156 #endif
1157             twoeweps         = _mm_add_pd(eweps,eweps);
1158             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1159             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1160             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1161
1162             fscal            = felec;
1163
1164             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1165
1166             /* Update vectorial force */
1167             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1168             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1169             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1170             
1171             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1172             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1173             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1174
1175             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1176
1177             /* Inner loop uses 146 flops */
1178         }
1179
1180         /* End of innermost loop */
1181
1182         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1183                                               f+i_coord_offset,fshift+i_shift_offset);
1184
1185         /* Increment number of inner iterations */
1186         inneriter                  += j_index_end - j_index_start;
1187
1188         /* Outer loop uses 18 flops */
1189     }
1190
1191     /* Increment number of outer iterations */
1192     outeriter        += nri;
1193
1194     /* Update outer/inner flops */
1195
1196     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*146);
1197 }