Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
98     real             *vftab;
99     __m128i          ewitab;
100     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm_setzero_pd();
157         fiy0             = _mm_setzero_pd();
158         fiz0             = _mm_setzero_pd();
159
160         /* Load parameters for i particles */
161         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vvdwsum          = _mm_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_pd(ix0,jx0);
184             dy00             = _mm_sub_pd(iy0,jy0);
185             dz00             = _mm_sub_pd(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
189
190             rinv00           = gmx_mm_invsqrt_pd(rsq00);
191
192             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             r00              = _mm_mul_pd(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _mm_mul_pd(iq0,jq0);
207             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
209
210             /* Calculate table index by multiplying r with table scale and truncate to integer */
211             rt               = _mm_mul_pd(r00,vftabscale);
212             vfitab           = _mm_cvttpd_epi32(rt);
213 #ifdef __XOP__
214             vfeps            = _mm_frcz_pd(rt);
215 #else
216             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
217 #endif
218             twovfeps         = _mm_add_pd(vfeps,vfeps);
219             vfitab           = _mm_slli_epi32(vfitab,3);
220
221             /* EWALD ELECTROSTATICS */
222
223             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
224             ewrt             = _mm_mul_pd(r00,ewtabscale);
225             ewitab           = _mm_cvttpd_epi32(ewrt);
226 #ifdef __XOP__
227             eweps            = _mm_frcz_pd(ewrt);
228 #else
229             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
230 #endif
231             twoeweps         = _mm_add_pd(eweps,eweps);
232             ewitab           = _mm_slli_epi32(ewitab,2);
233             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
234             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
235             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
236             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
237             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
238             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
239             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
240             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
241             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
242             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
243
244             /* CUBIC SPLINE TABLE DISPERSION */
245             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
246             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
247             GMX_MM_TRANSPOSE2_PD(Y,F);
248             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
249             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
250             GMX_MM_TRANSPOSE2_PD(G,H);
251             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
252             VV               = _mm_macc_pd(vfeps,Fp,Y);
253             vvdw6            = _mm_mul_pd(c6_00,VV);
254             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
255             fvdw6            = _mm_mul_pd(c6_00,FF);
256
257             /* CUBIC SPLINE TABLE REPULSION */
258             vfitab           = _mm_add_epi32(vfitab,ifour);
259             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
260             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
261             GMX_MM_TRANSPOSE2_PD(Y,F);
262             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
263             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
264             GMX_MM_TRANSPOSE2_PD(G,H);
265             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
266             VV               = _mm_macc_pd(vfeps,Fp,Y);
267             vvdw12           = _mm_mul_pd(c12_00,VV);
268             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
269             fvdw12           = _mm_mul_pd(c12_00,FF);
270             vvdw             = _mm_add_pd(vvdw12,vvdw6);
271             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             velecsum         = _mm_add_pd(velecsum,velec);
275             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
276
277             fscal            = _mm_add_pd(felec,fvdw);
278
279             /* Update vectorial force */
280             fix0             = _mm_macc_pd(dx00,fscal,fix0);
281             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
282             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
283             
284             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
285                                                    _mm_mul_pd(dx00,fscal),
286                                                    _mm_mul_pd(dy00,fscal),
287                                                    _mm_mul_pd(dz00,fscal));
288
289             /* Inner loop uses 78 flops */
290         }
291
292         if(jidx<j_index_end)
293         {
294
295             jnrA             = jjnr[jidx];
296             j_coord_offsetA  = DIM*jnrA;
297
298             /* load j atom coordinates */
299             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
300                                               &jx0,&jy0,&jz0);
301
302             /* Calculate displacement vector */
303             dx00             = _mm_sub_pd(ix0,jx0);
304             dy00             = _mm_sub_pd(iy0,jy0);
305             dz00             = _mm_sub_pd(iz0,jz0);
306
307             /* Calculate squared distance and things based on it */
308             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
309
310             rinv00           = gmx_mm_invsqrt_pd(rsq00);
311
312             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
313
314             /* Load parameters for j particles */
315             jq0              = _mm_load_sd(charge+jnrA+0);
316             vdwjidx0A        = 2*vdwtype[jnrA+0];
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             r00              = _mm_mul_pd(rsq00,rinv00);
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq00             = _mm_mul_pd(iq0,jq0);
326             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
327
328             /* Calculate table index by multiplying r with table scale and truncate to integer */
329             rt               = _mm_mul_pd(r00,vftabscale);
330             vfitab           = _mm_cvttpd_epi32(rt);
331 #ifdef __XOP__
332             vfeps            = _mm_frcz_pd(rt);
333 #else
334             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
335 #endif
336             twovfeps         = _mm_add_pd(vfeps,vfeps);
337             vfitab           = _mm_slli_epi32(vfitab,3);
338
339             /* EWALD ELECTROSTATICS */
340
341             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
342             ewrt             = _mm_mul_pd(r00,ewtabscale);
343             ewitab           = _mm_cvttpd_epi32(ewrt);
344 #ifdef __XOP__
345             eweps            = _mm_frcz_pd(ewrt);
346 #else
347             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
348 #endif
349             twoeweps         = _mm_add_pd(eweps,eweps);
350             ewitab           = _mm_slli_epi32(ewitab,2);
351             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
352             ewtabD           = _mm_setzero_pd();
353             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
354             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
355             ewtabFn          = _mm_setzero_pd();
356             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
357             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
358             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
359             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
360             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
361
362             /* CUBIC SPLINE TABLE DISPERSION */
363             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
364             F                = _mm_setzero_pd();
365             GMX_MM_TRANSPOSE2_PD(Y,F);
366             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
367             H                = _mm_setzero_pd();
368             GMX_MM_TRANSPOSE2_PD(G,H);
369             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
370             VV               = _mm_macc_pd(vfeps,Fp,Y);
371             vvdw6            = _mm_mul_pd(c6_00,VV);
372             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
373             fvdw6            = _mm_mul_pd(c6_00,FF);
374
375             /* CUBIC SPLINE TABLE REPULSION */
376             vfitab           = _mm_add_epi32(vfitab,ifour);
377             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
378             F                = _mm_setzero_pd();
379             GMX_MM_TRANSPOSE2_PD(Y,F);
380             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
381             H                = _mm_setzero_pd();
382             GMX_MM_TRANSPOSE2_PD(G,H);
383             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
384             VV               = _mm_macc_pd(vfeps,Fp,Y);
385             vvdw12           = _mm_mul_pd(c12_00,VV);
386             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
387             fvdw12           = _mm_mul_pd(c12_00,FF);
388             vvdw             = _mm_add_pd(vvdw12,vvdw6);
389             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
393             velecsum         = _mm_add_pd(velecsum,velec);
394             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
395             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
396
397             fscal            = _mm_add_pd(felec,fvdw);
398
399             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
400
401             /* Update vectorial force */
402             fix0             = _mm_macc_pd(dx00,fscal,fix0);
403             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
404             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
405             
406             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
407                                                    _mm_mul_pd(dx00,fscal),
408                                                    _mm_mul_pd(dy00,fscal),
409                                                    _mm_mul_pd(dz00,fscal));
410
411             /* Inner loop uses 78 flops */
412         }
413
414         /* End of innermost loop */
415
416         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
417                                               f+i_coord_offset,fshift+i_shift_offset);
418
419         ggid                        = gid[iidx];
420         /* Update potential energies */
421         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
422         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
423
424         /* Increment number of inner iterations */
425         inneriter                  += j_index_end - j_index_start;
426
427         /* Outer loop uses 9 flops */
428     }
429
430     /* Increment number of outer iterations */
431     outeriter        += nri;
432
433     /* Update outer/inner flops */
434
435     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*78);
436 }
437 /*
438  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_double
439  * Electrostatics interaction: Ewald
440  * VdW interaction:            CubicSplineTable
441  * Geometry:                   Particle-Particle
442  * Calculate force/pot:        Force
443  */
444 void
445 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_double
446                     (t_nblist                    * gmx_restrict       nlist,
447                      rvec                        * gmx_restrict          xx,
448                      rvec                        * gmx_restrict          ff,
449                      t_forcerec                  * gmx_restrict          fr,
450                      t_mdatoms                   * gmx_restrict     mdatoms,
451                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
452                      t_nrnb                      * gmx_restrict        nrnb)
453 {
454     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
455      * just 0 for non-waters.
456      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
457      * jnr indices corresponding to data put in the four positions in the SIMD register.
458      */
459     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
460     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
461     int              jnrA,jnrB;
462     int              j_coord_offsetA,j_coord_offsetB;
463     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
464     real             rcutoff_scalar;
465     real             *shiftvec,*fshift,*x,*f;
466     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
467     int              vdwioffset0;
468     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
469     int              vdwjidx0A,vdwjidx0B;
470     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
471     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
472     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
473     real             *charge;
474     int              nvdwtype;
475     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
476     int              *vdwtype;
477     real             *vdwparam;
478     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
479     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
480     __m128i          vfitab;
481     __m128i          ifour       = _mm_set1_epi32(4);
482     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
483     real             *vftab;
484     __m128i          ewitab;
485     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
486     real             *ewtab;
487     __m128d          dummy_mask,cutoff_mask;
488     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
489     __m128d          one     = _mm_set1_pd(1.0);
490     __m128d          two     = _mm_set1_pd(2.0);
491     x                = xx[0];
492     f                = ff[0];
493
494     nri              = nlist->nri;
495     iinr             = nlist->iinr;
496     jindex           = nlist->jindex;
497     jjnr             = nlist->jjnr;
498     shiftidx         = nlist->shift;
499     gid              = nlist->gid;
500     shiftvec         = fr->shift_vec[0];
501     fshift           = fr->fshift[0];
502     facel            = _mm_set1_pd(fr->epsfac);
503     charge           = mdatoms->chargeA;
504     nvdwtype         = fr->ntype;
505     vdwparam         = fr->nbfp;
506     vdwtype          = mdatoms->typeA;
507
508     vftab            = kernel_data->table_vdw->data;
509     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
510
511     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
512     ewtab            = fr->ic->tabq_coul_F;
513     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
514     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
515
516     /* Avoid stupid compiler warnings */
517     jnrA = jnrB = 0;
518     j_coord_offsetA = 0;
519     j_coord_offsetB = 0;
520
521     outeriter        = 0;
522     inneriter        = 0;
523
524     /* Start outer loop over neighborlists */
525     for(iidx=0; iidx<nri; iidx++)
526     {
527         /* Load shift vector for this list */
528         i_shift_offset   = DIM*shiftidx[iidx];
529
530         /* Load limits for loop over neighbors */
531         j_index_start    = jindex[iidx];
532         j_index_end      = jindex[iidx+1];
533
534         /* Get outer coordinate index */
535         inr              = iinr[iidx];
536         i_coord_offset   = DIM*inr;
537
538         /* Load i particle coords and add shift vector */
539         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
540
541         fix0             = _mm_setzero_pd();
542         fiy0             = _mm_setzero_pd();
543         fiz0             = _mm_setzero_pd();
544
545         /* Load parameters for i particles */
546         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
547         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
548
549         /* Start inner kernel loop */
550         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
551         {
552
553             /* Get j neighbor index, and coordinate index */
554             jnrA             = jjnr[jidx];
555             jnrB             = jjnr[jidx+1];
556             j_coord_offsetA  = DIM*jnrA;
557             j_coord_offsetB  = DIM*jnrB;
558
559             /* load j atom coordinates */
560             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
561                                               &jx0,&jy0,&jz0);
562
563             /* Calculate displacement vector */
564             dx00             = _mm_sub_pd(ix0,jx0);
565             dy00             = _mm_sub_pd(iy0,jy0);
566             dz00             = _mm_sub_pd(iz0,jz0);
567
568             /* Calculate squared distance and things based on it */
569             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
570
571             rinv00           = gmx_mm_invsqrt_pd(rsq00);
572
573             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
574
575             /* Load parameters for j particles */
576             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
577             vdwjidx0A        = 2*vdwtype[jnrA+0];
578             vdwjidx0B        = 2*vdwtype[jnrB+0];
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             r00              = _mm_mul_pd(rsq00,rinv00);
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq00             = _mm_mul_pd(iq0,jq0);
588             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
589                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
590
591             /* Calculate table index by multiplying r with table scale and truncate to integer */
592             rt               = _mm_mul_pd(r00,vftabscale);
593             vfitab           = _mm_cvttpd_epi32(rt);
594 #ifdef __XOP__
595             vfeps            = _mm_frcz_pd(rt);
596 #else
597             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
598 #endif
599             twovfeps         = _mm_add_pd(vfeps,vfeps);
600             vfitab           = _mm_slli_epi32(vfitab,3);
601
602             /* EWALD ELECTROSTATICS */
603
604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605             ewrt             = _mm_mul_pd(r00,ewtabscale);
606             ewitab           = _mm_cvttpd_epi32(ewrt);
607 #ifdef __XOP__
608             eweps            = _mm_frcz_pd(ewrt);
609 #else
610             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
611 #endif
612             twoeweps         = _mm_add_pd(eweps,eweps);
613             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
614                                          &ewtabF,&ewtabFn);
615             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
616             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
617
618             /* CUBIC SPLINE TABLE DISPERSION */
619             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
620             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
621             GMX_MM_TRANSPOSE2_PD(Y,F);
622             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
623             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
624             GMX_MM_TRANSPOSE2_PD(G,H);
625             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
626             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
627             fvdw6            = _mm_mul_pd(c6_00,FF);
628
629             /* CUBIC SPLINE TABLE REPULSION */
630             vfitab           = _mm_add_epi32(vfitab,ifour);
631             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
632             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
633             GMX_MM_TRANSPOSE2_PD(Y,F);
634             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
635             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
636             GMX_MM_TRANSPOSE2_PD(G,H);
637             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
638             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
639             fvdw12           = _mm_mul_pd(c12_00,FF);
640             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
641
642             fscal            = _mm_add_pd(felec,fvdw);
643
644             /* Update vectorial force */
645             fix0             = _mm_macc_pd(dx00,fscal,fix0);
646             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
647             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
648             
649             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
650                                                    _mm_mul_pd(dx00,fscal),
651                                                    _mm_mul_pd(dy00,fscal),
652                                                    _mm_mul_pd(dz00,fscal));
653
654             /* Inner loop uses 65 flops */
655         }
656
657         if(jidx<j_index_end)
658         {
659
660             jnrA             = jjnr[jidx];
661             j_coord_offsetA  = DIM*jnrA;
662
663             /* load j atom coordinates */
664             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
665                                               &jx0,&jy0,&jz0);
666
667             /* Calculate displacement vector */
668             dx00             = _mm_sub_pd(ix0,jx0);
669             dy00             = _mm_sub_pd(iy0,jy0);
670             dz00             = _mm_sub_pd(iz0,jz0);
671
672             /* Calculate squared distance and things based on it */
673             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
674
675             rinv00           = gmx_mm_invsqrt_pd(rsq00);
676
677             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
678
679             /* Load parameters for j particles */
680             jq0              = _mm_load_sd(charge+jnrA+0);
681             vdwjidx0A        = 2*vdwtype[jnrA+0];
682
683             /**************************
684              * CALCULATE INTERACTIONS *
685              **************************/
686
687             r00              = _mm_mul_pd(rsq00,rinv00);
688
689             /* Compute parameters for interactions between i and j atoms */
690             qq00             = _mm_mul_pd(iq0,jq0);
691             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
692
693             /* Calculate table index by multiplying r with table scale and truncate to integer */
694             rt               = _mm_mul_pd(r00,vftabscale);
695             vfitab           = _mm_cvttpd_epi32(rt);
696 #ifdef __XOP__
697             vfeps            = _mm_frcz_pd(rt);
698 #else
699             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
700 #endif
701             twovfeps         = _mm_add_pd(vfeps,vfeps);
702             vfitab           = _mm_slli_epi32(vfitab,3);
703
704             /* EWALD ELECTROSTATICS */
705
706             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
707             ewrt             = _mm_mul_pd(r00,ewtabscale);
708             ewitab           = _mm_cvttpd_epi32(ewrt);
709 #ifdef __XOP__
710             eweps            = _mm_frcz_pd(ewrt);
711 #else
712             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
713 #endif
714             twoeweps         = _mm_add_pd(eweps,eweps);
715             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
716             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
717             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
718
719             /* CUBIC SPLINE TABLE DISPERSION */
720             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
721             F                = _mm_setzero_pd();
722             GMX_MM_TRANSPOSE2_PD(Y,F);
723             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
724             H                = _mm_setzero_pd();
725             GMX_MM_TRANSPOSE2_PD(G,H);
726             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
727             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
728             fvdw6            = _mm_mul_pd(c6_00,FF);
729
730             /* CUBIC SPLINE TABLE REPULSION */
731             vfitab           = _mm_add_epi32(vfitab,ifour);
732             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
733             F                = _mm_setzero_pd();
734             GMX_MM_TRANSPOSE2_PD(Y,F);
735             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
736             H                = _mm_setzero_pd();
737             GMX_MM_TRANSPOSE2_PD(G,H);
738             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
739             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
740             fvdw12           = _mm_mul_pd(c12_00,FF);
741             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
742
743             fscal            = _mm_add_pd(felec,fvdw);
744
745             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
746
747             /* Update vectorial force */
748             fix0             = _mm_macc_pd(dx00,fscal,fix0);
749             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
750             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
751             
752             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
753                                                    _mm_mul_pd(dx00,fscal),
754                                                    _mm_mul_pd(dy00,fscal),
755                                                    _mm_mul_pd(dz00,fscal));
756
757             /* Inner loop uses 65 flops */
758         }
759
760         /* End of innermost loop */
761
762         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
763                                               f+i_coord_offset,fshift+i_shift_offset);
764
765         /* Increment number of inner iterations */
766         inneriter                  += j_index_end - j_index_start;
767
768         /* Outer loop uses 7 flops */
769     }
770
771     /* Increment number of outer iterations */
772     outeriter        += nri;
773
774     /* Update outer/inner flops */
775
776     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
777 }