Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
96     real             *vftab;
97     __m128i          ewitab;
98     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     real             *ewtab;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
123
124     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm_setzero_pd();
155         fiy0             = _mm_setzero_pd();
156         fiz0             = _mm_setzero_pd();
157
158         /* Load parameters for i particles */
159         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_pd();
164         vvdwsum          = _mm_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_pd(ix0,jx0);
182             dy00             = _mm_sub_pd(iy0,jy0);
183             dz00             = _mm_sub_pd(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187
188             rinv00           = gmx_mm_invsqrt_pd(rsq00);
189
190             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196
197             /**************************
198              * CALCULATE INTERACTIONS *
199              **************************/
200
201             r00              = _mm_mul_pd(rsq00,rinv00);
202
203             /* Compute parameters for interactions between i and j atoms */
204             qq00             = _mm_mul_pd(iq0,jq0);
205             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
206                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
207
208             /* Calculate table index by multiplying r with table scale and truncate to integer */
209             rt               = _mm_mul_pd(r00,vftabscale);
210             vfitab           = _mm_cvttpd_epi32(rt);
211 #ifdef __XOP__
212             vfeps            = _mm_frcz_pd(rt);
213 #else
214             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
215 #endif
216             twovfeps         = _mm_add_pd(vfeps,vfeps);
217             vfitab           = _mm_slli_epi32(vfitab,3);
218
219             /* EWALD ELECTROSTATICS */
220
221             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
222             ewrt             = _mm_mul_pd(r00,ewtabscale);
223             ewitab           = _mm_cvttpd_epi32(ewrt);
224 #ifdef __XOP__
225             eweps            = _mm_frcz_pd(ewrt);
226 #else
227             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
228 #endif
229             twoeweps         = _mm_add_pd(eweps,eweps);
230             ewitab           = _mm_slli_epi32(ewitab,2);
231             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
232             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
233             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
234             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
235             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
236             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
237             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
238             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
239             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
240             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
241
242             /* CUBIC SPLINE TABLE DISPERSION */
243             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
244             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
245             GMX_MM_TRANSPOSE2_PD(Y,F);
246             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
247             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
248             GMX_MM_TRANSPOSE2_PD(G,H);
249             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
250             VV               = _mm_macc_pd(vfeps,Fp,Y);
251             vvdw6            = _mm_mul_pd(c6_00,VV);
252             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
253             fvdw6            = _mm_mul_pd(c6_00,FF);
254
255             /* CUBIC SPLINE TABLE REPULSION */
256             vfitab           = _mm_add_epi32(vfitab,ifour);
257             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
258             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
259             GMX_MM_TRANSPOSE2_PD(Y,F);
260             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
261             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
262             GMX_MM_TRANSPOSE2_PD(G,H);
263             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
264             VV               = _mm_macc_pd(vfeps,Fp,Y);
265             vvdw12           = _mm_mul_pd(c12_00,VV);
266             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
267             fvdw12           = _mm_mul_pd(c12_00,FF);
268             vvdw             = _mm_add_pd(vvdw12,vvdw6);
269             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
270
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             velecsum         = _mm_add_pd(velecsum,velec);
273             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
274
275             fscal            = _mm_add_pd(felec,fvdw);
276
277             /* Update vectorial force */
278             fix0             = _mm_macc_pd(dx00,fscal,fix0);
279             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
280             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
281             
282             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
283                                                    _mm_mul_pd(dx00,fscal),
284                                                    _mm_mul_pd(dy00,fscal),
285                                                    _mm_mul_pd(dz00,fscal));
286
287             /* Inner loop uses 78 flops */
288         }
289
290         if(jidx<j_index_end)
291         {
292
293             jnrA             = jjnr[jidx];
294             j_coord_offsetA  = DIM*jnrA;
295
296             /* load j atom coordinates */
297             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
298                                               &jx0,&jy0,&jz0);
299
300             /* Calculate displacement vector */
301             dx00             = _mm_sub_pd(ix0,jx0);
302             dy00             = _mm_sub_pd(iy0,jy0);
303             dz00             = _mm_sub_pd(iz0,jz0);
304
305             /* Calculate squared distance and things based on it */
306             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
307
308             rinv00           = gmx_mm_invsqrt_pd(rsq00);
309
310             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
311
312             /* Load parameters for j particles */
313             jq0              = _mm_load_sd(charge+jnrA+0);
314             vdwjidx0A        = 2*vdwtype[jnrA+0];
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r00              = _mm_mul_pd(rsq00,rinv00);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq00             = _mm_mul_pd(iq0,jq0);
324             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
325
326             /* Calculate table index by multiplying r with table scale and truncate to integer */
327             rt               = _mm_mul_pd(r00,vftabscale);
328             vfitab           = _mm_cvttpd_epi32(rt);
329 #ifdef __XOP__
330             vfeps            = _mm_frcz_pd(rt);
331 #else
332             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
333 #endif
334             twovfeps         = _mm_add_pd(vfeps,vfeps);
335             vfitab           = _mm_slli_epi32(vfitab,3);
336
337             /* EWALD ELECTROSTATICS */
338
339             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
340             ewrt             = _mm_mul_pd(r00,ewtabscale);
341             ewitab           = _mm_cvttpd_epi32(ewrt);
342 #ifdef __XOP__
343             eweps            = _mm_frcz_pd(ewrt);
344 #else
345             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
346 #endif
347             twoeweps         = _mm_add_pd(eweps,eweps);
348             ewitab           = _mm_slli_epi32(ewitab,2);
349             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
350             ewtabD           = _mm_setzero_pd();
351             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
352             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
353             ewtabFn          = _mm_setzero_pd();
354             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
355             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
356             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
357             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
358             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
359
360             /* CUBIC SPLINE TABLE DISPERSION */
361             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
362             F                = _mm_setzero_pd();
363             GMX_MM_TRANSPOSE2_PD(Y,F);
364             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
365             H                = _mm_setzero_pd();
366             GMX_MM_TRANSPOSE2_PD(G,H);
367             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
368             VV               = _mm_macc_pd(vfeps,Fp,Y);
369             vvdw6            = _mm_mul_pd(c6_00,VV);
370             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
371             fvdw6            = _mm_mul_pd(c6_00,FF);
372
373             /* CUBIC SPLINE TABLE REPULSION */
374             vfitab           = _mm_add_epi32(vfitab,ifour);
375             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
376             F                = _mm_setzero_pd();
377             GMX_MM_TRANSPOSE2_PD(Y,F);
378             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
379             H                = _mm_setzero_pd();
380             GMX_MM_TRANSPOSE2_PD(G,H);
381             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
382             VV               = _mm_macc_pd(vfeps,Fp,Y);
383             vvdw12           = _mm_mul_pd(c12_00,VV);
384             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
385             fvdw12           = _mm_mul_pd(c12_00,FF);
386             vvdw             = _mm_add_pd(vvdw12,vvdw6);
387             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
391             velecsum         = _mm_add_pd(velecsum,velec);
392             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
393             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
394
395             fscal            = _mm_add_pd(felec,fvdw);
396
397             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
398
399             /* Update vectorial force */
400             fix0             = _mm_macc_pd(dx00,fscal,fix0);
401             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
402             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
403             
404             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
405                                                    _mm_mul_pd(dx00,fscal),
406                                                    _mm_mul_pd(dy00,fscal),
407                                                    _mm_mul_pd(dz00,fscal));
408
409             /* Inner loop uses 78 flops */
410         }
411
412         /* End of innermost loop */
413
414         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
415                                               f+i_coord_offset,fshift+i_shift_offset);
416
417         ggid                        = gid[iidx];
418         /* Update potential energies */
419         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
420         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
421
422         /* Increment number of inner iterations */
423         inneriter                  += j_index_end - j_index_start;
424
425         /* Outer loop uses 9 flops */
426     }
427
428     /* Increment number of outer iterations */
429     outeriter        += nri;
430
431     /* Update outer/inner flops */
432
433     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*78);
434 }
435 /*
436  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_double
437  * Electrostatics interaction: Ewald
438  * VdW interaction:            CubicSplineTable
439  * Geometry:                   Particle-Particle
440  * Calculate force/pot:        Force
441  */
442 void
443 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_128_fma_double
444                     (t_nblist                    * gmx_restrict       nlist,
445                      rvec                        * gmx_restrict          xx,
446                      rvec                        * gmx_restrict          ff,
447                      t_forcerec                  * gmx_restrict          fr,
448                      t_mdatoms                   * gmx_restrict     mdatoms,
449                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
450                      t_nrnb                      * gmx_restrict        nrnb)
451 {
452     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
453      * just 0 for non-waters.
454      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
455      * jnr indices corresponding to data put in the four positions in the SIMD register.
456      */
457     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
458     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
459     int              jnrA,jnrB;
460     int              j_coord_offsetA,j_coord_offsetB;
461     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
462     real             rcutoff_scalar;
463     real             *shiftvec,*fshift,*x,*f;
464     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
465     int              vdwioffset0;
466     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
467     int              vdwjidx0A,vdwjidx0B;
468     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
469     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
470     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
471     real             *charge;
472     int              nvdwtype;
473     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
474     int              *vdwtype;
475     real             *vdwparam;
476     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
477     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
478     __m128i          vfitab;
479     __m128i          ifour       = _mm_set1_epi32(4);
480     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
481     real             *vftab;
482     __m128i          ewitab;
483     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
484     real             *ewtab;
485     __m128d          dummy_mask,cutoff_mask;
486     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
487     __m128d          one     = _mm_set1_pd(1.0);
488     __m128d          two     = _mm_set1_pd(2.0);
489     x                = xx[0];
490     f                = ff[0];
491
492     nri              = nlist->nri;
493     iinr             = nlist->iinr;
494     jindex           = nlist->jindex;
495     jjnr             = nlist->jjnr;
496     shiftidx         = nlist->shift;
497     gid              = nlist->gid;
498     shiftvec         = fr->shift_vec[0];
499     fshift           = fr->fshift[0];
500     facel            = _mm_set1_pd(fr->epsfac);
501     charge           = mdatoms->chargeA;
502     nvdwtype         = fr->ntype;
503     vdwparam         = fr->nbfp;
504     vdwtype          = mdatoms->typeA;
505
506     vftab            = kernel_data->table_vdw->data;
507     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
508
509     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
510     ewtab            = fr->ic->tabq_coul_F;
511     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
512     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
513
514     /* Avoid stupid compiler warnings */
515     jnrA = jnrB = 0;
516     j_coord_offsetA = 0;
517     j_coord_offsetB = 0;
518
519     outeriter        = 0;
520     inneriter        = 0;
521
522     /* Start outer loop over neighborlists */
523     for(iidx=0; iidx<nri; iidx++)
524     {
525         /* Load shift vector for this list */
526         i_shift_offset   = DIM*shiftidx[iidx];
527
528         /* Load limits for loop over neighbors */
529         j_index_start    = jindex[iidx];
530         j_index_end      = jindex[iidx+1];
531
532         /* Get outer coordinate index */
533         inr              = iinr[iidx];
534         i_coord_offset   = DIM*inr;
535
536         /* Load i particle coords and add shift vector */
537         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
538
539         fix0             = _mm_setzero_pd();
540         fiy0             = _mm_setzero_pd();
541         fiz0             = _mm_setzero_pd();
542
543         /* Load parameters for i particles */
544         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
545         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
546
547         /* Start inner kernel loop */
548         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
549         {
550
551             /* Get j neighbor index, and coordinate index */
552             jnrA             = jjnr[jidx];
553             jnrB             = jjnr[jidx+1];
554             j_coord_offsetA  = DIM*jnrA;
555             j_coord_offsetB  = DIM*jnrB;
556
557             /* load j atom coordinates */
558             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
559                                               &jx0,&jy0,&jz0);
560
561             /* Calculate displacement vector */
562             dx00             = _mm_sub_pd(ix0,jx0);
563             dy00             = _mm_sub_pd(iy0,jy0);
564             dz00             = _mm_sub_pd(iz0,jz0);
565
566             /* Calculate squared distance and things based on it */
567             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
568
569             rinv00           = gmx_mm_invsqrt_pd(rsq00);
570
571             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
572
573             /* Load parameters for j particles */
574             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
575             vdwjidx0A        = 2*vdwtype[jnrA+0];
576             vdwjidx0B        = 2*vdwtype[jnrB+0];
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r00              = _mm_mul_pd(rsq00,rinv00);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq00             = _mm_mul_pd(iq0,jq0);
586             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
587                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
588
589             /* Calculate table index by multiplying r with table scale and truncate to integer */
590             rt               = _mm_mul_pd(r00,vftabscale);
591             vfitab           = _mm_cvttpd_epi32(rt);
592 #ifdef __XOP__
593             vfeps            = _mm_frcz_pd(rt);
594 #else
595             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
596 #endif
597             twovfeps         = _mm_add_pd(vfeps,vfeps);
598             vfitab           = _mm_slli_epi32(vfitab,3);
599
600             /* EWALD ELECTROSTATICS */
601
602             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
603             ewrt             = _mm_mul_pd(r00,ewtabscale);
604             ewitab           = _mm_cvttpd_epi32(ewrt);
605 #ifdef __XOP__
606             eweps            = _mm_frcz_pd(ewrt);
607 #else
608             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
609 #endif
610             twoeweps         = _mm_add_pd(eweps,eweps);
611             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
612                                          &ewtabF,&ewtabFn);
613             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
614             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
615
616             /* CUBIC SPLINE TABLE DISPERSION */
617             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
618             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
619             GMX_MM_TRANSPOSE2_PD(Y,F);
620             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
621             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
622             GMX_MM_TRANSPOSE2_PD(G,H);
623             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
624             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
625             fvdw6            = _mm_mul_pd(c6_00,FF);
626
627             /* CUBIC SPLINE TABLE REPULSION */
628             vfitab           = _mm_add_epi32(vfitab,ifour);
629             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
630             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
631             GMX_MM_TRANSPOSE2_PD(Y,F);
632             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
633             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
634             GMX_MM_TRANSPOSE2_PD(G,H);
635             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
636             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
637             fvdw12           = _mm_mul_pd(c12_00,FF);
638             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
639
640             fscal            = _mm_add_pd(felec,fvdw);
641
642             /* Update vectorial force */
643             fix0             = _mm_macc_pd(dx00,fscal,fix0);
644             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
645             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
646             
647             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
648                                                    _mm_mul_pd(dx00,fscal),
649                                                    _mm_mul_pd(dy00,fscal),
650                                                    _mm_mul_pd(dz00,fscal));
651
652             /* Inner loop uses 65 flops */
653         }
654
655         if(jidx<j_index_end)
656         {
657
658             jnrA             = jjnr[jidx];
659             j_coord_offsetA  = DIM*jnrA;
660
661             /* load j atom coordinates */
662             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
663                                               &jx0,&jy0,&jz0);
664
665             /* Calculate displacement vector */
666             dx00             = _mm_sub_pd(ix0,jx0);
667             dy00             = _mm_sub_pd(iy0,jy0);
668             dz00             = _mm_sub_pd(iz0,jz0);
669
670             /* Calculate squared distance and things based on it */
671             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
672
673             rinv00           = gmx_mm_invsqrt_pd(rsq00);
674
675             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
676
677             /* Load parameters for j particles */
678             jq0              = _mm_load_sd(charge+jnrA+0);
679             vdwjidx0A        = 2*vdwtype[jnrA+0];
680
681             /**************************
682              * CALCULATE INTERACTIONS *
683              **************************/
684
685             r00              = _mm_mul_pd(rsq00,rinv00);
686
687             /* Compute parameters for interactions between i and j atoms */
688             qq00             = _mm_mul_pd(iq0,jq0);
689             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
690
691             /* Calculate table index by multiplying r with table scale and truncate to integer */
692             rt               = _mm_mul_pd(r00,vftabscale);
693             vfitab           = _mm_cvttpd_epi32(rt);
694 #ifdef __XOP__
695             vfeps            = _mm_frcz_pd(rt);
696 #else
697             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
698 #endif
699             twovfeps         = _mm_add_pd(vfeps,vfeps);
700             vfitab           = _mm_slli_epi32(vfitab,3);
701
702             /* EWALD ELECTROSTATICS */
703
704             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
705             ewrt             = _mm_mul_pd(r00,ewtabscale);
706             ewitab           = _mm_cvttpd_epi32(ewrt);
707 #ifdef __XOP__
708             eweps            = _mm_frcz_pd(ewrt);
709 #else
710             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
711 #endif
712             twoeweps         = _mm_add_pd(eweps,eweps);
713             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
714             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
715             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
716
717             /* CUBIC SPLINE TABLE DISPERSION */
718             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
719             F                = _mm_setzero_pd();
720             GMX_MM_TRANSPOSE2_PD(Y,F);
721             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
722             H                = _mm_setzero_pd();
723             GMX_MM_TRANSPOSE2_PD(G,H);
724             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
725             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
726             fvdw6            = _mm_mul_pd(c6_00,FF);
727
728             /* CUBIC SPLINE TABLE REPULSION */
729             vfitab           = _mm_add_epi32(vfitab,ifour);
730             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
731             F                = _mm_setzero_pd();
732             GMX_MM_TRANSPOSE2_PD(Y,F);
733             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
734             H                = _mm_setzero_pd();
735             GMX_MM_TRANSPOSE2_PD(G,H);
736             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
737             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
738             fvdw12           = _mm_mul_pd(c12_00,FF);
739             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
740
741             fscal            = _mm_add_pd(felec,fvdw);
742
743             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
744
745             /* Update vectorial force */
746             fix0             = _mm_macc_pd(dx00,fscal,fix0);
747             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
748             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
749             
750             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
751                                                    _mm_mul_pd(dx00,fscal),
752                                                    _mm_mul_pd(dy00,fscal),
753                                                    _mm_mul_pd(dz00,fscal));
754
755             /* Inner loop uses 65 flops */
756         }
757
758         /* End of innermost loop */
759
760         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
761                                               f+i_coord_offset,fshift+i_shift_offset);
762
763         /* Increment number of inner iterations */
764         inneriter                  += j_index_end - j_index_start;
765
766         /* Outer loop uses 7 flops */
767     }
768
769     /* Increment number of outer iterations */
770     outeriter        += nri;
771
772     /* Update outer/inner flops */
773
774     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
775 }