5c3bc52a21aa3d00027beedbbdecfbf80de18f4e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwNone_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128i          ewitab;
96     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99     real             rswitch_scalar,d_scalar;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117
118     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
119     ewtab            = fr->ic->tabq_coul_FDV0;
120     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
121     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
126     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
127     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->rcoulomb;
131     rcutoff          = _mm_set1_pd(rcutoff_scalar);
132     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
133
134     rswitch_scalar   = fr->rcoulomb_switch;
135     rswitch          = _mm_set1_pd(rswitch_scalar);
136     /* Setup switch parameters */
137     d_scalar         = rcutoff_scalar-rswitch_scalar;
138     d                = _mm_set1_pd(d_scalar);
139     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
140     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
143     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
144     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
170                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
171
172         fix1             = _mm_setzero_pd();
173         fiy1             = _mm_setzero_pd();
174         fiz1             = _mm_setzero_pd();
175         fix2             = _mm_setzero_pd();
176         fiy2             = _mm_setzero_pd();
177         fiz2             = _mm_setzero_pd();
178         fix3             = _mm_setzero_pd();
179         fiy3             = _mm_setzero_pd();
180         fiz3             = _mm_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx10             = _mm_sub_pd(ix1,jx0);
201             dy10             = _mm_sub_pd(iy1,jy0);
202             dz10             = _mm_sub_pd(iz1,jz0);
203             dx20             = _mm_sub_pd(ix2,jx0);
204             dy20             = _mm_sub_pd(iy2,jy0);
205             dz20             = _mm_sub_pd(iz2,jz0);
206             dx30             = _mm_sub_pd(ix3,jx0);
207             dy30             = _mm_sub_pd(iy3,jy0);
208             dz30             = _mm_sub_pd(iz3,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
213             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
214
215             rinv10           = gmx_mm_invsqrt_pd(rsq10);
216             rinv20           = gmx_mm_invsqrt_pd(rsq20);
217             rinv30           = gmx_mm_invsqrt_pd(rsq30);
218
219             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
220             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
221             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
225
226             fjx0             = _mm_setzero_pd();
227             fjy0             = _mm_setzero_pd();
228             fjz0             = _mm_setzero_pd();
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             if (gmx_mm_any_lt(rsq10,rcutoff2))
235             {
236
237             r10              = _mm_mul_pd(rsq10,rinv10);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq10             = _mm_mul_pd(iq1,jq0);
241
242             /* EWALD ELECTROSTATICS */
243
244             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
245             ewrt             = _mm_mul_pd(r10,ewtabscale);
246             ewitab           = _mm_cvttpd_epi32(ewrt);
247 #ifdef __XOP__
248             eweps            = _mm_frcz_pd(ewrt);
249 #else
250             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
251 #endif
252             twoeweps         = _mm_add_pd(eweps,eweps);
253             ewitab           = _mm_slli_epi32(ewitab,2);
254             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
255             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
256             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
257             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
258             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
259             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
260             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
261             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
262             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
263             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
264
265             d                = _mm_sub_pd(r10,rswitch);
266             d                = _mm_max_pd(d,_mm_setzero_pd());
267             d2               = _mm_mul_pd(d,d);
268             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
269
270             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
271
272             /* Evaluate switch function */
273             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
274             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
275             velec            = _mm_mul_pd(velec,sw);
276             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velec            = _mm_and_pd(velec,cutoff_mask);
280             velecsum         = _mm_add_pd(velecsum,velec);
281
282             fscal            = felec;
283
284             fscal            = _mm_and_pd(fscal,cutoff_mask);
285
286             /* Update vectorial force */
287             fix1             = _mm_macc_pd(dx10,fscal,fix1);
288             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
289             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
290             
291             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
292             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
293             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
294
295             }
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             if (gmx_mm_any_lt(rsq20,rcutoff2))
302             {
303
304             r20              = _mm_mul_pd(rsq20,rinv20);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq20             = _mm_mul_pd(iq2,jq0);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _mm_mul_pd(r20,ewtabscale);
313             ewitab           = _mm_cvttpd_epi32(ewrt);
314 #ifdef __XOP__
315             eweps            = _mm_frcz_pd(ewrt);
316 #else
317             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
318 #endif
319             twoeweps         = _mm_add_pd(eweps,eweps);
320             ewitab           = _mm_slli_epi32(ewitab,2);
321             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
322             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
323             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
324             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
325             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
326             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
327             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
328             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
329             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
330             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
331
332             d                = _mm_sub_pd(r20,rswitch);
333             d                = _mm_max_pd(d,_mm_setzero_pd());
334             d2               = _mm_mul_pd(d,d);
335             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
336
337             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
338
339             /* Evaluate switch function */
340             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
341             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
342             velec            = _mm_mul_pd(velec,sw);
343             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm_and_pd(velec,cutoff_mask);
347             velecsum         = _mm_add_pd(velecsum,velec);
348
349             fscal            = felec;
350
351             fscal            = _mm_and_pd(fscal,cutoff_mask);
352
353             /* Update vectorial force */
354             fix2             = _mm_macc_pd(dx20,fscal,fix2);
355             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
356             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
357             
358             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
359             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
360             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
361
362             }
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             if (gmx_mm_any_lt(rsq30,rcutoff2))
369             {
370
371             r30              = _mm_mul_pd(rsq30,rinv30);
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq30             = _mm_mul_pd(iq3,jq0);
375
376             /* EWALD ELECTROSTATICS */
377
378             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
379             ewrt             = _mm_mul_pd(r30,ewtabscale);
380             ewitab           = _mm_cvttpd_epi32(ewrt);
381 #ifdef __XOP__
382             eweps            = _mm_frcz_pd(ewrt);
383 #else
384             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
385 #endif
386             twoeweps         = _mm_add_pd(eweps,eweps);
387             ewitab           = _mm_slli_epi32(ewitab,2);
388             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
389             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
390             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
391             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
392             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
393             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
394             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
395             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
396             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
397             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
398
399             d                = _mm_sub_pd(r30,rswitch);
400             d                = _mm_max_pd(d,_mm_setzero_pd());
401             d2               = _mm_mul_pd(d,d);
402             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
403
404             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
405
406             /* Evaluate switch function */
407             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
408             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
409             velec            = _mm_mul_pd(velec,sw);
410             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
411
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velec            = _mm_and_pd(velec,cutoff_mask);
414             velecsum         = _mm_add_pd(velecsum,velec);
415
416             fscal            = felec;
417
418             fscal            = _mm_and_pd(fscal,cutoff_mask);
419
420             /* Update vectorial force */
421             fix3             = _mm_macc_pd(dx30,fscal,fix3);
422             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
423             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
424             
425             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
426             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
427             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
428
429             }
430
431             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
432
433             /* Inner loop uses 207 flops */
434         }
435
436         if(jidx<j_index_end)
437         {
438
439             jnrA             = jjnr[jidx];
440             j_coord_offsetA  = DIM*jnrA;
441
442             /* load j atom coordinates */
443             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
444                                               &jx0,&jy0,&jz0);
445
446             /* Calculate displacement vector */
447             dx10             = _mm_sub_pd(ix1,jx0);
448             dy10             = _mm_sub_pd(iy1,jy0);
449             dz10             = _mm_sub_pd(iz1,jz0);
450             dx20             = _mm_sub_pd(ix2,jx0);
451             dy20             = _mm_sub_pd(iy2,jy0);
452             dz20             = _mm_sub_pd(iz2,jz0);
453             dx30             = _mm_sub_pd(ix3,jx0);
454             dy30             = _mm_sub_pd(iy3,jy0);
455             dz30             = _mm_sub_pd(iz3,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
459             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
460             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
461
462             rinv10           = gmx_mm_invsqrt_pd(rsq10);
463             rinv20           = gmx_mm_invsqrt_pd(rsq20);
464             rinv30           = gmx_mm_invsqrt_pd(rsq30);
465
466             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
467             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
468             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
469
470             /* Load parameters for j particles */
471             jq0              = _mm_load_sd(charge+jnrA+0);
472
473             fjx0             = _mm_setzero_pd();
474             fjy0             = _mm_setzero_pd();
475             fjz0             = _mm_setzero_pd();
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             if (gmx_mm_any_lt(rsq10,rcutoff2))
482             {
483
484             r10              = _mm_mul_pd(rsq10,rinv10);
485
486             /* Compute parameters for interactions between i and j atoms */
487             qq10             = _mm_mul_pd(iq1,jq0);
488
489             /* EWALD ELECTROSTATICS */
490
491             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
492             ewrt             = _mm_mul_pd(r10,ewtabscale);
493             ewitab           = _mm_cvttpd_epi32(ewrt);
494 #ifdef __XOP__
495             eweps            = _mm_frcz_pd(ewrt);
496 #else
497             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
498 #endif
499             twoeweps         = _mm_add_pd(eweps,eweps);
500             ewitab           = _mm_slli_epi32(ewitab,2);
501             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
502             ewtabD           = _mm_setzero_pd();
503             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
504             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
505             ewtabFn          = _mm_setzero_pd();
506             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
507             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
508             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
509             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
510             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
511
512             d                = _mm_sub_pd(r10,rswitch);
513             d                = _mm_max_pd(d,_mm_setzero_pd());
514             d2               = _mm_mul_pd(d,d);
515             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
516
517             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
518
519             /* Evaluate switch function */
520             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
521             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
522             velec            = _mm_mul_pd(velec,sw);
523             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             velec            = _mm_and_pd(velec,cutoff_mask);
527             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
528             velecsum         = _mm_add_pd(velecsum,velec);
529
530             fscal            = felec;
531
532             fscal            = _mm_and_pd(fscal,cutoff_mask);
533
534             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
535
536             /* Update vectorial force */
537             fix1             = _mm_macc_pd(dx10,fscal,fix1);
538             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
539             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
540             
541             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
542             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
543             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
544
545             }
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             if (gmx_mm_any_lt(rsq20,rcutoff2))
552             {
553
554             r20              = _mm_mul_pd(rsq20,rinv20);
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq20             = _mm_mul_pd(iq2,jq0);
558
559             /* EWALD ELECTROSTATICS */
560
561             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
562             ewrt             = _mm_mul_pd(r20,ewtabscale);
563             ewitab           = _mm_cvttpd_epi32(ewrt);
564 #ifdef __XOP__
565             eweps            = _mm_frcz_pd(ewrt);
566 #else
567             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
568 #endif
569             twoeweps         = _mm_add_pd(eweps,eweps);
570             ewitab           = _mm_slli_epi32(ewitab,2);
571             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
572             ewtabD           = _mm_setzero_pd();
573             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
574             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
575             ewtabFn          = _mm_setzero_pd();
576             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
577             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
578             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
579             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
580             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
581
582             d                = _mm_sub_pd(r20,rswitch);
583             d                = _mm_max_pd(d,_mm_setzero_pd());
584             d2               = _mm_mul_pd(d,d);
585             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
586
587             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
588
589             /* Evaluate switch function */
590             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
591             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
592             velec            = _mm_mul_pd(velec,sw);
593             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
594
595             /* Update potential sum for this i atom from the interaction with this j atom. */
596             velec            = _mm_and_pd(velec,cutoff_mask);
597             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
598             velecsum         = _mm_add_pd(velecsum,velec);
599
600             fscal            = felec;
601
602             fscal            = _mm_and_pd(fscal,cutoff_mask);
603
604             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
605
606             /* Update vectorial force */
607             fix2             = _mm_macc_pd(dx20,fscal,fix2);
608             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
609             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
610             
611             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
612             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
613             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
614
615             }
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             if (gmx_mm_any_lt(rsq30,rcutoff2))
622             {
623
624             r30              = _mm_mul_pd(rsq30,rinv30);
625
626             /* Compute parameters for interactions between i and j atoms */
627             qq30             = _mm_mul_pd(iq3,jq0);
628
629             /* EWALD ELECTROSTATICS */
630
631             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
632             ewrt             = _mm_mul_pd(r30,ewtabscale);
633             ewitab           = _mm_cvttpd_epi32(ewrt);
634 #ifdef __XOP__
635             eweps            = _mm_frcz_pd(ewrt);
636 #else
637             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
638 #endif
639             twoeweps         = _mm_add_pd(eweps,eweps);
640             ewitab           = _mm_slli_epi32(ewitab,2);
641             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
642             ewtabD           = _mm_setzero_pd();
643             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
644             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
645             ewtabFn          = _mm_setzero_pd();
646             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
647             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
648             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
649             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
650             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
651
652             d                = _mm_sub_pd(r30,rswitch);
653             d                = _mm_max_pd(d,_mm_setzero_pd());
654             d2               = _mm_mul_pd(d,d);
655             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
656
657             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
658
659             /* Evaluate switch function */
660             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
661             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
662             velec            = _mm_mul_pd(velec,sw);
663             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
664
665             /* Update potential sum for this i atom from the interaction with this j atom. */
666             velec            = _mm_and_pd(velec,cutoff_mask);
667             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
668             velecsum         = _mm_add_pd(velecsum,velec);
669
670             fscal            = felec;
671
672             fscal            = _mm_and_pd(fscal,cutoff_mask);
673
674             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
675
676             /* Update vectorial force */
677             fix3             = _mm_macc_pd(dx30,fscal,fix3);
678             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
679             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
680             
681             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
682             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
683             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
684
685             }
686
687             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
688
689             /* Inner loop uses 207 flops */
690         }
691
692         /* End of innermost loop */
693
694         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
695                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
696
697         ggid                        = gid[iidx];
698         /* Update potential energies */
699         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
700
701         /* Increment number of inner iterations */
702         inneriter                  += j_index_end - j_index_start;
703
704         /* Outer loop uses 19 flops */
705     }
706
707     /* Increment number of outer iterations */
708     outeriter        += nri;
709
710     /* Update outer/inner flops */
711
712     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*207);
713 }
714 /*
715  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_avx_128_fma_double
716  * Electrostatics interaction: Ewald
717  * VdW interaction:            None
718  * Geometry:                   Water4-Particle
719  * Calculate force/pot:        Force
720  */
721 void
722 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_avx_128_fma_double
723                     (t_nblist                    * gmx_restrict       nlist,
724                      rvec                        * gmx_restrict          xx,
725                      rvec                        * gmx_restrict          ff,
726                      t_forcerec                  * gmx_restrict          fr,
727                      t_mdatoms                   * gmx_restrict     mdatoms,
728                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
729                      t_nrnb                      * gmx_restrict        nrnb)
730 {
731     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
732      * just 0 for non-waters.
733      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
734      * jnr indices corresponding to data put in the four positions in the SIMD register.
735      */
736     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
737     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
738     int              jnrA,jnrB;
739     int              j_coord_offsetA,j_coord_offsetB;
740     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
741     real             rcutoff_scalar;
742     real             *shiftvec,*fshift,*x,*f;
743     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
744     int              vdwioffset1;
745     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
746     int              vdwioffset2;
747     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
748     int              vdwioffset3;
749     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
750     int              vdwjidx0A,vdwjidx0B;
751     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
752     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
753     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
754     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
755     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
756     real             *charge;
757     __m128i          ewitab;
758     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
759     real             *ewtab;
760     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
761     real             rswitch_scalar,d_scalar;
762     __m128d          dummy_mask,cutoff_mask;
763     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
764     __m128d          one     = _mm_set1_pd(1.0);
765     __m128d          two     = _mm_set1_pd(2.0);
766     x                = xx[0];
767     f                = ff[0];
768
769     nri              = nlist->nri;
770     iinr             = nlist->iinr;
771     jindex           = nlist->jindex;
772     jjnr             = nlist->jjnr;
773     shiftidx         = nlist->shift;
774     gid              = nlist->gid;
775     shiftvec         = fr->shift_vec[0];
776     fshift           = fr->fshift[0];
777     facel            = _mm_set1_pd(fr->epsfac);
778     charge           = mdatoms->chargeA;
779
780     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
781     ewtab            = fr->ic->tabq_coul_FDV0;
782     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
783     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
784
785     /* Setup water-specific parameters */
786     inr              = nlist->iinr[0];
787     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
788     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
789     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
790
791     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
792     rcutoff_scalar   = fr->rcoulomb;
793     rcutoff          = _mm_set1_pd(rcutoff_scalar);
794     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
795
796     rswitch_scalar   = fr->rcoulomb_switch;
797     rswitch          = _mm_set1_pd(rswitch_scalar);
798     /* Setup switch parameters */
799     d_scalar         = rcutoff_scalar-rswitch_scalar;
800     d                = _mm_set1_pd(d_scalar);
801     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
802     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
803     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
804     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
805     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
806     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
807
808     /* Avoid stupid compiler warnings */
809     jnrA = jnrB = 0;
810     j_coord_offsetA = 0;
811     j_coord_offsetB = 0;
812
813     outeriter        = 0;
814     inneriter        = 0;
815
816     /* Start outer loop over neighborlists */
817     for(iidx=0; iidx<nri; iidx++)
818     {
819         /* Load shift vector for this list */
820         i_shift_offset   = DIM*shiftidx[iidx];
821
822         /* Load limits for loop over neighbors */
823         j_index_start    = jindex[iidx];
824         j_index_end      = jindex[iidx+1];
825
826         /* Get outer coordinate index */
827         inr              = iinr[iidx];
828         i_coord_offset   = DIM*inr;
829
830         /* Load i particle coords and add shift vector */
831         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
832                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
833
834         fix1             = _mm_setzero_pd();
835         fiy1             = _mm_setzero_pd();
836         fiz1             = _mm_setzero_pd();
837         fix2             = _mm_setzero_pd();
838         fiy2             = _mm_setzero_pd();
839         fiz2             = _mm_setzero_pd();
840         fix3             = _mm_setzero_pd();
841         fiy3             = _mm_setzero_pd();
842         fiz3             = _mm_setzero_pd();
843
844         /* Start inner kernel loop */
845         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
846         {
847
848             /* Get j neighbor index, and coordinate index */
849             jnrA             = jjnr[jidx];
850             jnrB             = jjnr[jidx+1];
851             j_coord_offsetA  = DIM*jnrA;
852             j_coord_offsetB  = DIM*jnrB;
853
854             /* load j atom coordinates */
855             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
856                                               &jx0,&jy0,&jz0);
857
858             /* Calculate displacement vector */
859             dx10             = _mm_sub_pd(ix1,jx0);
860             dy10             = _mm_sub_pd(iy1,jy0);
861             dz10             = _mm_sub_pd(iz1,jz0);
862             dx20             = _mm_sub_pd(ix2,jx0);
863             dy20             = _mm_sub_pd(iy2,jy0);
864             dz20             = _mm_sub_pd(iz2,jz0);
865             dx30             = _mm_sub_pd(ix3,jx0);
866             dy30             = _mm_sub_pd(iy3,jy0);
867             dz30             = _mm_sub_pd(iz3,jz0);
868
869             /* Calculate squared distance and things based on it */
870             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
871             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
872             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
873
874             rinv10           = gmx_mm_invsqrt_pd(rsq10);
875             rinv20           = gmx_mm_invsqrt_pd(rsq20);
876             rinv30           = gmx_mm_invsqrt_pd(rsq30);
877
878             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
879             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
880             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
881
882             /* Load parameters for j particles */
883             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
884
885             fjx0             = _mm_setzero_pd();
886             fjy0             = _mm_setzero_pd();
887             fjz0             = _mm_setzero_pd();
888
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             if (gmx_mm_any_lt(rsq10,rcutoff2))
894             {
895
896             r10              = _mm_mul_pd(rsq10,rinv10);
897
898             /* Compute parameters for interactions between i and j atoms */
899             qq10             = _mm_mul_pd(iq1,jq0);
900
901             /* EWALD ELECTROSTATICS */
902
903             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
904             ewrt             = _mm_mul_pd(r10,ewtabscale);
905             ewitab           = _mm_cvttpd_epi32(ewrt);
906 #ifdef __XOP__
907             eweps            = _mm_frcz_pd(ewrt);
908 #else
909             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
910 #endif
911             twoeweps         = _mm_add_pd(eweps,eweps);
912             ewitab           = _mm_slli_epi32(ewitab,2);
913             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
914             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
915             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
916             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
917             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
918             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
919             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
920             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
921             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
922             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
923
924             d                = _mm_sub_pd(r10,rswitch);
925             d                = _mm_max_pd(d,_mm_setzero_pd());
926             d2               = _mm_mul_pd(d,d);
927             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
928
929             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
930
931             /* Evaluate switch function */
932             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
933             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
934             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
935
936             fscal            = felec;
937
938             fscal            = _mm_and_pd(fscal,cutoff_mask);
939
940             /* Update vectorial force */
941             fix1             = _mm_macc_pd(dx10,fscal,fix1);
942             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
943             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
944             
945             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
946             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
947             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
948
949             }
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             if (gmx_mm_any_lt(rsq20,rcutoff2))
956             {
957
958             r20              = _mm_mul_pd(rsq20,rinv20);
959
960             /* Compute parameters for interactions between i and j atoms */
961             qq20             = _mm_mul_pd(iq2,jq0);
962
963             /* EWALD ELECTROSTATICS */
964
965             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
966             ewrt             = _mm_mul_pd(r20,ewtabscale);
967             ewitab           = _mm_cvttpd_epi32(ewrt);
968 #ifdef __XOP__
969             eweps            = _mm_frcz_pd(ewrt);
970 #else
971             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
972 #endif
973             twoeweps         = _mm_add_pd(eweps,eweps);
974             ewitab           = _mm_slli_epi32(ewitab,2);
975             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
976             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
977             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
978             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
979             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
980             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
981             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
982             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
983             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
984             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
985
986             d                = _mm_sub_pd(r20,rswitch);
987             d                = _mm_max_pd(d,_mm_setzero_pd());
988             d2               = _mm_mul_pd(d,d);
989             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
990
991             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
992
993             /* Evaluate switch function */
994             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
995             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
996             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
997
998             fscal            = felec;
999
1000             fscal            = _mm_and_pd(fscal,cutoff_mask);
1001
1002             /* Update vectorial force */
1003             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1004             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1005             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1006             
1007             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1008             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1009             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1010
1011             }
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             if (gmx_mm_any_lt(rsq30,rcutoff2))
1018             {
1019
1020             r30              = _mm_mul_pd(rsq30,rinv30);
1021
1022             /* Compute parameters for interactions between i and j atoms */
1023             qq30             = _mm_mul_pd(iq3,jq0);
1024
1025             /* EWALD ELECTROSTATICS */
1026
1027             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1028             ewrt             = _mm_mul_pd(r30,ewtabscale);
1029             ewitab           = _mm_cvttpd_epi32(ewrt);
1030 #ifdef __XOP__
1031             eweps            = _mm_frcz_pd(ewrt);
1032 #else
1033             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1034 #endif
1035             twoeweps         = _mm_add_pd(eweps,eweps);
1036             ewitab           = _mm_slli_epi32(ewitab,2);
1037             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1038             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1039             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1040             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1041             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1042             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1043             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1044             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1045             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1046             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1047
1048             d                = _mm_sub_pd(r30,rswitch);
1049             d                = _mm_max_pd(d,_mm_setzero_pd());
1050             d2               = _mm_mul_pd(d,d);
1051             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1052
1053             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1054
1055             /* Evaluate switch function */
1056             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1057             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1058             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1059
1060             fscal            = felec;
1061
1062             fscal            = _mm_and_pd(fscal,cutoff_mask);
1063
1064             /* Update vectorial force */
1065             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1066             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1067             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1068             
1069             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1070             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1071             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1072
1073             }
1074
1075             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1076
1077             /* Inner loop uses 198 flops */
1078         }
1079
1080         if(jidx<j_index_end)
1081         {
1082
1083             jnrA             = jjnr[jidx];
1084             j_coord_offsetA  = DIM*jnrA;
1085
1086             /* load j atom coordinates */
1087             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1088                                               &jx0,&jy0,&jz0);
1089
1090             /* Calculate displacement vector */
1091             dx10             = _mm_sub_pd(ix1,jx0);
1092             dy10             = _mm_sub_pd(iy1,jy0);
1093             dz10             = _mm_sub_pd(iz1,jz0);
1094             dx20             = _mm_sub_pd(ix2,jx0);
1095             dy20             = _mm_sub_pd(iy2,jy0);
1096             dz20             = _mm_sub_pd(iz2,jz0);
1097             dx30             = _mm_sub_pd(ix3,jx0);
1098             dy30             = _mm_sub_pd(iy3,jy0);
1099             dz30             = _mm_sub_pd(iz3,jz0);
1100
1101             /* Calculate squared distance and things based on it */
1102             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1103             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1104             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1105
1106             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1107             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1108             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1109
1110             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1111             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1112             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1113
1114             /* Load parameters for j particles */
1115             jq0              = _mm_load_sd(charge+jnrA+0);
1116
1117             fjx0             = _mm_setzero_pd();
1118             fjy0             = _mm_setzero_pd();
1119             fjz0             = _mm_setzero_pd();
1120
1121             /**************************
1122              * CALCULATE INTERACTIONS *
1123              **************************/
1124
1125             if (gmx_mm_any_lt(rsq10,rcutoff2))
1126             {
1127
1128             r10              = _mm_mul_pd(rsq10,rinv10);
1129
1130             /* Compute parameters for interactions between i and j atoms */
1131             qq10             = _mm_mul_pd(iq1,jq0);
1132
1133             /* EWALD ELECTROSTATICS */
1134
1135             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1136             ewrt             = _mm_mul_pd(r10,ewtabscale);
1137             ewitab           = _mm_cvttpd_epi32(ewrt);
1138 #ifdef __XOP__
1139             eweps            = _mm_frcz_pd(ewrt);
1140 #else
1141             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1142 #endif
1143             twoeweps         = _mm_add_pd(eweps,eweps);
1144             ewitab           = _mm_slli_epi32(ewitab,2);
1145             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1146             ewtabD           = _mm_setzero_pd();
1147             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1148             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1149             ewtabFn          = _mm_setzero_pd();
1150             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1151             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1152             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1153             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1154             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1155
1156             d                = _mm_sub_pd(r10,rswitch);
1157             d                = _mm_max_pd(d,_mm_setzero_pd());
1158             d2               = _mm_mul_pd(d,d);
1159             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1160
1161             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1162
1163             /* Evaluate switch function */
1164             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1165             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1166             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1167
1168             fscal            = felec;
1169
1170             fscal            = _mm_and_pd(fscal,cutoff_mask);
1171
1172             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1173
1174             /* Update vectorial force */
1175             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1176             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1177             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1178             
1179             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1180             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1181             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1182
1183             }
1184
1185             /**************************
1186              * CALCULATE INTERACTIONS *
1187              **************************/
1188
1189             if (gmx_mm_any_lt(rsq20,rcutoff2))
1190             {
1191
1192             r20              = _mm_mul_pd(rsq20,rinv20);
1193
1194             /* Compute parameters for interactions between i and j atoms */
1195             qq20             = _mm_mul_pd(iq2,jq0);
1196
1197             /* EWALD ELECTROSTATICS */
1198
1199             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1200             ewrt             = _mm_mul_pd(r20,ewtabscale);
1201             ewitab           = _mm_cvttpd_epi32(ewrt);
1202 #ifdef __XOP__
1203             eweps            = _mm_frcz_pd(ewrt);
1204 #else
1205             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1206 #endif
1207             twoeweps         = _mm_add_pd(eweps,eweps);
1208             ewitab           = _mm_slli_epi32(ewitab,2);
1209             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1210             ewtabD           = _mm_setzero_pd();
1211             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1212             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1213             ewtabFn          = _mm_setzero_pd();
1214             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1215             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1216             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1217             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1218             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1219
1220             d                = _mm_sub_pd(r20,rswitch);
1221             d                = _mm_max_pd(d,_mm_setzero_pd());
1222             d2               = _mm_mul_pd(d,d);
1223             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1224
1225             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1226
1227             /* Evaluate switch function */
1228             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1229             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1230             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1231
1232             fscal            = felec;
1233
1234             fscal            = _mm_and_pd(fscal,cutoff_mask);
1235
1236             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1237
1238             /* Update vectorial force */
1239             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1240             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1241             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1242             
1243             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1244             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1245             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1246
1247             }
1248
1249             /**************************
1250              * CALCULATE INTERACTIONS *
1251              **************************/
1252
1253             if (gmx_mm_any_lt(rsq30,rcutoff2))
1254             {
1255
1256             r30              = _mm_mul_pd(rsq30,rinv30);
1257
1258             /* Compute parameters for interactions between i and j atoms */
1259             qq30             = _mm_mul_pd(iq3,jq0);
1260
1261             /* EWALD ELECTROSTATICS */
1262
1263             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1264             ewrt             = _mm_mul_pd(r30,ewtabscale);
1265             ewitab           = _mm_cvttpd_epi32(ewrt);
1266 #ifdef __XOP__
1267             eweps            = _mm_frcz_pd(ewrt);
1268 #else
1269             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1270 #endif
1271             twoeweps         = _mm_add_pd(eweps,eweps);
1272             ewitab           = _mm_slli_epi32(ewitab,2);
1273             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1274             ewtabD           = _mm_setzero_pd();
1275             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1276             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1277             ewtabFn          = _mm_setzero_pd();
1278             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1279             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1280             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1281             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1282             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1283
1284             d                = _mm_sub_pd(r30,rswitch);
1285             d                = _mm_max_pd(d,_mm_setzero_pd());
1286             d2               = _mm_mul_pd(d,d);
1287             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1288
1289             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1290
1291             /* Evaluate switch function */
1292             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1293             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1294             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1295
1296             fscal            = felec;
1297
1298             fscal            = _mm_and_pd(fscal,cutoff_mask);
1299
1300             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1301
1302             /* Update vectorial force */
1303             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1304             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1305             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1306             
1307             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1308             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1309             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1310
1311             }
1312
1313             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1314
1315             /* Inner loop uses 198 flops */
1316         }
1317
1318         /* End of innermost loop */
1319
1320         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1321                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1322
1323         /* Increment number of inner iterations */
1324         inneriter                  += j_index_end - j_index_start;
1325
1326         /* Outer loop uses 18 flops */
1327     }
1328
1329     /* Increment number of outer iterations */
1330     outeriter        += nri;
1331
1332     /* Update outer/inner flops */
1333
1334     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*198);
1335 }