823291cb08b924941f92c81de45ce7a2369bac13
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwNone_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          ewitab;
94     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     real             *ewtab;
96     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97     real             rswitch_scalar,d_scalar;
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
124     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
125     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm_set1_pd(rcutoff_scalar);
130     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
131
132     rswitch_scalar   = fr->rcoulomb_switch;
133     rswitch          = _mm_set1_pd(rswitch_scalar);
134     /* Setup switch parameters */
135     d_scalar         = rcutoff_scalar-rswitch_scalar;
136     d                = _mm_set1_pd(d_scalar);
137     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
138     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
141     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
142     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm_setzero_pd();
171         fiy0             = _mm_setzero_pd();
172         fiz0             = _mm_setzero_pd();
173         fix1             = _mm_setzero_pd();
174         fiy1             = _mm_setzero_pd();
175         fiz1             = _mm_setzero_pd();
176         fix2             = _mm_setzero_pd();
177         fiy2             = _mm_setzero_pd();
178         fiz2             = _mm_setzero_pd();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_pd();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_pd(ix0,jx0);
199             dy00             = _mm_sub_pd(iy0,jy0);
200             dz00             = _mm_sub_pd(iz0,jz0);
201             dx10             = _mm_sub_pd(ix1,jx0);
202             dy10             = _mm_sub_pd(iy1,jy0);
203             dz10             = _mm_sub_pd(iz1,jz0);
204             dx20             = _mm_sub_pd(ix2,jx0);
205             dy20             = _mm_sub_pd(iy2,jy0);
206             dz20             = _mm_sub_pd(iz2,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
210             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
211             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
212
213             rinv00           = gmx_mm_invsqrt_pd(rsq00);
214             rinv10           = gmx_mm_invsqrt_pd(rsq10);
215             rinv20           = gmx_mm_invsqrt_pd(rsq20);
216
217             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
218             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
219             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
223
224             fjx0             = _mm_setzero_pd();
225             fjy0             = _mm_setzero_pd();
226             fjz0             = _mm_setzero_pd();
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             if (gmx_mm_any_lt(rsq00,rcutoff2))
233             {
234
235             r00              = _mm_mul_pd(rsq00,rinv00);
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq00             = _mm_mul_pd(iq0,jq0);
239
240             /* EWALD ELECTROSTATICS */
241
242             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
243             ewrt             = _mm_mul_pd(r00,ewtabscale);
244             ewitab           = _mm_cvttpd_epi32(ewrt);
245 #ifdef __XOP__
246             eweps            = _mm_frcz_pd(ewrt);
247 #else
248             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
249 #endif
250             twoeweps         = _mm_add_pd(eweps,eweps);
251             ewitab           = _mm_slli_epi32(ewitab,2);
252             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
253             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
254             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
255             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
256             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
257             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
258             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
259             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
260             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
261             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
262
263             d                = _mm_sub_pd(r00,rswitch);
264             d                = _mm_max_pd(d,_mm_setzero_pd());
265             d2               = _mm_mul_pd(d,d);
266             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
267
268             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
269
270             /* Evaluate switch function */
271             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
272             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
273             velec            = _mm_mul_pd(velec,sw);
274             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velec            = _mm_and_pd(velec,cutoff_mask);
278             velecsum         = _mm_add_pd(velecsum,velec);
279
280             fscal            = felec;
281
282             fscal            = _mm_and_pd(fscal,cutoff_mask);
283
284             /* Update vectorial force */
285             fix0             = _mm_macc_pd(dx00,fscal,fix0);
286             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
287             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
288             
289             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
290             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
291             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
292
293             }
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             if (gmx_mm_any_lt(rsq10,rcutoff2))
300             {
301
302             r10              = _mm_mul_pd(rsq10,rinv10);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _mm_mul_pd(iq1,jq0);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm_mul_pd(r10,ewtabscale);
311             ewitab           = _mm_cvttpd_epi32(ewrt);
312 #ifdef __XOP__
313             eweps            = _mm_frcz_pd(ewrt);
314 #else
315             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
316 #endif
317             twoeweps         = _mm_add_pd(eweps,eweps);
318             ewitab           = _mm_slli_epi32(ewitab,2);
319             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
320             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
321             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
322             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
323             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
324             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
325             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
326             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
327             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
328             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
329
330             d                = _mm_sub_pd(r10,rswitch);
331             d                = _mm_max_pd(d,_mm_setzero_pd());
332             d2               = _mm_mul_pd(d,d);
333             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
334
335             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
336
337             /* Evaluate switch function */
338             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
339             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
340             velec            = _mm_mul_pd(velec,sw);
341             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _mm_and_pd(velec,cutoff_mask);
345             velecsum         = _mm_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             fscal            = _mm_and_pd(fscal,cutoff_mask);
350
351             /* Update vectorial force */
352             fix1             = _mm_macc_pd(dx10,fscal,fix1);
353             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
354             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
355             
356             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
357             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
358             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
359
360             }
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             if (gmx_mm_any_lt(rsq20,rcutoff2))
367             {
368
369             r20              = _mm_mul_pd(rsq20,rinv20);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq20             = _mm_mul_pd(iq2,jq0);
373
374             /* EWALD ELECTROSTATICS */
375
376             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
377             ewrt             = _mm_mul_pd(r20,ewtabscale);
378             ewitab           = _mm_cvttpd_epi32(ewrt);
379 #ifdef __XOP__
380             eweps            = _mm_frcz_pd(ewrt);
381 #else
382             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
383 #endif
384             twoeweps         = _mm_add_pd(eweps,eweps);
385             ewitab           = _mm_slli_epi32(ewitab,2);
386             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
387             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
388             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
389             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
390             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
391             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
392             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
393             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
394             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
395             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
396
397             d                = _mm_sub_pd(r20,rswitch);
398             d                = _mm_max_pd(d,_mm_setzero_pd());
399             d2               = _mm_mul_pd(d,d);
400             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
401
402             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
403
404             /* Evaluate switch function */
405             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
406             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
407             velec            = _mm_mul_pd(velec,sw);
408             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velec            = _mm_and_pd(velec,cutoff_mask);
412             velecsum         = _mm_add_pd(velecsum,velec);
413
414             fscal            = felec;
415
416             fscal            = _mm_and_pd(fscal,cutoff_mask);
417
418             /* Update vectorial force */
419             fix2             = _mm_macc_pd(dx20,fscal,fix2);
420             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
421             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
422             
423             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
424             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
425             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
426
427             }
428
429             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
430
431             /* Inner loop uses 207 flops */
432         }
433
434         if(jidx<j_index_end)
435         {
436
437             jnrA             = jjnr[jidx];
438             j_coord_offsetA  = DIM*jnrA;
439
440             /* load j atom coordinates */
441             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
442                                               &jx0,&jy0,&jz0);
443
444             /* Calculate displacement vector */
445             dx00             = _mm_sub_pd(ix0,jx0);
446             dy00             = _mm_sub_pd(iy0,jy0);
447             dz00             = _mm_sub_pd(iz0,jz0);
448             dx10             = _mm_sub_pd(ix1,jx0);
449             dy10             = _mm_sub_pd(iy1,jy0);
450             dz10             = _mm_sub_pd(iz1,jz0);
451             dx20             = _mm_sub_pd(ix2,jx0);
452             dy20             = _mm_sub_pd(iy2,jy0);
453             dz20             = _mm_sub_pd(iz2,jz0);
454
455             /* Calculate squared distance and things based on it */
456             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
457             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
458             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
459
460             rinv00           = gmx_mm_invsqrt_pd(rsq00);
461             rinv10           = gmx_mm_invsqrt_pd(rsq10);
462             rinv20           = gmx_mm_invsqrt_pd(rsq20);
463
464             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
465             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
466             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
467
468             /* Load parameters for j particles */
469             jq0              = _mm_load_sd(charge+jnrA+0);
470
471             fjx0             = _mm_setzero_pd();
472             fjy0             = _mm_setzero_pd();
473             fjz0             = _mm_setzero_pd();
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             if (gmx_mm_any_lt(rsq00,rcutoff2))
480             {
481
482             r00              = _mm_mul_pd(rsq00,rinv00);
483
484             /* Compute parameters for interactions between i and j atoms */
485             qq00             = _mm_mul_pd(iq0,jq0);
486
487             /* EWALD ELECTROSTATICS */
488
489             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
490             ewrt             = _mm_mul_pd(r00,ewtabscale);
491             ewitab           = _mm_cvttpd_epi32(ewrt);
492 #ifdef __XOP__
493             eweps            = _mm_frcz_pd(ewrt);
494 #else
495             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
496 #endif
497             twoeweps         = _mm_add_pd(eweps,eweps);
498             ewitab           = _mm_slli_epi32(ewitab,2);
499             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
500             ewtabD           = _mm_setzero_pd();
501             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
502             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
503             ewtabFn          = _mm_setzero_pd();
504             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
505             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
506             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
507             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
508             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
509
510             d                = _mm_sub_pd(r00,rswitch);
511             d                = _mm_max_pd(d,_mm_setzero_pd());
512             d2               = _mm_mul_pd(d,d);
513             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
514
515             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
516
517             /* Evaluate switch function */
518             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
519             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
520             velec            = _mm_mul_pd(velec,sw);
521             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
522
523             /* Update potential sum for this i atom from the interaction with this j atom. */
524             velec            = _mm_and_pd(velec,cutoff_mask);
525             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
526             velecsum         = _mm_add_pd(velecsum,velec);
527
528             fscal            = felec;
529
530             fscal            = _mm_and_pd(fscal,cutoff_mask);
531
532             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
533
534             /* Update vectorial force */
535             fix0             = _mm_macc_pd(dx00,fscal,fix0);
536             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
537             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
538             
539             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
540             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
541             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
542
543             }
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             if (gmx_mm_any_lt(rsq10,rcutoff2))
550             {
551
552             r10              = _mm_mul_pd(rsq10,rinv10);
553
554             /* Compute parameters for interactions between i and j atoms */
555             qq10             = _mm_mul_pd(iq1,jq0);
556
557             /* EWALD ELECTROSTATICS */
558
559             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
560             ewrt             = _mm_mul_pd(r10,ewtabscale);
561             ewitab           = _mm_cvttpd_epi32(ewrt);
562 #ifdef __XOP__
563             eweps            = _mm_frcz_pd(ewrt);
564 #else
565             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
566 #endif
567             twoeweps         = _mm_add_pd(eweps,eweps);
568             ewitab           = _mm_slli_epi32(ewitab,2);
569             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
570             ewtabD           = _mm_setzero_pd();
571             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
572             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
573             ewtabFn          = _mm_setzero_pd();
574             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
575             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
576             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
577             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
578             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
579
580             d                = _mm_sub_pd(r10,rswitch);
581             d                = _mm_max_pd(d,_mm_setzero_pd());
582             d2               = _mm_mul_pd(d,d);
583             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
584
585             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
586
587             /* Evaluate switch function */
588             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
589             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
590             velec            = _mm_mul_pd(velec,sw);
591             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm_and_pd(velec,cutoff_mask);
595             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
596             velecsum         = _mm_add_pd(velecsum,velec);
597
598             fscal            = felec;
599
600             fscal            = _mm_and_pd(fscal,cutoff_mask);
601
602             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
603
604             /* Update vectorial force */
605             fix1             = _mm_macc_pd(dx10,fscal,fix1);
606             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
607             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
608             
609             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
610             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
611             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
612
613             }
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             if (gmx_mm_any_lt(rsq20,rcutoff2))
620             {
621
622             r20              = _mm_mul_pd(rsq20,rinv20);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq20             = _mm_mul_pd(iq2,jq0);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm_mul_pd(r20,ewtabscale);
631             ewitab           = _mm_cvttpd_epi32(ewrt);
632 #ifdef __XOP__
633             eweps            = _mm_frcz_pd(ewrt);
634 #else
635             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
636 #endif
637             twoeweps         = _mm_add_pd(eweps,eweps);
638             ewitab           = _mm_slli_epi32(ewitab,2);
639             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
640             ewtabD           = _mm_setzero_pd();
641             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
642             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
643             ewtabFn          = _mm_setzero_pd();
644             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
645             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
646             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
647             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
648             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
649
650             d                = _mm_sub_pd(r20,rswitch);
651             d                = _mm_max_pd(d,_mm_setzero_pd());
652             d2               = _mm_mul_pd(d,d);
653             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
654
655             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
656
657             /* Evaluate switch function */
658             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
659             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
660             velec            = _mm_mul_pd(velec,sw);
661             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
662
663             /* Update potential sum for this i atom from the interaction with this j atom. */
664             velec            = _mm_and_pd(velec,cutoff_mask);
665             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
666             velecsum         = _mm_add_pd(velecsum,velec);
667
668             fscal            = felec;
669
670             fscal            = _mm_and_pd(fscal,cutoff_mask);
671
672             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
673
674             /* Update vectorial force */
675             fix2             = _mm_macc_pd(dx20,fscal,fix2);
676             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
677             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
678             
679             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
680             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
681             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
682
683             }
684
685             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
686
687             /* Inner loop uses 207 flops */
688         }
689
690         /* End of innermost loop */
691
692         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
693                                               f+i_coord_offset,fshift+i_shift_offset);
694
695         ggid                        = gid[iidx];
696         /* Update potential energies */
697         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
698
699         /* Increment number of inner iterations */
700         inneriter                  += j_index_end - j_index_start;
701
702         /* Outer loop uses 19 flops */
703     }
704
705     /* Increment number of outer iterations */
706     outeriter        += nri;
707
708     /* Update outer/inner flops */
709
710     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*207);
711 }
712 /*
713  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_avx_128_fma_double
714  * Electrostatics interaction: Ewald
715  * VdW interaction:            None
716  * Geometry:                   Water3-Particle
717  * Calculate force/pot:        Force
718  */
719 void
720 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_avx_128_fma_double
721                     (t_nblist                    * gmx_restrict       nlist,
722                      rvec                        * gmx_restrict          xx,
723                      rvec                        * gmx_restrict          ff,
724                      t_forcerec                  * gmx_restrict          fr,
725                      t_mdatoms                   * gmx_restrict     mdatoms,
726                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
727                      t_nrnb                      * gmx_restrict        nrnb)
728 {
729     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
730      * just 0 for non-waters.
731      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
732      * jnr indices corresponding to data put in the four positions in the SIMD register.
733      */
734     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
735     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
736     int              jnrA,jnrB;
737     int              j_coord_offsetA,j_coord_offsetB;
738     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
739     real             rcutoff_scalar;
740     real             *shiftvec,*fshift,*x,*f;
741     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
742     int              vdwioffset0;
743     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
744     int              vdwioffset1;
745     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
746     int              vdwioffset2;
747     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
748     int              vdwjidx0A,vdwjidx0B;
749     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
750     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
751     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
752     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
753     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
754     real             *charge;
755     __m128i          ewitab;
756     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
757     real             *ewtab;
758     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
759     real             rswitch_scalar,d_scalar;
760     __m128d          dummy_mask,cutoff_mask;
761     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
762     __m128d          one     = _mm_set1_pd(1.0);
763     __m128d          two     = _mm_set1_pd(2.0);
764     x                = xx[0];
765     f                = ff[0];
766
767     nri              = nlist->nri;
768     iinr             = nlist->iinr;
769     jindex           = nlist->jindex;
770     jjnr             = nlist->jjnr;
771     shiftidx         = nlist->shift;
772     gid              = nlist->gid;
773     shiftvec         = fr->shift_vec[0];
774     fshift           = fr->fshift[0];
775     facel            = _mm_set1_pd(fr->epsfac);
776     charge           = mdatoms->chargeA;
777
778     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
779     ewtab            = fr->ic->tabq_coul_FDV0;
780     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
781     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
782
783     /* Setup water-specific parameters */
784     inr              = nlist->iinr[0];
785     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
786     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
787     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
788
789     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
790     rcutoff_scalar   = fr->rcoulomb;
791     rcutoff          = _mm_set1_pd(rcutoff_scalar);
792     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
793
794     rswitch_scalar   = fr->rcoulomb_switch;
795     rswitch          = _mm_set1_pd(rswitch_scalar);
796     /* Setup switch parameters */
797     d_scalar         = rcutoff_scalar-rswitch_scalar;
798     d                = _mm_set1_pd(d_scalar);
799     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
800     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
801     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
802     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
803     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
804     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
805
806     /* Avoid stupid compiler warnings */
807     jnrA = jnrB = 0;
808     j_coord_offsetA = 0;
809     j_coord_offsetB = 0;
810
811     outeriter        = 0;
812     inneriter        = 0;
813
814     /* Start outer loop over neighborlists */
815     for(iidx=0; iidx<nri; iidx++)
816     {
817         /* Load shift vector for this list */
818         i_shift_offset   = DIM*shiftidx[iidx];
819
820         /* Load limits for loop over neighbors */
821         j_index_start    = jindex[iidx];
822         j_index_end      = jindex[iidx+1];
823
824         /* Get outer coordinate index */
825         inr              = iinr[iidx];
826         i_coord_offset   = DIM*inr;
827
828         /* Load i particle coords and add shift vector */
829         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
830                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
831
832         fix0             = _mm_setzero_pd();
833         fiy0             = _mm_setzero_pd();
834         fiz0             = _mm_setzero_pd();
835         fix1             = _mm_setzero_pd();
836         fiy1             = _mm_setzero_pd();
837         fiz1             = _mm_setzero_pd();
838         fix2             = _mm_setzero_pd();
839         fiy2             = _mm_setzero_pd();
840         fiz2             = _mm_setzero_pd();
841
842         /* Start inner kernel loop */
843         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
844         {
845
846             /* Get j neighbor index, and coordinate index */
847             jnrA             = jjnr[jidx];
848             jnrB             = jjnr[jidx+1];
849             j_coord_offsetA  = DIM*jnrA;
850             j_coord_offsetB  = DIM*jnrB;
851
852             /* load j atom coordinates */
853             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
854                                               &jx0,&jy0,&jz0);
855
856             /* Calculate displacement vector */
857             dx00             = _mm_sub_pd(ix0,jx0);
858             dy00             = _mm_sub_pd(iy0,jy0);
859             dz00             = _mm_sub_pd(iz0,jz0);
860             dx10             = _mm_sub_pd(ix1,jx0);
861             dy10             = _mm_sub_pd(iy1,jy0);
862             dz10             = _mm_sub_pd(iz1,jz0);
863             dx20             = _mm_sub_pd(ix2,jx0);
864             dy20             = _mm_sub_pd(iy2,jy0);
865             dz20             = _mm_sub_pd(iz2,jz0);
866
867             /* Calculate squared distance and things based on it */
868             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
869             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
870             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
871
872             rinv00           = gmx_mm_invsqrt_pd(rsq00);
873             rinv10           = gmx_mm_invsqrt_pd(rsq10);
874             rinv20           = gmx_mm_invsqrt_pd(rsq20);
875
876             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
877             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
878             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
879
880             /* Load parameters for j particles */
881             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
882
883             fjx0             = _mm_setzero_pd();
884             fjy0             = _mm_setzero_pd();
885             fjz0             = _mm_setzero_pd();
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             if (gmx_mm_any_lt(rsq00,rcutoff2))
892             {
893
894             r00              = _mm_mul_pd(rsq00,rinv00);
895
896             /* Compute parameters for interactions between i and j atoms */
897             qq00             = _mm_mul_pd(iq0,jq0);
898
899             /* EWALD ELECTROSTATICS */
900
901             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
902             ewrt             = _mm_mul_pd(r00,ewtabscale);
903             ewitab           = _mm_cvttpd_epi32(ewrt);
904 #ifdef __XOP__
905             eweps            = _mm_frcz_pd(ewrt);
906 #else
907             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
908 #endif
909             twoeweps         = _mm_add_pd(eweps,eweps);
910             ewitab           = _mm_slli_epi32(ewitab,2);
911             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
912             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
913             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
914             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
915             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
916             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
917             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
918             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
919             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
920             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
921
922             d                = _mm_sub_pd(r00,rswitch);
923             d                = _mm_max_pd(d,_mm_setzero_pd());
924             d2               = _mm_mul_pd(d,d);
925             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
926
927             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
928
929             /* Evaluate switch function */
930             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
931             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
932             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
933
934             fscal            = felec;
935
936             fscal            = _mm_and_pd(fscal,cutoff_mask);
937
938             /* Update vectorial force */
939             fix0             = _mm_macc_pd(dx00,fscal,fix0);
940             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
941             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
942             
943             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
944             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
945             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
946
947             }
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             if (gmx_mm_any_lt(rsq10,rcutoff2))
954             {
955
956             r10              = _mm_mul_pd(rsq10,rinv10);
957
958             /* Compute parameters for interactions between i and j atoms */
959             qq10             = _mm_mul_pd(iq1,jq0);
960
961             /* EWALD ELECTROSTATICS */
962
963             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964             ewrt             = _mm_mul_pd(r10,ewtabscale);
965             ewitab           = _mm_cvttpd_epi32(ewrt);
966 #ifdef __XOP__
967             eweps            = _mm_frcz_pd(ewrt);
968 #else
969             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
970 #endif
971             twoeweps         = _mm_add_pd(eweps,eweps);
972             ewitab           = _mm_slli_epi32(ewitab,2);
973             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
974             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
975             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
976             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
977             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
978             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
979             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
980             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
981             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
982             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
983
984             d                = _mm_sub_pd(r10,rswitch);
985             d                = _mm_max_pd(d,_mm_setzero_pd());
986             d2               = _mm_mul_pd(d,d);
987             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
988
989             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
990
991             /* Evaluate switch function */
992             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
993             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
994             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
995
996             fscal            = felec;
997
998             fscal            = _mm_and_pd(fscal,cutoff_mask);
999
1000             /* Update vectorial force */
1001             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1002             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1003             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1004             
1005             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1006             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1007             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1008
1009             }
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             if (gmx_mm_any_lt(rsq20,rcutoff2))
1016             {
1017
1018             r20              = _mm_mul_pd(rsq20,rinv20);
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq20             = _mm_mul_pd(iq2,jq0);
1022
1023             /* EWALD ELECTROSTATICS */
1024
1025             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1026             ewrt             = _mm_mul_pd(r20,ewtabscale);
1027             ewitab           = _mm_cvttpd_epi32(ewrt);
1028 #ifdef __XOP__
1029             eweps            = _mm_frcz_pd(ewrt);
1030 #else
1031             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1032 #endif
1033             twoeweps         = _mm_add_pd(eweps,eweps);
1034             ewitab           = _mm_slli_epi32(ewitab,2);
1035             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1036             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1037             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1038             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1039             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1040             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1041             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1042             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1043             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1044             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1045
1046             d                = _mm_sub_pd(r20,rswitch);
1047             d                = _mm_max_pd(d,_mm_setzero_pd());
1048             d2               = _mm_mul_pd(d,d);
1049             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1050
1051             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1052
1053             /* Evaluate switch function */
1054             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1055             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1056             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1057
1058             fscal            = felec;
1059
1060             fscal            = _mm_and_pd(fscal,cutoff_mask);
1061
1062             /* Update vectorial force */
1063             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1064             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1065             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1066             
1067             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1068             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1069             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1070
1071             }
1072
1073             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1074
1075             /* Inner loop uses 198 flops */
1076         }
1077
1078         if(jidx<j_index_end)
1079         {
1080
1081             jnrA             = jjnr[jidx];
1082             j_coord_offsetA  = DIM*jnrA;
1083
1084             /* load j atom coordinates */
1085             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1086                                               &jx0,&jy0,&jz0);
1087
1088             /* Calculate displacement vector */
1089             dx00             = _mm_sub_pd(ix0,jx0);
1090             dy00             = _mm_sub_pd(iy0,jy0);
1091             dz00             = _mm_sub_pd(iz0,jz0);
1092             dx10             = _mm_sub_pd(ix1,jx0);
1093             dy10             = _mm_sub_pd(iy1,jy0);
1094             dz10             = _mm_sub_pd(iz1,jz0);
1095             dx20             = _mm_sub_pd(ix2,jx0);
1096             dy20             = _mm_sub_pd(iy2,jy0);
1097             dz20             = _mm_sub_pd(iz2,jz0);
1098
1099             /* Calculate squared distance and things based on it */
1100             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1101             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1102             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1103
1104             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1105             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1106             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1107
1108             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1109             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1110             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1111
1112             /* Load parameters for j particles */
1113             jq0              = _mm_load_sd(charge+jnrA+0);
1114
1115             fjx0             = _mm_setzero_pd();
1116             fjy0             = _mm_setzero_pd();
1117             fjz0             = _mm_setzero_pd();
1118
1119             /**************************
1120              * CALCULATE INTERACTIONS *
1121              **************************/
1122
1123             if (gmx_mm_any_lt(rsq00,rcutoff2))
1124             {
1125
1126             r00              = _mm_mul_pd(rsq00,rinv00);
1127
1128             /* Compute parameters for interactions between i and j atoms */
1129             qq00             = _mm_mul_pd(iq0,jq0);
1130
1131             /* EWALD ELECTROSTATICS */
1132
1133             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1134             ewrt             = _mm_mul_pd(r00,ewtabscale);
1135             ewitab           = _mm_cvttpd_epi32(ewrt);
1136 #ifdef __XOP__
1137             eweps            = _mm_frcz_pd(ewrt);
1138 #else
1139             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1140 #endif
1141             twoeweps         = _mm_add_pd(eweps,eweps);
1142             ewitab           = _mm_slli_epi32(ewitab,2);
1143             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1144             ewtabD           = _mm_setzero_pd();
1145             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1146             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1147             ewtabFn          = _mm_setzero_pd();
1148             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1149             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1150             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1151             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
1152             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1153
1154             d                = _mm_sub_pd(r00,rswitch);
1155             d                = _mm_max_pd(d,_mm_setzero_pd());
1156             d2               = _mm_mul_pd(d,d);
1157             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1158
1159             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1160
1161             /* Evaluate switch function */
1162             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1163             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
1164             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1165
1166             fscal            = felec;
1167
1168             fscal            = _mm_and_pd(fscal,cutoff_mask);
1169
1170             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1171
1172             /* Update vectorial force */
1173             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1174             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1175             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1176             
1177             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1178             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1179             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1180
1181             }
1182
1183             /**************************
1184              * CALCULATE INTERACTIONS *
1185              **************************/
1186
1187             if (gmx_mm_any_lt(rsq10,rcutoff2))
1188             {
1189
1190             r10              = _mm_mul_pd(rsq10,rinv10);
1191
1192             /* Compute parameters for interactions between i and j atoms */
1193             qq10             = _mm_mul_pd(iq1,jq0);
1194
1195             /* EWALD ELECTROSTATICS */
1196
1197             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1198             ewrt             = _mm_mul_pd(r10,ewtabscale);
1199             ewitab           = _mm_cvttpd_epi32(ewrt);
1200 #ifdef __XOP__
1201             eweps            = _mm_frcz_pd(ewrt);
1202 #else
1203             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1204 #endif
1205             twoeweps         = _mm_add_pd(eweps,eweps);
1206             ewitab           = _mm_slli_epi32(ewitab,2);
1207             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1208             ewtabD           = _mm_setzero_pd();
1209             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1210             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1211             ewtabFn          = _mm_setzero_pd();
1212             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1213             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1214             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1215             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1216             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1217
1218             d                = _mm_sub_pd(r10,rswitch);
1219             d                = _mm_max_pd(d,_mm_setzero_pd());
1220             d2               = _mm_mul_pd(d,d);
1221             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1222
1223             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1224
1225             /* Evaluate switch function */
1226             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1227             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1228             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1229
1230             fscal            = felec;
1231
1232             fscal            = _mm_and_pd(fscal,cutoff_mask);
1233
1234             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1235
1236             /* Update vectorial force */
1237             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1238             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1239             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1240             
1241             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1242             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1243             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1244
1245             }
1246
1247             /**************************
1248              * CALCULATE INTERACTIONS *
1249              **************************/
1250
1251             if (gmx_mm_any_lt(rsq20,rcutoff2))
1252             {
1253
1254             r20              = _mm_mul_pd(rsq20,rinv20);
1255
1256             /* Compute parameters for interactions between i and j atoms */
1257             qq20             = _mm_mul_pd(iq2,jq0);
1258
1259             /* EWALD ELECTROSTATICS */
1260
1261             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1262             ewrt             = _mm_mul_pd(r20,ewtabscale);
1263             ewitab           = _mm_cvttpd_epi32(ewrt);
1264 #ifdef __XOP__
1265             eweps            = _mm_frcz_pd(ewrt);
1266 #else
1267             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1268 #endif
1269             twoeweps         = _mm_add_pd(eweps,eweps);
1270             ewitab           = _mm_slli_epi32(ewitab,2);
1271             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1272             ewtabD           = _mm_setzero_pd();
1273             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1274             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1275             ewtabFn          = _mm_setzero_pd();
1276             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1277             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1278             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1279             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1280             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1281
1282             d                = _mm_sub_pd(r20,rswitch);
1283             d                = _mm_max_pd(d,_mm_setzero_pd());
1284             d2               = _mm_mul_pd(d,d);
1285             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1286
1287             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1288
1289             /* Evaluate switch function */
1290             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1291             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1292             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1293
1294             fscal            = felec;
1295
1296             fscal            = _mm_and_pd(fscal,cutoff_mask);
1297
1298             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1299
1300             /* Update vectorial force */
1301             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1302             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1303             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1304             
1305             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1306             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1307             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1308
1309             }
1310
1311             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1312
1313             /* Inner loop uses 198 flops */
1314         }
1315
1316         /* End of innermost loop */
1317
1318         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1319                                               f+i_coord_offset,fshift+i_shift_offset);
1320
1321         /* Increment number of inner iterations */
1322         inneriter                  += j_index_end - j_index_start;
1323
1324         /* Outer loop uses 18 flops */
1325     }
1326
1327     /* Increment number of outer iterations */
1328     outeriter        += nri;
1329
1330     /* Update outer/inner flops */
1331
1332     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*198);
1333 }