Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     __m128i          ewitab;
87     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
88     real             *ewtab;
89     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
90     real             rswitch_scalar,d_scalar;
91     __m128d          dummy_mask,cutoff_mask;
92     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
93     __m128d          one     = _mm_set1_pd(1.0);
94     __m128d          two     = _mm_set1_pd(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_pd(fr->ic->epsfac);
107     charge           = mdatoms->chargeA;
108
109     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
110     ewtab            = fr->ic->tabq_coul_FDV0;
111     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
112     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
113
114     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
115     rcutoff_scalar   = fr->ic->rcoulomb;
116     rcutoff          = _mm_set1_pd(rcutoff_scalar);
117     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
118
119     rswitch_scalar   = fr->ic->rcoulomb_switch;
120     rswitch          = _mm_set1_pd(rswitch_scalar);
121     /* Setup switch parameters */
122     d_scalar         = rcutoff_scalar-rswitch_scalar;
123     d                = _mm_set1_pd(d_scalar);
124     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
125     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
126     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
127     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
128     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
129     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm_setzero_pd();
157         fiy0             = _mm_setzero_pd();
158         fiz0             = _mm_setzero_pd();
159
160         /* Load parameters for i particles */
161         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
162
163         /* Reset potential sums */
164         velecsum         = _mm_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_pd(ix0,jx0);
182             dy00             = _mm_sub_pd(iy0,jy0);
183             dz00             = _mm_sub_pd(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187
188             rinv00           = avx128fma_invsqrt_d(rsq00);
189
190             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             if (gmx_mm_any_lt(rsq00,rcutoff2))
200             {
201
202             r00              = _mm_mul_pd(rsq00,rinv00);
203
204             /* Compute parameters for interactions between i and j atoms */
205             qq00             = _mm_mul_pd(iq0,jq0);
206
207             /* EWALD ELECTROSTATICS */
208
209             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
210             ewrt             = _mm_mul_pd(r00,ewtabscale);
211             ewitab           = _mm_cvttpd_epi32(ewrt);
212 #ifdef __XOP__
213             eweps            = _mm_frcz_pd(ewrt);
214 #else
215             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
216 #endif
217             twoeweps         = _mm_add_pd(eweps,eweps);
218             ewitab           = _mm_slli_epi32(ewitab,2);
219             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
220             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
221             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
222             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
223             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
224             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
225             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
226             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
227             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
228             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
229
230             d                = _mm_sub_pd(r00,rswitch);
231             d                = _mm_max_pd(d,_mm_setzero_pd());
232             d2               = _mm_mul_pd(d,d);
233             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
234
235             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
236
237             /* Evaluate switch function */
238             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
239             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
240             velec            = _mm_mul_pd(velec,sw);
241             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velec            = _mm_and_pd(velec,cutoff_mask);
245             velecsum         = _mm_add_pd(velecsum,velec);
246
247             fscal            = felec;
248
249             fscal            = _mm_and_pd(fscal,cutoff_mask);
250
251             /* Update vectorial force */
252             fix0             = _mm_macc_pd(dx00,fscal,fix0);
253             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
254             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
255             
256             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
257                                                    _mm_mul_pd(dx00,fscal),
258                                                    _mm_mul_pd(dy00,fscal),
259                                                    _mm_mul_pd(dz00,fscal));
260
261             }
262
263             /* Inner loop uses 68 flops */
264         }
265
266         if(jidx<j_index_end)
267         {
268
269             jnrA             = jjnr[jidx];
270             j_coord_offsetA  = DIM*jnrA;
271
272             /* load j atom coordinates */
273             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
274                                               &jx0,&jy0,&jz0);
275
276             /* Calculate displacement vector */
277             dx00             = _mm_sub_pd(ix0,jx0);
278             dy00             = _mm_sub_pd(iy0,jy0);
279             dz00             = _mm_sub_pd(iz0,jz0);
280
281             /* Calculate squared distance and things based on it */
282             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
283
284             rinv00           = avx128fma_invsqrt_d(rsq00);
285
286             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
287
288             /* Load parameters for j particles */
289             jq0              = _mm_load_sd(charge+jnrA+0);
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             if (gmx_mm_any_lt(rsq00,rcutoff2))
296             {
297
298             r00              = _mm_mul_pd(rsq00,rinv00);
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq00             = _mm_mul_pd(iq0,jq0);
302
303             /* EWALD ELECTROSTATICS */
304
305             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
306             ewrt             = _mm_mul_pd(r00,ewtabscale);
307             ewitab           = _mm_cvttpd_epi32(ewrt);
308 #ifdef __XOP__
309             eweps            = _mm_frcz_pd(ewrt);
310 #else
311             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
312 #endif
313             twoeweps         = _mm_add_pd(eweps,eweps);
314             ewitab           = _mm_slli_epi32(ewitab,2);
315             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
316             ewtabD           = _mm_setzero_pd();
317             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
318             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
319             ewtabFn          = _mm_setzero_pd();
320             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
321             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
322             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
323             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
324             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
325
326             d                = _mm_sub_pd(r00,rswitch);
327             d                = _mm_max_pd(d,_mm_setzero_pd());
328             d2               = _mm_mul_pd(d,d);
329             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
330
331             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
332
333             /* Evaluate switch function */
334             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
335             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
336             velec            = _mm_mul_pd(velec,sw);
337             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velec            = _mm_and_pd(velec,cutoff_mask);
341             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
342             velecsum         = _mm_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             fscal            = _mm_and_pd(fscal,cutoff_mask);
347
348             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
349
350             /* Update vectorial force */
351             fix0             = _mm_macc_pd(dx00,fscal,fix0);
352             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
353             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
354             
355             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
356                                                    _mm_mul_pd(dx00,fscal),
357                                                    _mm_mul_pd(dy00,fscal),
358                                                    _mm_mul_pd(dz00,fscal));
359
360             }
361
362             /* Inner loop uses 68 flops */
363         }
364
365         /* End of innermost loop */
366
367         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
368                                               f+i_coord_offset,fshift+i_shift_offset);
369
370         ggid                        = gid[iidx];
371         /* Update potential energies */
372         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
373
374         /* Increment number of inner iterations */
375         inneriter                  += j_index_end - j_index_start;
376
377         /* Outer loop uses 8 flops */
378     }
379
380     /* Increment number of outer iterations */
381     outeriter        += nri;
382
383     /* Update outer/inner flops */
384
385     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*68);
386 }
387 /*
388  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_double
389  * Electrostatics interaction: Ewald
390  * VdW interaction:            None
391  * Geometry:                   Particle-Particle
392  * Calculate force/pot:        Force
393  */
394 void
395 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_double
396                     (t_nblist                    * gmx_restrict       nlist,
397                      rvec                        * gmx_restrict          xx,
398                      rvec                        * gmx_restrict          ff,
399                      struct t_forcerec           * gmx_restrict          fr,
400                      t_mdatoms                   * gmx_restrict     mdatoms,
401                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
402                      t_nrnb                      * gmx_restrict        nrnb)
403 {
404     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
405      * just 0 for non-waters.
406      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
407      * jnr indices corresponding to data put in the four positions in the SIMD register.
408      */
409     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
410     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
411     int              jnrA,jnrB;
412     int              j_coord_offsetA,j_coord_offsetB;
413     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
414     real             rcutoff_scalar;
415     real             *shiftvec,*fshift,*x,*f;
416     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
417     int              vdwioffset0;
418     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
419     int              vdwjidx0A,vdwjidx0B;
420     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
421     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
422     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
423     real             *charge;
424     __m128i          ewitab;
425     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
426     real             *ewtab;
427     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
428     real             rswitch_scalar,d_scalar;
429     __m128d          dummy_mask,cutoff_mask;
430     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
431     __m128d          one     = _mm_set1_pd(1.0);
432     __m128d          two     = _mm_set1_pd(2.0);
433     x                = xx[0];
434     f                = ff[0];
435
436     nri              = nlist->nri;
437     iinr             = nlist->iinr;
438     jindex           = nlist->jindex;
439     jjnr             = nlist->jjnr;
440     shiftidx         = nlist->shift;
441     gid              = nlist->gid;
442     shiftvec         = fr->shift_vec[0];
443     fshift           = fr->fshift[0];
444     facel            = _mm_set1_pd(fr->ic->epsfac);
445     charge           = mdatoms->chargeA;
446
447     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
448     ewtab            = fr->ic->tabq_coul_FDV0;
449     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
450     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
451
452     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
453     rcutoff_scalar   = fr->ic->rcoulomb;
454     rcutoff          = _mm_set1_pd(rcutoff_scalar);
455     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
456
457     rswitch_scalar   = fr->ic->rcoulomb_switch;
458     rswitch          = _mm_set1_pd(rswitch_scalar);
459     /* Setup switch parameters */
460     d_scalar         = rcutoff_scalar-rswitch_scalar;
461     d                = _mm_set1_pd(d_scalar);
462     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
463     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
464     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
465     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
466     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
467     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
468
469     /* Avoid stupid compiler warnings */
470     jnrA = jnrB = 0;
471     j_coord_offsetA = 0;
472     j_coord_offsetB = 0;
473
474     outeriter        = 0;
475     inneriter        = 0;
476
477     /* Start outer loop over neighborlists */
478     for(iidx=0; iidx<nri; iidx++)
479     {
480         /* Load shift vector for this list */
481         i_shift_offset   = DIM*shiftidx[iidx];
482
483         /* Load limits for loop over neighbors */
484         j_index_start    = jindex[iidx];
485         j_index_end      = jindex[iidx+1];
486
487         /* Get outer coordinate index */
488         inr              = iinr[iidx];
489         i_coord_offset   = DIM*inr;
490
491         /* Load i particle coords and add shift vector */
492         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
493
494         fix0             = _mm_setzero_pd();
495         fiy0             = _mm_setzero_pd();
496         fiz0             = _mm_setzero_pd();
497
498         /* Load parameters for i particles */
499         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
500
501         /* Start inner kernel loop */
502         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
503         {
504
505             /* Get j neighbor index, and coordinate index */
506             jnrA             = jjnr[jidx];
507             jnrB             = jjnr[jidx+1];
508             j_coord_offsetA  = DIM*jnrA;
509             j_coord_offsetB  = DIM*jnrB;
510
511             /* load j atom coordinates */
512             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
513                                               &jx0,&jy0,&jz0);
514
515             /* Calculate displacement vector */
516             dx00             = _mm_sub_pd(ix0,jx0);
517             dy00             = _mm_sub_pd(iy0,jy0);
518             dz00             = _mm_sub_pd(iz0,jz0);
519
520             /* Calculate squared distance and things based on it */
521             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
522
523             rinv00           = avx128fma_invsqrt_d(rsq00);
524
525             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
526
527             /* Load parameters for j particles */
528             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             if (gmx_mm_any_lt(rsq00,rcutoff2))
535             {
536
537             r00              = _mm_mul_pd(rsq00,rinv00);
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq00             = _mm_mul_pd(iq0,jq0);
541
542             /* EWALD ELECTROSTATICS */
543
544             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
545             ewrt             = _mm_mul_pd(r00,ewtabscale);
546             ewitab           = _mm_cvttpd_epi32(ewrt);
547 #ifdef __XOP__
548             eweps            = _mm_frcz_pd(ewrt);
549 #else
550             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
551 #endif
552             twoeweps         = _mm_add_pd(eweps,eweps);
553             ewitab           = _mm_slli_epi32(ewitab,2);
554             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
555             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
556             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
557             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
558             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
559             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
560             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
561             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
562             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
563             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
564
565             d                = _mm_sub_pd(r00,rswitch);
566             d                = _mm_max_pd(d,_mm_setzero_pd());
567             d2               = _mm_mul_pd(d,d);
568             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
569
570             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
571
572             /* Evaluate switch function */
573             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
574             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
575             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
576
577             fscal            = felec;
578
579             fscal            = _mm_and_pd(fscal,cutoff_mask);
580
581             /* Update vectorial force */
582             fix0             = _mm_macc_pd(dx00,fscal,fix0);
583             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
584             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
585             
586             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
587                                                    _mm_mul_pd(dx00,fscal),
588                                                    _mm_mul_pd(dy00,fscal),
589                                                    _mm_mul_pd(dz00,fscal));
590
591             }
592
593             /* Inner loop uses 65 flops */
594         }
595
596         if(jidx<j_index_end)
597         {
598
599             jnrA             = jjnr[jidx];
600             j_coord_offsetA  = DIM*jnrA;
601
602             /* load j atom coordinates */
603             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
604                                               &jx0,&jy0,&jz0);
605
606             /* Calculate displacement vector */
607             dx00             = _mm_sub_pd(ix0,jx0);
608             dy00             = _mm_sub_pd(iy0,jy0);
609             dz00             = _mm_sub_pd(iz0,jz0);
610
611             /* Calculate squared distance and things based on it */
612             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
613
614             rinv00           = avx128fma_invsqrt_d(rsq00);
615
616             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
617
618             /* Load parameters for j particles */
619             jq0              = _mm_load_sd(charge+jnrA+0);
620
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             if (gmx_mm_any_lt(rsq00,rcutoff2))
626             {
627
628             r00              = _mm_mul_pd(rsq00,rinv00);
629
630             /* Compute parameters for interactions between i and j atoms */
631             qq00             = _mm_mul_pd(iq0,jq0);
632
633             /* EWALD ELECTROSTATICS */
634
635             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
636             ewrt             = _mm_mul_pd(r00,ewtabscale);
637             ewitab           = _mm_cvttpd_epi32(ewrt);
638 #ifdef __XOP__
639             eweps            = _mm_frcz_pd(ewrt);
640 #else
641             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
642 #endif
643             twoeweps         = _mm_add_pd(eweps,eweps);
644             ewitab           = _mm_slli_epi32(ewitab,2);
645             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
646             ewtabD           = _mm_setzero_pd();
647             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
648             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
649             ewtabFn          = _mm_setzero_pd();
650             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
651             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
652             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
653             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
654             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
655
656             d                = _mm_sub_pd(r00,rswitch);
657             d                = _mm_max_pd(d,_mm_setzero_pd());
658             d2               = _mm_mul_pd(d,d);
659             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
660
661             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
662
663             /* Evaluate switch function */
664             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
665             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
666             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
667
668             fscal            = felec;
669
670             fscal            = _mm_and_pd(fscal,cutoff_mask);
671
672             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
673
674             /* Update vectorial force */
675             fix0             = _mm_macc_pd(dx00,fscal,fix0);
676             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
677             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
678             
679             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
680                                                    _mm_mul_pd(dx00,fscal),
681                                                    _mm_mul_pd(dy00,fscal),
682                                                    _mm_mul_pd(dz00,fscal));
683
684             }
685
686             /* Inner loop uses 65 flops */
687         }
688
689         /* End of innermost loop */
690
691         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
692                                               f+i_coord_offset,fshift+i_shift_offset);
693
694         /* Increment number of inner iterations */
695         inneriter                  += j_index_end - j_index_start;
696
697         /* Outer loop uses 7 flops */
698     }
699
700     /* Increment number of outer iterations */
701     outeriter        += nri;
702
703     /* Update outer/inner flops */
704
705     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*65);
706 }