Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          ewitab;
90     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     real             *ewtab;
92     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
93     real             rswitch_scalar,d_scalar;
94     __m128d          dummy_mask,cutoff_mask;
95     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
96     __m128d          one     = _mm_set1_pd(1.0);
97     __m128d          two     = _mm_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm_set1_pd(fr->epsfac);
110     charge           = mdatoms->chargeA;
111
112     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
116
117     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
118     rcutoff_scalar   = fr->rcoulomb;
119     rcutoff          = _mm_set1_pd(rcutoff_scalar);
120     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
121
122     rswitch_scalar   = fr->rcoulomb_switch;
123     rswitch          = _mm_set1_pd(rswitch_scalar);
124     /* Setup switch parameters */
125     d_scalar         = rcutoff_scalar-rswitch_scalar;
126     d                = _mm_set1_pd(d_scalar);
127     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
128     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
129     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
130     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
131     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
132     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
158
159         fix0             = _mm_setzero_pd();
160         fiy0             = _mm_setzero_pd();
161         fiz0             = _mm_setzero_pd();
162
163         /* Load parameters for i particles */
164         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_pd();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178
179             /* load j atom coordinates */
180             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_pd(ix0,jx0);
185             dy00             = _mm_sub_pd(iy0,jy0);
186             dz00             = _mm_sub_pd(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm_invsqrt_pd(rsq00);
192
193             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
197
198             /**************************
199              * CALCULATE INTERACTIONS *
200              **************************/
201
202             if (gmx_mm_any_lt(rsq00,rcutoff2))
203             {
204
205             r00              = _mm_mul_pd(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm_mul_pd(iq0,jq0);
209
210             /* EWALD ELECTROSTATICS */
211
212             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
213             ewrt             = _mm_mul_pd(r00,ewtabscale);
214             ewitab           = _mm_cvttpd_epi32(ewrt);
215 #ifdef __XOP__
216             eweps            = _mm_frcz_pd(ewrt);
217 #else
218             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
219 #endif
220             twoeweps         = _mm_add_pd(eweps,eweps);
221             ewitab           = _mm_slli_epi32(ewitab,2);
222             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
223             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
224             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
225             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
226             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
227             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
228             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
229             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
230             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
231             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
232
233             d                = _mm_sub_pd(r00,rswitch);
234             d                = _mm_max_pd(d,_mm_setzero_pd());
235             d2               = _mm_mul_pd(d,d);
236             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
237
238             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
239
240             /* Evaluate switch function */
241             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
242             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
243             velec            = _mm_mul_pd(velec,sw);
244             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velec            = _mm_and_pd(velec,cutoff_mask);
248             velecsum         = _mm_add_pd(velecsum,velec);
249
250             fscal            = felec;
251
252             fscal            = _mm_and_pd(fscal,cutoff_mask);
253
254             /* Update vectorial force */
255             fix0             = _mm_macc_pd(dx00,fscal,fix0);
256             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
257             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
258             
259             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
260                                                    _mm_mul_pd(dx00,fscal),
261                                                    _mm_mul_pd(dy00,fscal),
262                                                    _mm_mul_pd(dz00,fscal));
263
264             }
265
266             /* Inner loop uses 68 flops */
267         }
268
269         if(jidx<j_index_end)
270         {
271
272             jnrA             = jjnr[jidx];
273             j_coord_offsetA  = DIM*jnrA;
274
275             /* load j atom coordinates */
276             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
277                                               &jx0,&jy0,&jz0);
278
279             /* Calculate displacement vector */
280             dx00             = _mm_sub_pd(ix0,jx0);
281             dy00             = _mm_sub_pd(iy0,jy0);
282             dz00             = _mm_sub_pd(iz0,jz0);
283
284             /* Calculate squared distance and things based on it */
285             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
286
287             rinv00           = gmx_mm_invsqrt_pd(rsq00);
288
289             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
290
291             /* Load parameters for j particles */
292             jq0              = _mm_load_sd(charge+jnrA+0);
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             if (gmx_mm_any_lt(rsq00,rcutoff2))
299             {
300
301             r00              = _mm_mul_pd(rsq00,rinv00);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq00             = _mm_mul_pd(iq0,jq0);
305
306             /* EWALD ELECTROSTATICS */
307
308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
309             ewrt             = _mm_mul_pd(r00,ewtabscale);
310             ewitab           = _mm_cvttpd_epi32(ewrt);
311 #ifdef __XOP__
312             eweps            = _mm_frcz_pd(ewrt);
313 #else
314             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
315 #endif
316             twoeweps         = _mm_add_pd(eweps,eweps);
317             ewitab           = _mm_slli_epi32(ewitab,2);
318             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
319             ewtabD           = _mm_setzero_pd();
320             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
321             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
322             ewtabFn          = _mm_setzero_pd();
323             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
324             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
325             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
326             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
327             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
328
329             d                = _mm_sub_pd(r00,rswitch);
330             d                = _mm_max_pd(d,_mm_setzero_pd());
331             d2               = _mm_mul_pd(d,d);
332             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
333
334             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
335
336             /* Evaluate switch function */
337             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
338             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
339             velec            = _mm_mul_pd(velec,sw);
340             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velec            = _mm_and_pd(velec,cutoff_mask);
344             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
345             velecsum         = _mm_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             fscal            = _mm_and_pd(fscal,cutoff_mask);
350
351             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
352
353             /* Update vectorial force */
354             fix0             = _mm_macc_pd(dx00,fscal,fix0);
355             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
356             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
357             
358             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
359                                                    _mm_mul_pd(dx00,fscal),
360                                                    _mm_mul_pd(dy00,fscal),
361                                                    _mm_mul_pd(dz00,fscal));
362
363             }
364
365             /* Inner loop uses 68 flops */
366         }
367
368         /* End of innermost loop */
369
370         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
371                                               f+i_coord_offset,fshift+i_shift_offset);
372
373         ggid                        = gid[iidx];
374         /* Update potential energies */
375         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
376
377         /* Increment number of inner iterations */
378         inneriter                  += j_index_end - j_index_start;
379
380         /* Outer loop uses 8 flops */
381     }
382
383     /* Increment number of outer iterations */
384     outeriter        += nri;
385
386     /* Update outer/inner flops */
387
388     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*68);
389 }
390 /*
391  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_double
392  * Electrostatics interaction: Ewald
393  * VdW interaction:            None
394  * Geometry:                   Particle-Particle
395  * Calculate force/pot:        Force
396  */
397 void
398 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_double
399                     (t_nblist                    * gmx_restrict       nlist,
400                      rvec                        * gmx_restrict          xx,
401                      rvec                        * gmx_restrict          ff,
402                      t_forcerec                  * gmx_restrict          fr,
403                      t_mdatoms                   * gmx_restrict     mdatoms,
404                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
405                      t_nrnb                      * gmx_restrict        nrnb)
406 {
407     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
408      * just 0 for non-waters.
409      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
410      * jnr indices corresponding to data put in the four positions in the SIMD register.
411      */
412     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
413     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
414     int              jnrA,jnrB;
415     int              j_coord_offsetA,j_coord_offsetB;
416     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
417     real             rcutoff_scalar;
418     real             *shiftvec,*fshift,*x,*f;
419     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
420     int              vdwioffset0;
421     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
422     int              vdwjidx0A,vdwjidx0B;
423     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
424     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
425     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
426     real             *charge;
427     __m128i          ewitab;
428     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
429     real             *ewtab;
430     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
431     real             rswitch_scalar,d_scalar;
432     __m128d          dummy_mask,cutoff_mask;
433     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
434     __m128d          one     = _mm_set1_pd(1.0);
435     __m128d          two     = _mm_set1_pd(2.0);
436     x                = xx[0];
437     f                = ff[0];
438
439     nri              = nlist->nri;
440     iinr             = nlist->iinr;
441     jindex           = nlist->jindex;
442     jjnr             = nlist->jjnr;
443     shiftidx         = nlist->shift;
444     gid              = nlist->gid;
445     shiftvec         = fr->shift_vec[0];
446     fshift           = fr->fshift[0];
447     facel            = _mm_set1_pd(fr->epsfac);
448     charge           = mdatoms->chargeA;
449
450     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
451     ewtab            = fr->ic->tabq_coul_FDV0;
452     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
453     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
454
455     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
456     rcutoff_scalar   = fr->rcoulomb;
457     rcutoff          = _mm_set1_pd(rcutoff_scalar);
458     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
459
460     rswitch_scalar   = fr->rcoulomb_switch;
461     rswitch          = _mm_set1_pd(rswitch_scalar);
462     /* Setup switch parameters */
463     d_scalar         = rcutoff_scalar-rswitch_scalar;
464     d                = _mm_set1_pd(d_scalar);
465     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
466     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
467     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
468     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
469     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
470     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
471
472     /* Avoid stupid compiler warnings */
473     jnrA = jnrB = 0;
474     j_coord_offsetA = 0;
475     j_coord_offsetB = 0;
476
477     outeriter        = 0;
478     inneriter        = 0;
479
480     /* Start outer loop over neighborlists */
481     for(iidx=0; iidx<nri; iidx++)
482     {
483         /* Load shift vector for this list */
484         i_shift_offset   = DIM*shiftidx[iidx];
485
486         /* Load limits for loop over neighbors */
487         j_index_start    = jindex[iidx];
488         j_index_end      = jindex[iidx+1];
489
490         /* Get outer coordinate index */
491         inr              = iinr[iidx];
492         i_coord_offset   = DIM*inr;
493
494         /* Load i particle coords and add shift vector */
495         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
496
497         fix0             = _mm_setzero_pd();
498         fiy0             = _mm_setzero_pd();
499         fiz0             = _mm_setzero_pd();
500
501         /* Load parameters for i particles */
502         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
503
504         /* Start inner kernel loop */
505         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
506         {
507
508             /* Get j neighbor index, and coordinate index */
509             jnrA             = jjnr[jidx];
510             jnrB             = jjnr[jidx+1];
511             j_coord_offsetA  = DIM*jnrA;
512             j_coord_offsetB  = DIM*jnrB;
513
514             /* load j atom coordinates */
515             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
516                                               &jx0,&jy0,&jz0);
517
518             /* Calculate displacement vector */
519             dx00             = _mm_sub_pd(ix0,jx0);
520             dy00             = _mm_sub_pd(iy0,jy0);
521             dz00             = _mm_sub_pd(iz0,jz0);
522
523             /* Calculate squared distance and things based on it */
524             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
525
526             rinv00           = gmx_mm_invsqrt_pd(rsq00);
527
528             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
529
530             /* Load parameters for j particles */
531             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             if (gmx_mm_any_lt(rsq00,rcutoff2))
538             {
539
540             r00              = _mm_mul_pd(rsq00,rinv00);
541
542             /* Compute parameters for interactions between i and j atoms */
543             qq00             = _mm_mul_pd(iq0,jq0);
544
545             /* EWALD ELECTROSTATICS */
546
547             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
548             ewrt             = _mm_mul_pd(r00,ewtabscale);
549             ewitab           = _mm_cvttpd_epi32(ewrt);
550 #ifdef __XOP__
551             eweps            = _mm_frcz_pd(ewrt);
552 #else
553             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
554 #endif
555             twoeweps         = _mm_add_pd(eweps,eweps);
556             ewitab           = _mm_slli_epi32(ewitab,2);
557             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
558             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
559             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
560             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
561             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
562             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
563             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
564             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
565             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
566             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
567
568             d                = _mm_sub_pd(r00,rswitch);
569             d                = _mm_max_pd(d,_mm_setzero_pd());
570             d2               = _mm_mul_pd(d,d);
571             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
572
573             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
574
575             /* Evaluate switch function */
576             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
577             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
578             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
579
580             fscal            = felec;
581
582             fscal            = _mm_and_pd(fscal,cutoff_mask);
583
584             /* Update vectorial force */
585             fix0             = _mm_macc_pd(dx00,fscal,fix0);
586             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
587             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
588             
589             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
590                                                    _mm_mul_pd(dx00,fscal),
591                                                    _mm_mul_pd(dy00,fscal),
592                                                    _mm_mul_pd(dz00,fscal));
593
594             }
595
596             /* Inner loop uses 65 flops */
597         }
598
599         if(jidx<j_index_end)
600         {
601
602             jnrA             = jjnr[jidx];
603             j_coord_offsetA  = DIM*jnrA;
604
605             /* load j atom coordinates */
606             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
607                                               &jx0,&jy0,&jz0);
608
609             /* Calculate displacement vector */
610             dx00             = _mm_sub_pd(ix0,jx0);
611             dy00             = _mm_sub_pd(iy0,jy0);
612             dz00             = _mm_sub_pd(iz0,jz0);
613
614             /* Calculate squared distance and things based on it */
615             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
616
617             rinv00           = gmx_mm_invsqrt_pd(rsq00);
618
619             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
620
621             /* Load parameters for j particles */
622             jq0              = _mm_load_sd(charge+jnrA+0);
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             if (gmx_mm_any_lt(rsq00,rcutoff2))
629             {
630
631             r00              = _mm_mul_pd(rsq00,rinv00);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq00             = _mm_mul_pd(iq0,jq0);
635
636             /* EWALD ELECTROSTATICS */
637
638             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
639             ewrt             = _mm_mul_pd(r00,ewtabscale);
640             ewitab           = _mm_cvttpd_epi32(ewrt);
641 #ifdef __XOP__
642             eweps            = _mm_frcz_pd(ewrt);
643 #else
644             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
645 #endif
646             twoeweps         = _mm_add_pd(eweps,eweps);
647             ewitab           = _mm_slli_epi32(ewitab,2);
648             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
649             ewtabD           = _mm_setzero_pd();
650             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
651             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
652             ewtabFn          = _mm_setzero_pd();
653             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
654             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
655             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
656             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
657             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
658
659             d                = _mm_sub_pd(r00,rswitch);
660             d                = _mm_max_pd(d,_mm_setzero_pd());
661             d2               = _mm_mul_pd(d,d);
662             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
663
664             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
665
666             /* Evaluate switch function */
667             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
668             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
669             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
670
671             fscal            = felec;
672
673             fscal            = _mm_and_pd(fscal,cutoff_mask);
674
675             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
676
677             /* Update vectorial force */
678             fix0             = _mm_macc_pd(dx00,fscal,fix0);
679             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
680             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
681             
682             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
683                                                    _mm_mul_pd(dx00,fscal),
684                                                    _mm_mul_pd(dy00,fscal),
685                                                    _mm_mul_pd(dz00,fscal));
686
687             }
688
689             /* Inner loop uses 65 flops */
690         }
691
692         /* End of innermost loop */
693
694         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
695                                               f+i_coord_offset,fshift+i_shift_offset);
696
697         /* Increment number of inner iterations */
698         inneriter                  += j_index_end - j_index_start;
699
700         /* Outer loop uses 7 flops */
701     }
702
703     /* Increment number of outer iterations */
704     outeriter        += nri;
705
706     /* Update outer/inner flops */
707
708     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*65);
709 }