Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     __m128i          ewitab;
88     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
89     real             *ewtab;
90     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
91     real             rswitch_scalar,d_scalar;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109
110     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
113     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
114
115     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
116     rcutoff_scalar   = fr->rcoulomb;
117     rcutoff          = _mm_set1_pd(rcutoff_scalar);
118     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
119
120     rswitch_scalar   = fr->rcoulomb_switch;
121     rswitch          = _mm_set1_pd(rswitch_scalar);
122     /* Setup switch parameters */
123     d_scalar         = rcutoff_scalar-rswitch_scalar;
124     d                = _mm_set1_pd(d_scalar);
125     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
126     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
127     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
128     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
129     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
130     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _mm_setzero_pd();
158         fiy0             = _mm_setzero_pd();
159         fiz0             = _mm_setzero_pd();
160
161         /* Load parameters for i particles */
162         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_pd(ix0,jx0);
183             dy00             = _mm_sub_pd(iy0,jy0);
184             dz00             = _mm_sub_pd(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
188
189             rinv00           = gmx_mm_invsqrt_pd(rsq00);
190
191             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             if (gmx_mm_any_lt(rsq00,rcutoff2))
201             {
202
203             r00              = _mm_mul_pd(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _mm_mul_pd(iq0,jq0);
207
208             /* EWALD ELECTROSTATICS */
209
210             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
211             ewrt             = _mm_mul_pd(r00,ewtabscale);
212             ewitab           = _mm_cvttpd_epi32(ewrt);
213 #ifdef __XOP__
214             eweps            = _mm_frcz_pd(ewrt);
215 #else
216             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
217 #endif
218             twoeweps         = _mm_add_pd(eweps,eweps);
219             ewitab           = _mm_slli_epi32(ewitab,2);
220             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
221             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
222             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
223             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
224             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
225             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
226             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
227             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
228             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
229             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
230
231             d                = _mm_sub_pd(r00,rswitch);
232             d                = _mm_max_pd(d,_mm_setzero_pd());
233             d2               = _mm_mul_pd(d,d);
234             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
235
236             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
237
238             /* Evaluate switch function */
239             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
240             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
241             velec            = _mm_mul_pd(velec,sw);
242             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             velec            = _mm_and_pd(velec,cutoff_mask);
246             velecsum         = _mm_add_pd(velecsum,velec);
247
248             fscal            = felec;
249
250             fscal            = _mm_and_pd(fscal,cutoff_mask);
251
252             /* Update vectorial force */
253             fix0             = _mm_macc_pd(dx00,fscal,fix0);
254             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
255             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
256             
257             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
258                                                    _mm_mul_pd(dx00,fscal),
259                                                    _mm_mul_pd(dy00,fscal),
260                                                    _mm_mul_pd(dz00,fscal));
261
262             }
263
264             /* Inner loop uses 68 flops */
265         }
266
267         if(jidx<j_index_end)
268         {
269
270             jnrA             = jjnr[jidx];
271             j_coord_offsetA  = DIM*jnrA;
272
273             /* load j atom coordinates */
274             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
275                                               &jx0,&jy0,&jz0);
276
277             /* Calculate displacement vector */
278             dx00             = _mm_sub_pd(ix0,jx0);
279             dy00             = _mm_sub_pd(iy0,jy0);
280             dz00             = _mm_sub_pd(iz0,jz0);
281
282             /* Calculate squared distance and things based on it */
283             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
284
285             rinv00           = gmx_mm_invsqrt_pd(rsq00);
286
287             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
288
289             /* Load parameters for j particles */
290             jq0              = _mm_load_sd(charge+jnrA+0);
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             if (gmx_mm_any_lt(rsq00,rcutoff2))
297             {
298
299             r00              = _mm_mul_pd(rsq00,rinv00);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq00             = _mm_mul_pd(iq0,jq0);
303
304             /* EWALD ELECTROSTATICS */
305
306             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
307             ewrt             = _mm_mul_pd(r00,ewtabscale);
308             ewitab           = _mm_cvttpd_epi32(ewrt);
309 #ifdef __XOP__
310             eweps            = _mm_frcz_pd(ewrt);
311 #else
312             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
313 #endif
314             twoeweps         = _mm_add_pd(eweps,eweps);
315             ewitab           = _mm_slli_epi32(ewitab,2);
316             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
317             ewtabD           = _mm_setzero_pd();
318             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
319             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
320             ewtabFn          = _mm_setzero_pd();
321             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
322             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
323             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
324             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
325             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
326
327             d                = _mm_sub_pd(r00,rswitch);
328             d                = _mm_max_pd(d,_mm_setzero_pd());
329             d2               = _mm_mul_pd(d,d);
330             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
331
332             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
333
334             /* Evaluate switch function */
335             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
336             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
337             velec            = _mm_mul_pd(velec,sw);
338             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velec            = _mm_and_pd(velec,cutoff_mask);
342             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
343             velecsum         = _mm_add_pd(velecsum,velec);
344
345             fscal            = felec;
346
347             fscal            = _mm_and_pd(fscal,cutoff_mask);
348
349             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
350
351             /* Update vectorial force */
352             fix0             = _mm_macc_pd(dx00,fscal,fix0);
353             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
354             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
355             
356             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
357                                                    _mm_mul_pd(dx00,fscal),
358                                                    _mm_mul_pd(dy00,fscal),
359                                                    _mm_mul_pd(dz00,fscal));
360
361             }
362
363             /* Inner loop uses 68 flops */
364         }
365
366         /* End of innermost loop */
367
368         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
369                                               f+i_coord_offset,fshift+i_shift_offset);
370
371         ggid                        = gid[iidx];
372         /* Update potential energies */
373         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
374
375         /* Increment number of inner iterations */
376         inneriter                  += j_index_end - j_index_start;
377
378         /* Outer loop uses 8 flops */
379     }
380
381     /* Increment number of outer iterations */
382     outeriter        += nri;
383
384     /* Update outer/inner flops */
385
386     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*68);
387 }
388 /*
389  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_double
390  * Electrostatics interaction: Ewald
391  * VdW interaction:            None
392  * Geometry:                   Particle-Particle
393  * Calculate force/pot:        Force
394  */
395 void
396 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_128_fma_double
397                     (t_nblist                    * gmx_restrict       nlist,
398                      rvec                        * gmx_restrict          xx,
399                      rvec                        * gmx_restrict          ff,
400                      t_forcerec                  * gmx_restrict          fr,
401                      t_mdatoms                   * gmx_restrict     mdatoms,
402                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
403                      t_nrnb                      * gmx_restrict        nrnb)
404 {
405     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
406      * just 0 for non-waters.
407      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
408      * jnr indices corresponding to data put in the four positions in the SIMD register.
409      */
410     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
411     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
412     int              jnrA,jnrB;
413     int              j_coord_offsetA,j_coord_offsetB;
414     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
415     real             rcutoff_scalar;
416     real             *shiftvec,*fshift,*x,*f;
417     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
418     int              vdwioffset0;
419     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
420     int              vdwjidx0A,vdwjidx0B;
421     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
422     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
423     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
424     real             *charge;
425     __m128i          ewitab;
426     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
427     real             *ewtab;
428     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
429     real             rswitch_scalar,d_scalar;
430     __m128d          dummy_mask,cutoff_mask;
431     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
432     __m128d          one     = _mm_set1_pd(1.0);
433     __m128d          two     = _mm_set1_pd(2.0);
434     x                = xx[0];
435     f                = ff[0];
436
437     nri              = nlist->nri;
438     iinr             = nlist->iinr;
439     jindex           = nlist->jindex;
440     jjnr             = nlist->jjnr;
441     shiftidx         = nlist->shift;
442     gid              = nlist->gid;
443     shiftvec         = fr->shift_vec[0];
444     fshift           = fr->fshift[0];
445     facel            = _mm_set1_pd(fr->epsfac);
446     charge           = mdatoms->chargeA;
447
448     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
449     ewtab            = fr->ic->tabq_coul_FDV0;
450     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
451     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
452
453     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
454     rcutoff_scalar   = fr->rcoulomb;
455     rcutoff          = _mm_set1_pd(rcutoff_scalar);
456     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
457
458     rswitch_scalar   = fr->rcoulomb_switch;
459     rswitch          = _mm_set1_pd(rswitch_scalar);
460     /* Setup switch parameters */
461     d_scalar         = rcutoff_scalar-rswitch_scalar;
462     d                = _mm_set1_pd(d_scalar);
463     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
464     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
465     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
466     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
467     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
468     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
469
470     /* Avoid stupid compiler warnings */
471     jnrA = jnrB = 0;
472     j_coord_offsetA = 0;
473     j_coord_offsetB = 0;
474
475     outeriter        = 0;
476     inneriter        = 0;
477
478     /* Start outer loop over neighborlists */
479     for(iidx=0; iidx<nri; iidx++)
480     {
481         /* Load shift vector for this list */
482         i_shift_offset   = DIM*shiftidx[iidx];
483
484         /* Load limits for loop over neighbors */
485         j_index_start    = jindex[iidx];
486         j_index_end      = jindex[iidx+1];
487
488         /* Get outer coordinate index */
489         inr              = iinr[iidx];
490         i_coord_offset   = DIM*inr;
491
492         /* Load i particle coords and add shift vector */
493         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
494
495         fix0             = _mm_setzero_pd();
496         fiy0             = _mm_setzero_pd();
497         fiz0             = _mm_setzero_pd();
498
499         /* Load parameters for i particles */
500         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
501
502         /* Start inner kernel loop */
503         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
504         {
505
506             /* Get j neighbor index, and coordinate index */
507             jnrA             = jjnr[jidx];
508             jnrB             = jjnr[jidx+1];
509             j_coord_offsetA  = DIM*jnrA;
510             j_coord_offsetB  = DIM*jnrB;
511
512             /* load j atom coordinates */
513             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
514                                               &jx0,&jy0,&jz0);
515
516             /* Calculate displacement vector */
517             dx00             = _mm_sub_pd(ix0,jx0);
518             dy00             = _mm_sub_pd(iy0,jy0);
519             dz00             = _mm_sub_pd(iz0,jz0);
520
521             /* Calculate squared distance and things based on it */
522             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
523
524             rinv00           = gmx_mm_invsqrt_pd(rsq00);
525
526             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
527
528             /* Load parameters for j particles */
529             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             if (gmx_mm_any_lt(rsq00,rcutoff2))
536             {
537
538             r00              = _mm_mul_pd(rsq00,rinv00);
539
540             /* Compute parameters for interactions between i and j atoms */
541             qq00             = _mm_mul_pd(iq0,jq0);
542
543             /* EWALD ELECTROSTATICS */
544
545             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
546             ewrt             = _mm_mul_pd(r00,ewtabscale);
547             ewitab           = _mm_cvttpd_epi32(ewrt);
548 #ifdef __XOP__
549             eweps            = _mm_frcz_pd(ewrt);
550 #else
551             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
552 #endif
553             twoeweps         = _mm_add_pd(eweps,eweps);
554             ewitab           = _mm_slli_epi32(ewitab,2);
555             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
556             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
557             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
558             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
559             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
560             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
561             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
562             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
563             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
564             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
565
566             d                = _mm_sub_pd(r00,rswitch);
567             d                = _mm_max_pd(d,_mm_setzero_pd());
568             d2               = _mm_mul_pd(d,d);
569             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
570
571             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
572
573             /* Evaluate switch function */
574             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
575             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
576             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
577
578             fscal            = felec;
579
580             fscal            = _mm_and_pd(fscal,cutoff_mask);
581
582             /* Update vectorial force */
583             fix0             = _mm_macc_pd(dx00,fscal,fix0);
584             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
585             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
586             
587             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
588                                                    _mm_mul_pd(dx00,fscal),
589                                                    _mm_mul_pd(dy00,fscal),
590                                                    _mm_mul_pd(dz00,fscal));
591
592             }
593
594             /* Inner loop uses 65 flops */
595         }
596
597         if(jidx<j_index_end)
598         {
599
600             jnrA             = jjnr[jidx];
601             j_coord_offsetA  = DIM*jnrA;
602
603             /* load j atom coordinates */
604             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
605                                               &jx0,&jy0,&jz0);
606
607             /* Calculate displacement vector */
608             dx00             = _mm_sub_pd(ix0,jx0);
609             dy00             = _mm_sub_pd(iy0,jy0);
610             dz00             = _mm_sub_pd(iz0,jz0);
611
612             /* Calculate squared distance and things based on it */
613             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
614
615             rinv00           = gmx_mm_invsqrt_pd(rsq00);
616
617             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
618
619             /* Load parameters for j particles */
620             jq0              = _mm_load_sd(charge+jnrA+0);
621
622             /**************************
623              * CALCULATE INTERACTIONS *
624              **************************/
625
626             if (gmx_mm_any_lt(rsq00,rcutoff2))
627             {
628
629             r00              = _mm_mul_pd(rsq00,rinv00);
630
631             /* Compute parameters for interactions between i and j atoms */
632             qq00             = _mm_mul_pd(iq0,jq0);
633
634             /* EWALD ELECTROSTATICS */
635
636             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
637             ewrt             = _mm_mul_pd(r00,ewtabscale);
638             ewitab           = _mm_cvttpd_epi32(ewrt);
639 #ifdef __XOP__
640             eweps            = _mm_frcz_pd(ewrt);
641 #else
642             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
643 #endif
644             twoeweps         = _mm_add_pd(eweps,eweps);
645             ewitab           = _mm_slli_epi32(ewitab,2);
646             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
647             ewtabD           = _mm_setzero_pd();
648             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
649             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
650             ewtabFn          = _mm_setzero_pd();
651             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
652             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
653             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
654             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
655             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
656
657             d                = _mm_sub_pd(r00,rswitch);
658             d                = _mm_max_pd(d,_mm_setzero_pd());
659             d2               = _mm_mul_pd(d,d);
660             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
661
662             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
663
664             /* Evaluate switch function */
665             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
666             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
667             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
668
669             fscal            = felec;
670
671             fscal            = _mm_and_pd(fscal,cutoff_mask);
672
673             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
674
675             /* Update vectorial force */
676             fix0             = _mm_macc_pd(dx00,fscal,fix0);
677             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
678             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
679             
680             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
681                                                    _mm_mul_pd(dx00,fscal),
682                                                    _mm_mul_pd(dy00,fscal),
683                                                    _mm_mul_pd(dz00,fscal));
684
685             }
686
687             /* Inner loop uses 65 flops */
688         }
689
690         /* End of innermost loop */
691
692         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
693                                               f+i_coord_offset,fshift+i_shift_offset);
694
695         /* Increment number of inner iterations */
696         inneriter                  += j_index_end - j_index_start;
697
698         /* Outer loop uses 7 flops */
699     }
700
701     /* Increment number of outer iterations */
702     outeriter        += nri;
703
704     /* Update outer/inner flops */
705
706     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*65);
707 }