Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          ewitab;
102     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     real             *ewtab;
104     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
105     real             rswitch_scalar,d_scalar;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->ic->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
128     ewtab            = fr->ic->tabq_coul_FDV0;
129     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
130     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->ic->rcoulomb;
141     rcutoff          = _mm_set1_pd(rcutoff_scalar);
142     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
143
144     rswitch_scalar   = fr->ic->rcoulomb_switch;
145     rswitch          = _mm_set1_pd(rswitch_scalar);
146     /* Setup switch parameters */
147     d_scalar         = rcutoff_scalar-rswitch_scalar;
148     d                = _mm_set1_pd(d_scalar);
149     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
150     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
153     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
154     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
181
182         fix0             = _mm_setzero_pd();
183         fiy0             = _mm_setzero_pd();
184         fiz0             = _mm_setzero_pd();
185         fix1             = _mm_setzero_pd();
186         fiy1             = _mm_setzero_pd();
187         fiz1             = _mm_setzero_pd();
188         fix2             = _mm_setzero_pd();
189         fiy2             = _mm_setzero_pd();
190         fiz2             = _mm_setzero_pd();
191         fix3             = _mm_setzero_pd();
192         fiy3             = _mm_setzero_pd();
193         fiz3             = _mm_setzero_pd();
194
195         /* Reset potential sums */
196         velecsum         = _mm_setzero_pd();
197         vvdwsum          = _mm_setzero_pd();
198
199         /* Start inner kernel loop */
200         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
201         {
202
203             /* Get j neighbor index, and coordinate index */
204             jnrA             = jjnr[jidx];
205             jnrB             = jjnr[jidx+1];
206             j_coord_offsetA  = DIM*jnrA;
207             j_coord_offsetB  = DIM*jnrB;
208
209             /* load j atom coordinates */
210             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
211                                               &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm_sub_pd(ix0,jx0);
215             dy00             = _mm_sub_pd(iy0,jy0);
216             dz00             = _mm_sub_pd(iz0,jz0);
217             dx10             = _mm_sub_pd(ix1,jx0);
218             dy10             = _mm_sub_pd(iy1,jy0);
219             dz10             = _mm_sub_pd(iz1,jz0);
220             dx20             = _mm_sub_pd(ix2,jx0);
221             dy20             = _mm_sub_pd(iy2,jy0);
222             dz20             = _mm_sub_pd(iz2,jz0);
223             dx30             = _mm_sub_pd(ix3,jx0);
224             dy30             = _mm_sub_pd(iy3,jy0);
225             dz30             = _mm_sub_pd(iz3,jz0);
226
227             /* Calculate squared distance and things based on it */
228             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
229             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
230             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
231             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
232
233             rinv00           = avx128fma_invsqrt_d(rsq00);
234             rinv10           = avx128fma_invsqrt_d(rsq10);
235             rinv20           = avx128fma_invsqrt_d(rsq20);
236             rinv30           = avx128fma_invsqrt_d(rsq30);
237
238             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
239             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
240             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
241             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
242
243             /* Load parameters for j particles */
244             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
245             vdwjidx0A        = 2*vdwtype[jnrA+0];
246             vdwjidx0B        = 2*vdwtype[jnrB+0];
247
248             fjx0             = _mm_setzero_pd();
249             fjy0             = _mm_setzero_pd();
250             fjz0             = _mm_setzero_pd();
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             if (gmx_mm_any_lt(rsq00,rcutoff2))
257             {
258
259             r00              = _mm_mul_pd(rsq00,rinv00);
260
261             /* Compute parameters for interactions between i and j atoms */
262             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
263                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
264
265             /* LENNARD-JONES DISPERSION/REPULSION */
266
267             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
268             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
269             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
270             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
271             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
272
273             d                = _mm_sub_pd(r00,rswitch);
274             d                = _mm_max_pd(d,_mm_setzero_pd());
275             d2               = _mm_mul_pd(d,d);
276             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
277
278             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
279
280             /* Evaluate switch function */
281             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
282             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
283             vvdw             = _mm_mul_pd(vvdw,sw);
284             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
288             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
289
290             fscal            = fvdw;
291
292             fscal            = _mm_and_pd(fscal,cutoff_mask);
293
294             /* Update vectorial force */
295             fix0             = _mm_macc_pd(dx00,fscal,fix0);
296             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
297             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
298             
299             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
300             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
301             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
302
303             }
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             if (gmx_mm_any_lt(rsq10,rcutoff2))
310             {
311
312             r10              = _mm_mul_pd(rsq10,rinv10);
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq10             = _mm_mul_pd(iq1,jq0);
316
317             /* EWALD ELECTROSTATICS */
318
319             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
320             ewrt             = _mm_mul_pd(r10,ewtabscale);
321             ewitab           = _mm_cvttpd_epi32(ewrt);
322 #ifdef __XOP__
323             eweps            = _mm_frcz_pd(ewrt);
324 #else
325             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
326 #endif
327             twoeweps         = _mm_add_pd(eweps,eweps);
328             ewitab           = _mm_slli_epi32(ewitab,2);
329             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
330             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
331             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
332             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
333             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
334             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
335             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
336             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
337             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
338             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
339
340             d                = _mm_sub_pd(r10,rswitch);
341             d                = _mm_max_pd(d,_mm_setzero_pd());
342             d2               = _mm_mul_pd(d,d);
343             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
344
345             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
346
347             /* Evaluate switch function */
348             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
349             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
350             velec            = _mm_mul_pd(velec,sw);
351             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velec            = _mm_and_pd(velec,cutoff_mask);
355             velecsum         = _mm_add_pd(velecsum,velec);
356
357             fscal            = felec;
358
359             fscal            = _mm_and_pd(fscal,cutoff_mask);
360
361             /* Update vectorial force */
362             fix1             = _mm_macc_pd(dx10,fscal,fix1);
363             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
364             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
365             
366             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
367             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
368             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
369
370             }
371
372             /**************************
373              * CALCULATE INTERACTIONS *
374              **************************/
375
376             if (gmx_mm_any_lt(rsq20,rcutoff2))
377             {
378
379             r20              = _mm_mul_pd(rsq20,rinv20);
380
381             /* Compute parameters for interactions between i and j atoms */
382             qq20             = _mm_mul_pd(iq2,jq0);
383
384             /* EWALD ELECTROSTATICS */
385
386             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
387             ewrt             = _mm_mul_pd(r20,ewtabscale);
388             ewitab           = _mm_cvttpd_epi32(ewrt);
389 #ifdef __XOP__
390             eweps            = _mm_frcz_pd(ewrt);
391 #else
392             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
393 #endif
394             twoeweps         = _mm_add_pd(eweps,eweps);
395             ewitab           = _mm_slli_epi32(ewitab,2);
396             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
397             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
398             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
399             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
400             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
401             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
402             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
403             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
404             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
405             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
406
407             d                = _mm_sub_pd(r20,rswitch);
408             d                = _mm_max_pd(d,_mm_setzero_pd());
409             d2               = _mm_mul_pd(d,d);
410             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
411
412             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
413
414             /* Evaluate switch function */
415             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
416             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
417             velec            = _mm_mul_pd(velec,sw);
418             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm_and_pd(velec,cutoff_mask);
422             velecsum         = _mm_add_pd(velecsum,velec);
423
424             fscal            = felec;
425
426             fscal            = _mm_and_pd(fscal,cutoff_mask);
427
428             /* Update vectorial force */
429             fix2             = _mm_macc_pd(dx20,fscal,fix2);
430             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
431             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
432             
433             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
434             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
435             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
436
437             }
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             if (gmx_mm_any_lt(rsq30,rcutoff2))
444             {
445
446             r30              = _mm_mul_pd(rsq30,rinv30);
447
448             /* Compute parameters for interactions between i and j atoms */
449             qq30             = _mm_mul_pd(iq3,jq0);
450
451             /* EWALD ELECTROSTATICS */
452
453             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
454             ewrt             = _mm_mul_pd(r30,ewtabscale);
455             ewitab           = _mm_cvttpd_epi32(ewrt);
456 #ifdef __XOP__
457             eweps            = _mm_frcz_pd(ewrt);
458 #else
459             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
460 #endif
461             twoeweps         = _mm_add_pd(eweps,eweps);
462             ewitab           = _mm_slli_epi32(ewitab,2);
463             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
464             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
465             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
466             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
467             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
468             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
469             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
470             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
471             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
472             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
473
474             d                = _mm_sub_pd(r30,rswitch);
475             d                = _mm_max_pd(d,_mm_setzero_pd());
476             d2               = _mm_mul_pd(d,d);
477             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
478
479             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
480
481             /* Evaluate switch function */
482             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
483             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
484             velec            = _mm_mul_pd(velec,sw);
485             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
486
487             /* Update potential sum for this i atom from the interaction with this j atom. */
488             velec            = _mm_and_pd(velec,cutoff_mask);
489             velecsum         = _mm_add_pd(velecsum,velec);
490
491             fscal            = felec;
492
493             fscal            = _mm_and_pd(fscal,cutoff_mask);
494
495             /* Update vectorial force */
496             fix3             = _mm_macc_pd(dx30,fscal,fix3);
497             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
498             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
499             
500             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
501             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
502             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
503
504             }
505
506             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
507
508             /* Inner loop uses 269 flops */
509         }
510
511         if(jidx<j_index_end)
512         {
513
514             jnrA             = jjnr[jidx];
515             j_coord_offsetA  = DIM*jnrA;
516
517             /* load j atom coordinates */
518             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
519                                               &jx0,&jy0,&jz0);
520
521             /* Calculate displacement vector */
522             dx00             = _mm_sub_pd(ix0,jx0);
523             dy00             = _mm_sub_pd(iy0,jy0);
524             dz00             = _mm_sub_pd(iz0,jz0);
525             dx10             = _mm_sub_pd(ix1,jx0);
526             dy10             = _mm_sub_pd(iy1,jy0);
527             dz10             = _mm_sub_pd(iz1,jz0);
528             dx20             = _mm_sub_pd(ix2,jx0);
529             dy20             = _mm_sub_pd(iy2,jy0);
530             dz20             = _mm_sub_pd(iz2,jz0);
531             dx30             = _mm_sub_pd(ix3,jx0);
532             dy30             = _mm_sub_pd(iy3,jy0);
533             dz30             = _mm_sub_pd(iz3,jz0);
534
535             /* Calculate squared distance and things based on it */
536             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
537             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
538             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
539             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
540
541             rinv00           = avx128fma_invsqrt_d(rsq00);
542             rinv10           = avx128fma_invsqrt_d(rsq10);
543             rinv20           = avx128fma_invsqrt_d(rsq20);
544             rinv30           = avx128fma_invsqrt_d(rsq30);
545
546             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
547             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
548             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
549             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
550
551             /* Load parameters for j particles */
552             jq0              = _mm_load_sd(charge+jnrA+0);
553             vdwjidx0A        = 2*vdwtype[jnrA+0];
554
555             fjx0             = _mm_setzero_pd();
556             fjy0             = _mm_setzero_pd();
557             fjz0             = _mm_setzero_pd();
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             if (gmx_mm_any_lt(rsq00,rcutoff2))
564             {
565
566             r00              = _mm_mul_pd(rsq00,rinv00);
567
568             /* Compute parameters for interactions between i and j atoms */
569             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
570
571             /* LENNARD-JONES DISPERSION/REPULSION */
572
573             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
574             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
575             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
576             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
577             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
578
579             d                = _mm_sub_pd(r00,rswitch);
580             d                = _mm_max_pd(d,_mm_setzero_pd());
581             d2               = _mm_mul_pd(d,d);
582             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
583
584             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
585
586             /* Evaluate switch function */
587             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
588             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
589             vvdw             = _mm_mul_pd(vvdw,sw);
590             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
591
592             /* Update potential sum for this i atom from the interaction with this j atom. */
593             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
594             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
595             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
596
597             fscal            = fvdw;
598
599             fscal            = _mm_and_pd(fscal,cutoff_mask);
600
601             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
602
603             /* Update vectorial force */
604             fix0             = _mm_macc_pd(dx00,fscal,fix0);
605             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
606             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
607             
608             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
609             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
610             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
611
612             }
613
614             /**************************
615              * CALCULATE INTERACTIONS *
616              **************************/
617
618             if (gmx_mm_any_lt(rsq10,rcutoff2))
619             {
620
621             r10              = _mm_mul_pd(rsq10,rinv10);
622
623             /* Compute parameters for interactions between i and j atoms */
624             qq10             = _mm_mul_pd(iq1,jq0);
625
626             /* EWALD ELECTROSTATICS */
627
628             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
629             ewrt             = _mm_mul_pd(r10,ewtabscale);
630             ewitab           = _mm_cvttpd_epi32(ewrt);
631 #ifdef __XOP__
632             eweps            = _mm_frcz_pd(ewrt);
633 #else
634             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
635 #endif
636             twoeweps         = _mm_add_pd(eweps,eweps);
637             ewitab           = _mm_slli_epi32(ewitab,2);
638             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
639             ewtabD           = _mm_setzero_pd();
640             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
641             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
642             ewtabFn          = _mm_setzero_pd();
643             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
644             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
645             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
646             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
647             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
648
649             d                = _mm_sub_pd(r10,rswitch);
650             d                = _mm_max_pd(d,_mm_setzero_pd());
651             d2               = _mm_mul_pd(d,d);
652             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
653
654             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
655
656             /* Evaluate switch function */
657             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
658             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
659             velec            = _mm_mul_pd(velec,sw);
660             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
661
662             /* Update potential sum for this i atom from the interaction with this j atom. */
663             velec            = _mm_and_pd(velec,cutoff_mask);
664             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
665             velecsum         = _mm_add_pd(velecsum,velec);
666
667             fscal            = felec;
668
669             fscal            = _mm_and_pd(fscal,cutoff_mask);
670
671             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
672
673             /* Update vectorial force */
674             fix1             = _mm_macc_pd(dx10,fscal,fix1);
675             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
676             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
677             
678             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
679             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
680             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
681
682             }
683
684             /**************************
685              * CALCULATE INTERACTIONS *
686              **************************/
687
688             if (gmx_mm_any_lt(rsq20,rcutoff2))
689             {
690
691             r20              = _mm_mul_pd(rsq20,rinv20);
692
693             /* Compute parameters for interactions between i and j atoms */
694             qq20             = _mm_mul_pd(iq2,jq0);
695
696             /* EWALD ELECTROSTATICS */
697
698             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
699             ewrt             = _mm_mul_pd(r20,ewtabscale);
700             ewitab           = _mm_cvttpd_epi32(ewrt);
701 #ifdef __XOP__
702             eweps            = _mm_frcz_pd(ewrt);
703 #else
704             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
705 #endif
706             twoeweps         = _mm_add_pd(eweps,eweps);
707             ewitab           = _mm_slli_epi32(ewitab,2);
708             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
709             ewtabD           = _mm_setzero_pd();
710             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
711             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
712             ewtabFn          = _mm_setzero_pd();
713             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
714             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
715             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
716             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
717             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
718
719             d                = _mm_sub_pd(r20,rswitch);
720             d                = _mm_max_pd(d,_mm_setzero_pd());
721             d2               = _mm_mul_pd(d,d);
722             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
723
724             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
725
726             /* Evaluate switch function */
727             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
728             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
729             velec            = _mm_mul_pd(velec,sw);
730             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
731
732             /* Update potential sum for this i atom from the interaction with this j atom. */
733             velec            = _mm_and_pd(velec,cutoff_mask);
734             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
735             velecsum         = _mm_add_pd(velecsum,velec);
736
737             fscal            = felec;
738
739             fscal            = _mm_and_pd(fscal,cutoff_mask);
740
741             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
742
743             /* Update vectorial force */
744             fix2             = _mm_macc_pd(dx20,fscal,fix2);
745             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
746             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
747             
748             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
749             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
750             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
751
752             }
753
754             /**************************
755              * CALCULATE INTERACTIONS *
756              **************************/
757
758             if (gmx_mm_any_lt(rsq30,rcutoff2))
759             {
760
761             r30              = _mm_mul_pd(rsq30,rinv30);
762
763             /* Compute parameters for interactions between i and j atoms */
764             qq30             = _mm_mul_pd(iq3,jq0);
765
766             /* EWALD ELECTROSTATICS */
767
768             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
769             ewrt             = _mm_mul_pd(r30,ewtabscale);
770             ewitab           = _mm_cvttpd_epi32(ewrt);
771 #ifdef __XOP__
772             eweps            = _mm_frcz_pd(ewrt);
773 #else
774             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
775 #endif
776             twoeweps         = _mm_add_pd(eweps,eweps);
777             ewitab           = _mm_slli_epi32(ewitab,2);
778             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
779             ewtabD           = _mm_setzero_pd();
780             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
781             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
782             ewtabFn          = _mm_setzero_pd();
783             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
784             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
785             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
786             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
787             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
788
789             d                = _mm_sub_pd(r30,rswitch);
790             d                = _mm_max_pd(d,_mm_setzero_pd());
791             d2               = _mm_mul_pd(d,d);
792             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
793
794             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
795
796             /* Evaluate switch function */
797             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
798             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
799             velec            = _mm_mul_pd(velec,sw);
800             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
801
802             /* Update potential sum for this i atom from the interaction with this j atom. */
803             velec            = _mm_and_pd(velec,cutoff_mask);
804             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
805             velecsum         = _mm_add_pd(velecsum,velec);
806
807             fscal            = felec;
808
809             fscal            = _mm_and_pd(fscal,cutoff_mask);
810
811             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
812
813             /* Update vectorial force */
814             fix3             = _mm_macc_pd(dx30,fscal,fix3);
815             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
816             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
817             
818             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
819             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
820             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
821
822             }
823
824             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
825
826             /* Inner loop uses 269 flops */
827         }
828
829         /* End of innermost loop */
830
831         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
832                                               f+i_coord_offset,fshift+i_shift_offset);
833
834         ggid                        = gid[iidx];
835         /* Update potential energies */
836         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
837         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
838
839         /* Increment number of inner iterations */
840         inneriter                  += j_index_end - j_index_start;
841
842         /* Outer loop uses 26 flops */
843     }
844
845     /* Increment number of outer iterations */
846     outeriter        += nri;
847
848     /* Update outer/inner flops */
849
850     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*269);
851 }
852 /*
853  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_double
854  * Electrostatics interaction: Ewald
855  * VdW interaction:            LennardJones
856  * Geometry:                   Water4-Particle
857  * Calculate force/pot:        Force
858  */
859 void
860 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_double
861                     (t_nblist                    * gmx_restrict       nlist,
862                      rvec                        * gmx_restrict          xx,
863                      rvec                        * gmx_restrict          ff,
864                      struct t_forcerec           * gmx_restrict          fr,
865                      t_mdatoms                   * gmx_restrict     mdatoms,
866                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
867                      t_nrnb                      * gmx_restrict        nrnb)
868 {
869     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
870      * just 0 for non-waters.
871      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
872      * jnr indices corresponding to data put in the four positions in the SIMD register.
873      */
874     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
875     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
876     int              jnrA,jnrB;
877     int              j_coord_offsetA,j_coord_offsetB;
878     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
879     real             rcutoff_scalar;
880     real             *shiftvec,*fshift,*x,*f;
881     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
882     int              vdwioffset0;
883     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
884     int              vdwioffset1;
885     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
886     int              vdwioffset2;
887     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
888     int              vdwioffset3;
889     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
890     int              vdwjidx0A,vdwjidx0B;
891     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
892     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
893     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
894     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
895     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
896     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
897     real             *charge;
898     int              nvdwtype;
899     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
900     int              *vdwtype;
901     real             *vdwparam;
902     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
903     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
904     __m128i          ewitab;
905     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
906     real             *ewtab;
907     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
908     real             rswitch_scalar,d_scalar;
909     __m128d          dummy_mask,cutoff_mask;
910     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
911     __m128d          one     = _mm_set1_pd(1.0);
912     __m128d          two     = _mm_set1_pd(2.0);
913     x                = xx[0];
914     f                = ff[0];
915
916     nri              = nlist->nri;
917     iinr             = nlist->iinr;
918     jindex           = nlist->jindex;
919     jjnr             = nlist->jjnr;
920     shiftidx         = nlist->shift;
921     gid              = nlist->gid;
922     shiftvec         = fr->shift_vec[0];
923     fshift           = fr->fshift[0];
924     facel            = _mm_set1_pd(fr->ic->epsfac);
925     charge           = mdatoms->chargeA;
926     nvdwtype         = fr->ntype;
927     vdwparam         = fr->nbfp;
928     vdwtype          = mdatoms->typeA;
929
930     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
931     ewtab            = fr->ic->tabq_coul_FDV0;
932     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
933     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
934
935     /* Setup water-specific parameters */
936     inr              = nlist->iinr[0];
937     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
938     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
939     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
940     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
941
942     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
943     rcutoff_scalar   = fr->ic->rcoulomb;
944     rcutoff          = _mm_set1_pd(rcutoff_scalar);
945     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
946
947     rswitch_scalar   = fr->ic->rcoulomb_switch;
948     rswitch          = _mm_set1_pd(rswitch_scalar);
949     /* Setup switch parameters */
950     d_scalar         = rcutoff_scalar-rswitch_scalar;
951     d                = _mm_set1_pd(d_scalar);
952     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
953     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
954     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
955     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
956     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
957     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
958
959     /* Avoid stupid compiler warnings */
960     jnrA = jnrB = 0;
961     j_coord_offsetA = 0;
962     j_coord_offsetB = 0;
963
964     outeriter        = 0;
965     inneriter        = 0;
966
967     /* Start outer loop over neighborlists */
968     for(iidx=0; iidx<nri; iidx++)
969     {
970         /* Load shift vector for this list */
971         i_shift_offset   = DIM*shiftidx[iidx];
972
973         /* Load limits for loop over neighbors */
974         j_index_start    = jindex[iidx];
975         j_index_end      = jindex[iidx+1];
976
977         /* Get outer coordinate index */
978         inr              = iinr[iidx];
979         i_coord_offset   = DIM*inr;
980
981         /* Load i particle coords and add shift vector */
982         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
983                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
984
985         fix0             = _mm_setzero_pd();
986         fiy0             = _mm_setzero_pd();
987         fiz0             = _mm_setzero_pd();
988         fix1             = _mm_setzero_pd();
989         fiy1             = _mm_setzero_pd();
990         fiz1             = _mm_setzero_pd();
991         fix2             = _mm_setzero_pd();
992         fiy2             = _mm_setzero_pd();
993         fiz2             = _mm_setzero_pd();
994         fix3             = _mm_setzero_pd();
995         fiy3             = _mm_setzero_pd();
996         fiz3             = _mm_setzero_pd();
997
998         /* Start inner kernel loop */
999         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1000         {
1001
1002             /* Get j neighbor index, and coordinate index */
1003             jnrA             = jjnr[jidx];
1004             jnrB             = jjnr[jidx+1];
1005             j_coord_offsetA  = DIM*jnrA;
1006             j_coord_offsetB  = DIM*jnrB;
1007
1008             /* load j atom coordinates */
1009             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1010                                               &jx0,&jy0,&jz0);
1011
1012             /* Calculate displacement vector */
1013             dx00             = _mm_sub_pd(ix0,jx0);
1014             dy00             = _mm_sub_pd(iy0,jy0);
1015             dz00             = _mm_sub_pd(iz0,jz0);
1016             dx10             = _mm_sub_pd(ix1,jx0);
1017             dy10             = _mm_sub_pd(iy1,jy0);
1018             dz10             = _mm_sub_pd(iz1,jz0);
1019             dx20             = _mm_sub_pd(ix2,jx0);
1020             dy20             = _mm_sub_pd(iy2,jy0);
1021             dz20             = _mm_sub_pd(iz2,jz0);
1022             dx30             = _mm_sub_pd(ix3,jx0);
1023             dy30             = _mm_sub_pd(iy3,jy0);
1024             dz30             = _mm_sub_pd(iz3,jz0);
1025
1026             /* Calculate squared distance and things based on it */
1027             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1028             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1029             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1030             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1031
1032             rinv00           = avx128fma_invsqrt_d(rsq00);
1033             rinv10           = avx128fma_invsqrt_d(rsq10);
1034             rinv20           = avx128fma_invsqrt_d(rsq20);
1035             rinv30           = avx128fma_invsqrt_d(rsq30);
1036
1037             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1038             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1039             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1040             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1041
1042             /* Load parameters for j particles */
1043             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
1044             vdwjidx0A        = 2*vdwtype[jnrA+0];
1045             vdwjidx0B        = 2*vdwtype[jnrB+0];
1046
1047             fjx0             = _mm_setzero_pd();
1048             fjy0             = _mm_setzero_pd();
1049             fjz0             = _mm_setzero_pd();
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             if (gmx_mm_any_lt(rsq00,rcutoff2))
1056             {
1057
1058             r00              = _mm_mul_pd(rsq00,rinv00);
1059
1060             /* Compute parameters for interactions between i and j atoms */
1061             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1062                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1063
1064             /* LENNARD-JONES DISPERSION/REPULSION */
1065
1066             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1067             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1068             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1069             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1070             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1071
1072             d                = _mm_sub_pd(r00,rswitch);
1073             d                = _mm_max_pd(d,_mm_setzero_pd());
1074             d2               = _mm_mul_pd(d,d);
1075             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1076
1077             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1078
1079             /* Evaluate switch function */
1080             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1081             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1082             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1083
1084             fscal            = fvdw;
1085
1086             fscal            = _mm_and_pd(fscal,cutoff_mask);
1087
1088             /* Update vectorial force */
1089             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1090             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1091             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1092             
1093             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1094             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1095             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1096
1097             }
1098
1099             /**************************
1100              * CALCULATE INTERACTIONS *
1101              **************************/
1102
1103             if (gmx_mm_any_lt(rsq10,rcutoff2))
1104             {
1105
1106             r10              = _mm_mul_pd(rsq10,rinv10);
1107
1108             /* Compute parameters for interactions between i and j atoms */
1109             qq10             = _mm_mul_pd(iq1,jq0);
1110
1111             /* EWALD ELECTROSTATICS */
1112
1113             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1114             ewrt             = _mm_mul_pd(r10,ewtabscale);
1115             ewitab           = _mm_cvttpd_epi32(ewrt);
1116 #ifdef __XOP__
1117             eweps            = _mm_frcz_pd(ewrt);
1118 #else
1119             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1120 #endif
1121             twoeweps         = _mm_add_pd(eweps,eweps);
1122             ewitab           = _mm_slli_epi32(ewitab,2);
1123             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1124             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1125             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1126             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1127             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1128             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1129             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1130             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1131             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1132             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1133
1134             d                = _mm_sub_pd(r10,rswitch);
1135             d                = _mm_max_pd(d,_mm_setzero_pd());
1136             d2               = _mm_mul_pd(d,d);
1137             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1138
1139             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1140
1141             /* Evaluate switch function */
1142             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1143             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1144             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1145
1146             fscal            = felec;
1147
1148             fscal            = _mm_and_pd(fscal,cutoff_mask);
1149
1150             /* Update vectorial force */
1151             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1152             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1153             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1154             
1155             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1156             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1157             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1158
1159             }
1160
1161             /**************************
1162              * CALCULATE INTERACTIONS *
1163              **************************/
1164
1165             if (gmx_mm_any_lt(rsq20,rcutoff2))
1166             {
1167
1168             r20              = _mm_mul_pd(rsq20,rinv20);
1169
1170             /* Compute parameters for interactions between i and j atoms */
1171             qq20             = _mm_mul_pd(iq2,jq0);
1172
1173             /* EWALD ELECTROSTATICS */
1174
1175             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1176             ewrt             = _mm_mul_pd(r20,ewtabscale);
1177             ewitab           = _mm_cvttpd_epi32(ewrt);
1178 #ifdef __XOP__
1179             eweps            = _mm_frcz_pd(ewrt);
1180 #else
1181             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1182 #endif
1183             twoeweps         = _mm_add_pd(eweps,eweps);
1184             ewitab           = _mm_slli_epi32(ewitab,2);
1185             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1186             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1187             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1188             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1189             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1190             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1191             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1192             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1193             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1194             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1195
1196             d                = _mm_sub_pd(r20,rswitch);
1197             d                = _mm_max_pd(d,_mm_setzero_pd());
1198             d2               = _mm_mul_pd(d,d);
1199             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1200
1201             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1202
1203             /* Evaluate switch function */
1204             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1205             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1206             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1207
1208             fscal            = felec;
1209
1210             fscal            = _mm_and_pd(fscal,cutoff_mask);
1211
1212             /* Update vectorial force */
1213             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1214             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1215             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1216             
1217             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1218             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1219             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1220
1221             }
1222
1223             /**************************
1224              * CALCULATE INTERACTIONS *
1225              **************************/
1226
1227             if (gmx_mm_any_lt(rsq30,rcutoff2))
1228             {
1229
1230             r30              = _mm_mul_pd(rsq30,rinv30);
1231
1232             /* Compute parameters for interactions between i and j atoms */
1233             qq30             = _mm_mul_pd(iq3,jq0);
1234
1235             /* EWALD ELECTROSTATICS */
1236
1237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1238             ewrt             = _mm_mul_pd(r30,ewtabscale);
1239             ewitab           = _mm_cvttpd_epi32(ewrt);
1240 #ifdef __XOP__
1241             eweps            = _mm_frcz_pd(ewrt);
1242 #else
1243             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1244 #endif
1245             twoeweps         = _mm_add_pd(eweps,eweps);
1246             ewitab           = _mm_slli_epi32(ewitab,2);
1247             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1248             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1249             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1250             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1251             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1252             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1253             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1254             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1255             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1256             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1257
1258             d                = _mm_sub_pd(r30,rswitch);
1259             d                = _mm_max_pd(d,_mm_setzero_pd());
1260             d2               = _mm_mul_pd(d,d);
1261             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1262
1263             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1264
1265             /* Evaluate switch function */
1266             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1267             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1268             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1269
1270             fscal            = felec;
1271
1272             fscal            = _mm_and_pd(fscal,cutoff_mask);
1273
1274             /* Update vectorial force */
1275             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1276             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1277             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1278             
1279             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1280             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1281             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1282
1283             }
1284
1285             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1286
1287             /* Inner loop uses 257 flops */
1288         }
1289
1290         if(jidx<j_index_end)
1291         {
1292
1293             jnrA             = jjnr[jidx];
1294             j_coord_offsetA  = DIM*jnrA;
1295
1296             /* load j atom coordinates */
1297             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1298                                               &jx0,&jy0,&jz0);
1299
1300             /* Calculate displacement vector */
1301             dx00             = _mm_sub_pd(ix0,jx0);
1302             dy00             = _mm_sub_pd(iy0,jy0);
1303             dz00             = _mm_sub_pd(iz0,jz0);
1304             dx10             = _mm_sub_pd(ix1,jx0);
1305             dy10             = _mm_sub_pd(iy1,jy0);
1306             dz10             = _mm_sub_pd(iz1,jz0);
1307             dx20             = _mm_sub_pd(ix2,jx0);
1308             dy20             = _mm_sub_pd(iy2,jy0);
1309             dz20             = _mm_sub_pd(iz2,jz0);
1310             dx30             = _mm_sub_pd(ix3,jx0);
1311             dy30             = _mm_sub_pd(iy3,jy0);
1312             dz30             = _mm_sub_pd(iz3,jz0);
1313
1314             /* Calculate squared distance and things based on it */
1315             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1316             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1317             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1318             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1319
1320             rinv00           = avx128fma_invsqrt_d(rsq00);
1321             rinv10           = avx128fma_invsqrt_d(rsq10);
1322             rinv20           = avx128fma_invsqrt_d(rsq20);
1323             rinv30           = avx128fma_invsqrt_d(rsq30);
1324
1325             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1326             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1327             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1328             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1329
1330             /* Load parameters for j particles */
1331             jq0              = _mm_load_sd(charge+jnrA+0);
1332             vdwjidx0A        = 2*vdwtype[jnrA+0];
1333
1334             fjx0             = _mm_setzero_pd();
1335             fjy0             = _mm_setzero_pd();
1336             fjz0             = _mm_setzero_pd();
1337
1338             /**************************
1339              * CALCULATE INTERACTIONS *
1340              **************************/
1341
1342             if (gmx_mm_any_lt(rsq00,rcutoff2))
1343             {
1344
1345             r00              = _mm_mul_pd(rsq00,rinv00);
1346
1347             /* Compute parameters for interactions between i and j atoms */
1348             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1349
1350             /* LENNARD-JONES DISPERSION/REPULSION */
1351
1352             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1353             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1354             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1355             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1356             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1357
1358             d                = _mm_sub_pd(r00,rswitch);
1359             d                = _mm_max_pd(d,_mm_setzero_pd());
1360             d2               = _mm_mul_pd(d,d);
1361             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1362
1363             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1364
1365             /* Evaluate switch function */
1366             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1367             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1368             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1369
1370             fscal            = fvdw;
1371
1372             fscal            = _mm_and_pd(fscal,cutoff_mask);
1373
1374             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1375
1376             /* Update vectorial force */
1377             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1378             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1379             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1380             
1381             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1382             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1383             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1384
1385             }
1386
1387             /**************************
1388              * CALCULATE INTERACTIONS *
1389              **************************/
1390
1391             if (gmx_mm_any_lt(rsq10,rcutoff2))
1392             {
1393
1394             r10              = _mm_mul_pd(rsq10,rinv10);
1395
1396             /* Compute parameters for interactions between i and j atoms */
1397             qq10             = _mm_mul_pd(iq1,jq0);
1398
1399             /* EWALD ELECTROSTATICS */
1400
1401             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1402             ewrt             = _mm_mul_pd(r10,ewtabscale);
1403             ewitab           = _mm_cvttpd_epi32(ewrt);
1404 #ifdef __XOP__
1405             eweps            = _mm_frcz_pd(ewrt);
1406 #else
1407             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1408 #endif
1409             twoeweps         = _mm_add_pd(eweps,eweps);
1410             ewitab           = _mm_slli_epi32(ewitab,2);
1411             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1412             ewtabD           = _mm_setzero_pd();
1413             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1414             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1415             ewtabFn          = _mm_setzero_pd();
1416             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1417             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1418             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1419             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1420             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1421
1422             d                = _mm_sub_pd(r10,rswitch);
1423             d                = _mm_max_pd(d,_mm_setzero_pd());
1424             d2               = _mm_mul_pd(d,d);
1425             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1426
1427             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1428
1429             /* Evaluate switch function */
1430             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1431             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1432             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1433
1434             fscal            = felec;
1435
1436             fscal            = _mm_and_pd(fscal,cutoff_mask);
1437
1438             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1439
1440             /* Update vectorial force */
1441             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1442             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1443             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1444             
1445             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1446             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1447             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1448
1449             }
1450
1451             /**************************
1452              * CALCULATE INTERACTIONS *
1453              **************************/
1454
1455             if (gmx_mm_any_lt(rsq20,rcutoff2))
1456             {
1457
1458             r20              = _mm_mul_pd(rsq20,rinv20);
1459
1460             /* Compute parameters for interactions between i and j atoms */
1461             qq20             = _mm_mul_pd(iq2,jq0);
1462
1463             /* EWALD ELECTROSTATICS */
1464
1465             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1466             ewrt             = _mm_mul_pd(r20,ewtabscale);
1467             ewitab           = _mm_cvttpd_epi32(ewrt);
1468 #ifdef __XOP__
1469             eweps            = _mm_frcz_pd(ewrt);
1470 #else
1471             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1472 #endif
1473             twoeweps         = _mm_add_pd(eweps,eweps);
1474             ewitab           = _mm_slli_epi32(ewitab,2);
1475             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1476             ewtabD           = _mm_setzero_pd();
1477             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1478             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1479             ewtabFn          = _mm_setzero_pd();
1480             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1481             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1482             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1483             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1484             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1485
1486             d                = _mm_sub_pd(r20,rswitch);
1487             d                = _mm_max_pd(d,_mm_setzero_pd());
1488             d2               = _mm_mul_pd(d,d);
1489             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1490
1491             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1492
1493             /* Evaluate switch function */
1494             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1495             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1496             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1497
1498             fscal            = felec;
1499
1500             fscal            = _mm_and_pd(fscal,cutoff_mask);
1501
1502             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1503
1504             /* Update vectorial force */
1505             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1506             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1507             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1508             
1509             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1510             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1511             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1512
1513             }
1514
1515             /**************************
1516              * CALCULATE INTERACTIONS *
1517              **************************/
1518
1519             if (gmx_mm_any_lt(rsq30,rcutoff2))
1520             {
1521
1522             r30              = _mm_mul_pd(rsq30,rinv30);
1523
1524             /* Compute parameters for interactions between i and j atoms */
1525             qq30             = _mm_mul_pd(iq3,jq0);
1526
1527             /* EWALD ELECTROSTATICS */
1528
1529             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1530             ewrt             = _mm_mul_pd(r30,ewtabscale);
1531             ewitab           = _mm_cvttpd_epi32(ewrt);
1532 #ifdef __XOP__
1533             eweps            = _mm_frcz_pd(ewrt);
1534 #else
1535             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1536 #endif
1537             twoeweps         = _mm_add_pd(eweps,eweps);
1538             ewitab           = _mm_slli_epi32(ewitab,2);
1539             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1540             ewtabD           = _mm_setzero_pd();
1541             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1542             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1543             ewtabFn          = _mm_setzero_pd();
1544             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1545             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1546             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1547             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1548             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1549
1550             d                = _mm_sub_pd(r30,rswitch);
1551             d                = _mm_max_pd(d,_mm_setzero_pd());
1552             d2               = _mm_mul_pd(d,d);
1553             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1554
1555             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1556
1557             /* Evaluate switch function */
1558             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1559             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1560             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1561
1562             fscal            = felec;
1563
1564             fscal            = _mm_and_pd(fscal,cutoff_mask);
1565
1566             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1567
1568             /* Update vectorial force */
1569             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1570             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1571             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1572             
1573             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1574             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1575             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1576
1577             }
1578
1579             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1580
1581             /* Inner loop uses 257 flops */
1582         }
1583
1584         /* End of innermost loop */
1585
1586         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1587                                               f+i_coord_offset,fshift+i_shift_offset);
1588
1589         /* Increment number of inner iterations */
1590         inneriter                  += j_index_end - j_index_start;
1591
1592         /* Outer loop uses 24 flops */
1593     }
1594
1595     /* Increment number of outer iterations */
1596     outeriter        += nri;
1597
1598     /* Update outer/inner flops */
1599
1600     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*257);
1601 }