6e823ceefefdb4470f63e418f51e0c7e37cb4b92
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          ewitab;
103     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
106     real             rswitch_scalar,d_scalar;
107     __m128d          dummy_mask,cutoff_mask;
108     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
109     __m128d          one     = _mm_set1_pd(1.0);
110     __m128d          two     = _mm_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_pd(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm_set1_pd(rcutoff_scalar);
143     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
144
145     rswitch_scalar   = fr->rcoulomb_switch;
146     rswitch          = _mm_set1_pd(rswitch_scalar);
147     /* Setup switch parameters */
148     d_scalar         = rcutoff_scalar-rswitch_scalar;
149     d                = _mm_set1_pd(d_scalar);
150     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
151     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
154     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
155     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182
183         fix0             = _mm_setzero_pd();
184         fiy0             = _mm_setzero_pd();
185         fiz0             = _mm_setzero_pd();
186         fix1             = _mm_setzero_pd();
187         fiy1             = _mm_setzero_pd();
188         fiz1             = _mm_setzero_pd();
189         fix2             = _mm_setzero_pd();
190         fiy2             = _mm_setzero_pd();
191         fiz2             = _mm_setzero_pd();
192         fix3             = _mm_setzero_pd();
193         fiy3             = _mm_setzero_pd();
194         fiz3             = _mm_setzero_pd();
195
196         /* Reset potential sums */
197         velecsum         = _mm_setzero_pd();
198         vvdwsum          = _mm_setzero_pd();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209
210             /* load j atom coordinates */
211             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_pd(ix0,jx0);
216             dy00             = _mm_sub_pd(iy0,jy0);
217             dz00             = _mm_sub_pd(iz0,jz0);
218             dx10             = _mm_sub_pd(ix1,jx0);
219             dy10             = _mm_sub_pd(iy1,jy0);
220             dz10             = _mm_sub_pd(iz1,jz0);
221             dx20             = _mm_sub_pd(ix2,jx0);
222             dy20             = _mm_sub_pd(iy2,jy0);
223             dz20             = _mm_sub_pd(iz2,jz0);
224             dx30             = _mm_sub_pd(ix3,jx0);
225             dy30             = _mm_sub_pd(iy3,jy0);
226             dz30             = _mm_sub_pd(iz3,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
232             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
233
234             rinv00           = gmx_mm_invsqrt_pd(rsq00);
235             rinv10           = gmx_mm_invsqrt_pd(rsq10);
236             rinv20           = gmx_mm_invsqrt_pd(rsq20);
237             rinv30           = gmx_mm_invsqrt_pd(rsq30);
238
239             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
240             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
241             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
242             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248
249             fjx0             = _mm_setzero_pd();
250             fjy0             = _mm_setzero_pd();
251             fjz0             = _mm_setzero_pd();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             if (gmx_mm_any_lt(rsq00,rcutoff2))
258             {
259
260             r00              = _mm_mul_pd(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
264                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
265
266             /* LENNARD-JONES DISPERSION/REPULSION */
267
268             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
269             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
270             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
271             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
272             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
273
274             d                = _mm_sub_pd(r00,rswitch);
275             d                = _mm_max_pd(d,_mm_setzero_pd());
276             d2               = _mm_mul_pd(d,d);
277             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
278
279             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
280
281             /* Evaluate switch function */
282             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
283             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
284             vvdw             = _mm_mul_pd(vvdw,sw);
285             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
289             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
290
291             fscal            = fvdw;
292
293             fscal            = _mm_and_pd(fscal,cutoff_mask);
294
295             /* Update vectorial force */
296             fix0             = _mm_macc_pd(dx00,fscal,fix0);
297             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
298             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
299             
300             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
301             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
302             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
303
304             }
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             if (gmx_mm_any_lt(rsq10,rcutoff2))
311             {
312
313             r10              = _mm_mul_pd(rsq10,rinv10);
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq10             = _mm_mul_pd(iq1,jq0);
317
318             /* EWALD ELECTROSTATICS */
319
320             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
321             ewrt             = _mm_mul_pd(r10,ewtabscale);
322             ewitab           = _mm_cvttpd_epi32(ewrt);
323 #ifdef __XOP__
324             eweps            = _mm_frcz_pd(ewrt);
325 #else
326             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
327 #endif
328             twoeweps         = _mm_add_pd(eweps,eweps);
329             ewitab           = _mm_slli_epi32(ewitab,2);
330             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
331             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
332             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
333             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
334             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
335             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
336             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
337             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
338             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
339             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
340
341             d                = _mm_sub_pd(r10,rswitch);
342             d                = _mm_max_pd(d,_mm_setzero_pd());
343             d2               = _mm_mul_pd(d,d);
344             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
345
346             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
347
348             /* Evaluate switch function */
349             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
350             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
351             velec            = _mm_mul_pd(velec,sw);
352             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velec            = _mm_and_pd(velec,cutoff_mask);
356             velecsum         = _mm_add_pd(velecsum,velec);
357
358             fscal            = felec;
359
360             fscal            = _mm_and_pd(fscal,cutoff_mask);
361
362             /* Update vectorial force */
363             fix1             = _mm_macc_pd(dx10,fscal,fix1);
364             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
365             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
366             
367             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
368             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
369             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
370
371             }
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             if (gmx_mm_any_lt(rsq20,rcutoff2))
378             {
379
380             r20              = _mm_mul_pd(rsq20,rinv20);
381
382             /* Compute parameters for interactions between i and j atoms */
383             qq20             = _mm_mul_pd(iq2,jq0);
384
385             /* EWALD ELECTROSTATICS */
386
387             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
388             ewrt             = _mm_mul_pd(r20,ewtabscale);
389             ewitab           = _mm_cvttpd_epi32(ewrt);
390 #ifdef __XOP__
391             eweps            = _mm_frcz_pd(ewrt);
392 #else
393             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
394 #endif
395             twoeweps         = _mm_add_pd(eweps,eweps);
396             ewitab           = _mm_slli_epi32(ewitab,2);
397             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
398             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
399             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
400             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
401             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
402             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
403             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
404             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
405             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
406             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
407
408             d                = _mm_sub_pd(r20,rswitch);
409             d                = _mm_max_pd(d,_mm_setzero_pd());
410             d2               = _mm_mul_pd(d,d);
411             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
412
413             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
414
415             /* Evaluate switch function */
416             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
417             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
418             velec            = _mm_mul_pd(velec,sw);
419             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
420
421             /* Update potential sum for this i atom from the interaction with this j atom. */
422             velec            = _mm_and_pd(velec,cutoff_mask);
423             velecsum         = _mm_add_pd(velecsum,velec);
424
425             fscal            = felec;
426
427             fscal            = _mm_and_pd(fscal,cutoff_mask);
428
429             /* Update vectorial force */
430             fix2             = _mm_macc_pd(dx20,fscal,fix2);
431             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
432             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
433             
434             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
435             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
436             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
437
438             }
439
440             /**************************
441              * CALCULATE INTERACTIONS *
442              **************************/
443
444             if (gmx_mm_any_lt(rsq30,rcutoff2))
445             {
446
447             r30              = _mm_mul_pd(rsq30,rinv30);
448
449             /* Compute parameters for interactions between i and j atoms */
450             qq30             = _mm_mul_pd(iq3,jq0);
451
452             /* EWALD ELECTROSTATICS */
453
454             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
455             ewrt             = _mm_mul_pd(r30,ewtabscale);
456             ewitab           = _mm_cvttpd_epi32(ewrt);
457 #ifdef __XOP__
458             eweps            = _mm_frcz_pd(ewrt);
459 #else
460             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
461 #endif
462             twoeweps         = _mm_add_pd(eweps,eweps);
463             ewitab           = _mm_slli_epi32(ewitab,2);
464             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
465             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
466             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
467             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
468             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
469             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
470             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
471             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
472             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
473             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
474
475             d                = _mm_sub_pd(r30,rswitch);
476             d                = _mm_max_pd(d,_mm_setzero_pd());
477             d2               = _mm_mul_pd(d,d);
478             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
479
480             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
481
482             /* Evaluate switch function */
483             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
484             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
485             velec            = _mm_mul_pd(velec,sw);
486             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
487
488             /* Update potential sum for this i atom from the interaction with this j atom. */
489             velec            = _mm_and_pd(velec,cutoff_mask);
490             velecsum         = _mm_add_pd(velecsum,velec);
491
492             fscal            = felec;
493
494             fscal            = _mm_and_pd(fscal,cutoff_mask);
495
496             /* Update vectorial force */
497             fix3             = _mm_macc_pd(dx30,fscal,fix3);
498             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
499             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
500             
501             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
502             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
503             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
504
505             }
506
507             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
508
509             /* Inner loop uses 269 flops */
510         }
511
512         if(jidx<j_index_end)
513         {
514
515             jnrA             = jjnr[jidx];
516             j_coord_offsetA  = DIM*jnrA;
517
518             /* load j atom coordinates */
519             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
520                                               &jx0,&jy0,&jz0);
521
522             /* Calculate displacement vector */
523             dx00             = _mm_sub_pd(ix0,jx0);
524             dy00             = _mm_sub_pd(iy0,jy0);
525             dz00             = _mm_sub_pd(iz0,jz0);
526             dx10             = _mm_sub_pd(ix1,jx0);
527             dy10             = _mm_sub_pd(iy1,jy0);
528             dz10             = _mm_sub_pd(iz1,jz0);
529             dx20             = _mm_sub_pd(ix2,jx0);
530             dy20             = _mm_sub_pd(iy2,jy0);
531             dz20             = _mm_sub_pd(iz2,jz0);
532             dx30             = _mm_sub_pd(ix3,jx0);
533             dy30             = _mm_sub_pd(iy3,jy0);
534             dz30             = _mm_sub_pd(iz3,jz0);
535
536             /* Calculate squared distance and things based on it */
537             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
538             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
539             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
540             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
541
542             rinv00           = gmx_mm_invsqrt_pd(rsq00);
543             rinv10           = gmx_mm_invsqrt_pd(rsq10);
544             rinv20           = gmx_mm_invsqrt_pd(rsq20);
545             rinv30           = gmx_mm_invsqrt_pd(rsq30);
546
547             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
548             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
549             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
550             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
551
552             /* Load parameters for j particles */
553             jq0              = _mm_load_sd(charge+jnrA+0);
554             vdwjidx0A        = 2*vdwtype[jnrA+0];
555
556             fjx0             = _mm_setzero_pd();
557             fjy0             = _mm_setzero_pd();
558             fjz0             = _mm_setzero_pd();
559
560             /**************************
561              * CALCULATE INTERACTIONS *
562              **************************/
563
564             if (gmx_mm_any_lt(rsq00,rcutoff2))
565             {
566
567             r00              = _mm_mul_pd(rsq00,rinv00);
568
569             /* Compute parameters for interactions between i and j atoms */
570             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
571
572             /* LENNARD-JONES DISPERSION/REPULSION */
573
574             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
575             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
576             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
577             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
578             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
579
580             d                = _mm_sub_pd(r00,rswitch);
581             d                = _mm_max_pd(d,_mm_setzero_pd());
582             d2               = _mm_mul_pd(d,d);
583             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
584
585             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
586
587             /* Evaluate switch function */
588             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
589             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
590             vvdw             = _mm_mul_pd(vvdw,sw);
591             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
595             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
596             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
597
598             fscal            = fvdw;
599
600             fscal            = _mm_and_pd(fscal,cutoff_mask);
601
602             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
603
604             /* Update vectorial force */
605             fix0             = _mm_macc_pd(dx00,fscal,fix0);
606             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
607             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
608             
609             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
610             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
611             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
612
613             }
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             if (gmx_mm_any_lt(rsq10,rcutoff2))
620             {
621
622             r10              = _mm_mul_pd(rsq10,rinv10);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq10             = _mm_mul_pd(iq1,jq0);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm_mul_pd(r10,ewtabscale);
631             ewitab           = _mm_cvttpd_epi32(ewrt);
632 #ifdef __XOP__
633             eweps            = _mm_frcz_pd(ewrt);
634 #else
635             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
636 #endif
637             twoeweps         = _mm_add_pd(eweps,eweps);
638             ewitab           = _mm_slli_epi32(ewitab,2);
639             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
640             ewtabD           = _mm_setzero_pd();
641             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
642             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
643             ewtabFn          = _mm_setzero_pd();
644             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
645             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
646             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
647             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
648             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
649
650             d                = _mm_sub_pd(r10,rswitch);
651             d                = _mm_max_pd(d,_mm_setzero_pd());
652             d2               = _mm_mul_pd(d,d);
653             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
654
655             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
656
657             /* Evaluate switch function */
658             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
659             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
660             velec            = _mm_mul_pd(velec,sw);
661             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
662
663             /* Update potential sum for this i atom from the interaction with this j atom. */
664             velec            = _mm_and_pd(velec,cutoff_mask);
665             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
666             velecsum         = _mm_add_pd(velecsum,velec);
667
668             fscal            = felec;
669
670             fscal            = _mm_and_pd(fscal,cutoff_mask);
671
672             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
673
674             /* Update vectorial force */
675             fix1             = _mm_macc_pd(dx10,fscal,fix1);
676             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
677             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
678             
679             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
680             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
681             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
682
683             }
684
685             /**************************
686              * CALCULATE INTERACTIONS *
687              **************************/
688
689             if (gmx_mm_any_lt(rsq20,rcutoff2))
690             {
691
692             r20              = _mm_mul_pd(rsq20,rinv20);
693
694             /* Compute parameters for interactions between i and j atoms */
695             qq20             = _mm_mul_pd(iq2,jq0);
696
697             /* EWALD ELECTROSTATICS */
698
699             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
700             ewrt             = _mm_mul_pd(r20,ewtabscale);
701             ewitab           = _mm_cvttpd_epi32(ewrt);
702 #ifdef __XOP__
703             eweps            = _mm_frcz_pd(ewrt);
704 #else
705             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
706 #endif
707             twoeweps         = _mm_add_pd(eweps,eweps);
708             ewitab           = _mm_slli_epi32(ewitab,2);
709             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
710             ewtabD           = _mm_setzero_pd();
711             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
712             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
713             ewtabFn          = _mm_setzero_pd();
714             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
715             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
716             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
717             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
718             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
719
720             d                = _mm_sub_pd(r20,rswitch);
721             d                = _mm_max_pd(d,_mm_setzero_pd());
722             d2               = _mm_mul_pd(d,d);
723             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
724
725             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
726
727             /* Evaluate switch function */
728             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
729             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
730             velec            = _mm_mul_pd(velec,sw);
731             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
732
733             /* Update potential sum for this i atom from the interaction with this j atom. */
734             velec            = _mm_and_pd(velec,cutoff_mask);
735             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
736             velecsum         = _mm_add_pd(velecsum,velec);
737
738             fscal            = felec;
739
740             fscal            = _mm_and_pd(fscal,cutoff_mask);
741
742             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
743
744             /* Update vectorial force */
745             fix2             = _mm_macc_pd(dx20,fscal,fix2);
746             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
747             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
748             
749             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
750             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
751             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
752
753             }
754
755             /**************************
756              * CALCULATE INTERACTIONS *
757              **************************/
758
759             if (gmx_mm_any_lt(rsq30,rcutoff2))
760             {
761
762             r30              = _mm_mul_pd(rsq30,rinv30);
763
764             /* Compute parameters for interactions between i and j atoms */
765             qq30             = _mm_mul_pd(iq3,jq0);
766
767             /* EWALD ELECTROSTATICS */
768
769             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
770             ewrt             = _mm_mul_pd(r30,ewtabscale);
771             ewitab           = _mm_cvttpd_epi32(ewrt);
772 #ifdef __XOP__
773             eweps            = _mm_frcz_pd(ewrt);
774 #else
775             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
776 #endif
777             twoeweps         = _mm_add_pd(eweps,eweps);
778             ewitab           = _mm_slli_epi32(ewitab,2);
779             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
780             ewtabD           = _mm_setzero_pd();
781             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
782             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
783             ewtabFn          = _mm_setzero_pd();
784             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
785             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
786             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
787             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
788             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
789
790             d                = _mm_sub_pd(r30,rswitch);
791             d                = _mm_max_pd(d,_mm_setzero_pd());
792             d2               = _mm_mul_pd(d,d);
793             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
794
795             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
796
797             /* Evaluate switch function */
798             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
799             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
800             velec            = _mm_mul_pd(velec,sw);
801             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
802
803             /* Update potential sum for this i atom from the interaction with this j atom. */
804             velec            = _mm_and_pd(velec,cutoff_mask);
805             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
806             velecsum         = _mm_add_pd(velecsum,velec);
807
808             fscal            = felec;
809
810             fscal            = _mm_and_pd(fscal,cutoff_mask);
811
812             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
813
814             /* Update vectorial force */
815             fix3             = _mm_macc_pd(dx30,fscal,fix3);
816             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
817             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
818             
819             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
820             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
821             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
822
823             }
824
825             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
826
827             /* Inner loop uses 269 flops */
828         }
829
830         /* End of innermost loop */
831
832         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
833                                               f+i_coord_offset,fshift+i_shift_offset);
834
835         ggid                        = gid[iidx];
836         /* Update potential energies */
837         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
838         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
839
840         /* Increment number of inner iterations */
841         inneriter                  += j_index_end - j_index_start;
842
843         /* Outer loop uses 26 flops */
844     }
845
846     /* Increment number of outer iterations */
847     outeriter        += nri;
848
849     /* Update outer/inner flops */
850
851     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*269);
852 }
853 /*
854  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_double
855  * Electrostatics interaction: Ewald
856  * VdW interaction:            LennardJones
857  * Geometry:                   Water4-Particle
858  * Calculate force/pot:        Force
859  */
860 void
861 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_double
862                     (t_nblist                    * gmx_restrict       nlist,
863                      rvec                        * gmx_restrict          xx,
864                      rvec                        * gmx_restrict          ff,
865                      t_forcerec                  * gmx_restrict          fr,
866                      t_mdatoms                   * gmx_restrict     mdatoms,
867                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
868                      t_nrnb                      * gmx_restrict        nrnb)
869 {
870     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
871      * just 0 for non-waters.
872      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
873      * jnr indices corresponding to data put in the four positions in the SIMD register.
874      */
875     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
876     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
877     int              jnrA,jnrB;
878     int              j_coord_offsetA,j_coord_offsetB;
879     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
880     real             rcutoff_scalar;
881     real             *shiftvec,*fshift,*x,*f;
882     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
883     int              vdwioffset0;
884     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
885     int              vdwioffset1;
886     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
887     int              vdwioffset2;
888     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
889     int              vdwioffset3;
890     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
891     int              vdwjidx0A,vdwjidx0B;
892     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
893     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
894     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
895     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
896     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
897     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
898     real             *charge;
899     int              nvdwtype;
900     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
901     int              *vdwtype;
902     real             *vdwparam;
903     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
904     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
905     __m128i          ewitab;
906     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
907     real             *ewtab;
908     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
909     real             rswitch_scalar,d_scalar;
910     __m128d          dummy_mask,cutoff_mask;
911     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
912     __m128d          one     = _mm_set1_pd(1.0);
913     __m128d          two     = _mm_set1_pd(2.0);
914     x                = xx[0];
915     f                = ff[0];
916
917     nri              = nlist->nri;
918     iinr             = nlist->iinr;
919     jindex           = nlist->jindex;
920     jjnr             = nlist->jjnr;
921     shiftidx         = nlist->shift;
922     gid              = nlist->gid;
923     shiftvec         = fr->shift_vec[0];
924     fshift           = fr->fshift[0];
925     facel            = _mm_set1_pd(fr->epsfac);
926     charge           = mdatoms->chargeA;
927     nvdwtype         = fr->ntype;
928     vdwparam         = fr->nbfp;
929     vdwtype          = mdatoms->typeA;
930
931     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
932     ewtab            = fr->ic->tabq_coul_FDV0;
933     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
934     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
935
936     /* Setup water-specific parameters */
937     inr              = nlist->iinr[0];
938     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
939     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
940     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
941     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
942
943     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
944     rcutoff_scalar   = fr->rcoulomb;
945     rcutoff          = _mm_set1_pd(rcutoff_scalar);
946     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
947
948     rswitch_scalar   = fr->rcoulomb_switch;
949     rswitch          = _mm_set1_pd(rswitch_scalar);
950     /* Setup switch parameters */
951     d_scalar         = rcutoff_scalar-rswitch_scalar;
952     d                = _mm_set1_pd(d_scalar);
953     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
954     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
955     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
956     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
957     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
958     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
959
960     /* Avoid stupid compiler warnings */
961     jnrA = jnrB = 0;
962     j_coord_offsetA = 0;
963     j_coord_offsetB = 0;
964
965     outeriter        = 0;
966     inneriter        = 0;
967
968     /* Start outer loop over neighborlists */
969     for(iidx=0; iidx<nri; iidx++)
970     {
971         /* Load shift vector for this list */
972         i_shift_offset   = DIM*shiftidx[iidx];
973
974         /* Load limits for loop over neighbors */
975         j_index_start    = jindex[iidx];
976         j_index_end      = jindex[iidx+1];
977
978         /* Get outer coordinate index */
979         inr              = iinr[iidx];
980         i_coord_offset   = DIM*inr;
981
982         /* Load i particle coords and add shift vector */
983         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
984                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
985
986         fix0             = _mm_setzero_pd();
987         fiy0             = _mm_setzero_pd();
988         fiz0             = _mm_setzero_pd();
989         fix1             = _mm_setzero_pd();
990         fiy1             = _mm_setzero_pd();
991         fiz1             = _mm_setzero_pd();
992         fix2             = _mm_setzero_pd();
993         fiy2             = _mm_setzero_pd();
994         fiz2             = _mm_setzero_pd();
995         fix3             = _mm_setzero_pd();
996         fiy3             = _mm_setzero_pd();
997         fiz3             = _mm_setzero_pd();
998
999         /* Start inner kernel loop */
1000         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1001         {
1002
1003             /* Get j neighbor index, and coordinate index */
1004             jnrA             = jjnr[jidx];
1005             jnrB             = jjnr[jidx+1];
1006             j_coord_offsetA  = DIM*jnrA;
1007             j_coord_offsetB  = DIM*jnrB;
1008
1009             /* load j atom coordinates */
1010             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1011                                               &jx0,&jy0,&jz0);
1012
1013             /* Calculate displacement vector */
1014             dx00             = _mm_sub_pd(ix0,jx0);
1015             dy00             = _mm_sub_pd(iy0,jy0);
1016             dz00             = _mm_sub_pd(iz0,jz0);
1017             dx10             = _mm_sub_pd(ix1,jx0);
1018             dy10             = _mm_sub_pd(iy1,jy0);
1019             dz10             = _mm_sub_pd(iz1,jz0);
1020             dx20             = _mm_sub_pd(ix2,jx0);
1021             dy20             = _mm_sub_pd(iy2,jy0);
1022             dz20             = _mm_sub_pd(iz2,jz0);
1023             dx30             = _mm_sub_pd(ix3,jx0);
1024             dy30             = _mm_sub_pd(iy3,jy0);
1025             dz30             = _mm_sub_pd(iz3,jz0);
1026
1027             /* Calculate squared distance and things based on it */
1028             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1029             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1030             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1031             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1032
1033             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1034             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1035             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1036             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1037
1038             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1039             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1040             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1041             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1042
1043             /* Load parameters for j particles */
1044             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
1045             vdwjidx0A        = 2*vdwtype[jnrA+0];
1046             vdwjidx0B        = 2*vdwtype[jnrB+0];
1047
1048             fjx0             = _mm_setzero_pd();
1049             fjy0             = _mm_setzero_pd();
1050             fjz0             = _mm_setzero_pd();
1051
1052             /**************************
1053              * CALCULATE INTERACTIONS *
1054              **************************/
1055
1056             if (gmx_mm_any_lt(rsq00,rcutoff2))
1057             {
1058
1059             r00              = _mm_mul_pd(rsq00,rinv00);
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1063                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1064
1065             /* LENNARD-JONES DISPERSION/REPULSION */
1066
1067             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1068             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1069             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1070             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1071             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1072
1073             d                = _mm_sub_pd(r00,rswitch);
1074             d                = _mm_max_pd(d,_mm_setzero_pd());
1075             d2               = _mm_mul_pd(d,d);
1076             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1077
1078             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1079
1080             /* Evaluate switch function */
1081             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1082             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1083             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1084
1085             fscal            = fvdw;
1086
1087             fscal            = _mm_and_pd(fscal,cutoff_mask);
1088
1089             /* Update vectorial force */
1090             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1091             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1092             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1093             
1094             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1095             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1096             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1097
1098             }
1099
1100             /**************************
1101              * CALCULATE INTERACTIONS *
1102              **************************/
1103
1104             if (gmx_mm_any_lt(rsq10,rcutoff2))
1105             {
1106
1107             r10              = _mm_mul_pd(rsq10,rinv10);
1108
1109             /* Compute parameters for interactions between i and j atoms */
1110             qq10             = _mm_mul_pd(iq1,jq0);
1111
1112             /* EWALD ELECTROSTATICS */
1113
1114             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1115             ewrt             = _mm_mul_pd(r10,ewtabscale);
1116             ewitab           = _mm_cvttpd_epi32(ewrt);
1117 #ifdef __XOP__
1118             eweps            = _mm_frcz_pd(ewrt);
1119 #else
1120             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1121 #endif
1122             twoeweps         = _mm_add_pd(eweps,eweps);
1123             ewitab           = _mm_slli_epi32(ewitab,2);
1124             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1125             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1126             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1127             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1128             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1129             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1130             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1131             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1132             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1133             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1134
1135             d                = _mm_sub_pd(r10,rswitch);
1136             d                = _mm_max_pd(d,_mm_setzero_pd());
1137             d2               = _mm_mul_pd(d,d);
1138             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1139
1140             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1141
1142             /* Evaluate switch function */
1143             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1144             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1145             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1146
1147             fscal            = felec;
1148
1149             fscal            = _mm_and_pd(fscal,cutoff_mask);
1150
1151             /* Update vectorial force */
1152             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1153             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1154             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1155             
1156             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1157             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1158             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1159
1160             }
1161
1162             /**************************
1163              * CALCULATE INTERACTIONS *
1164              **************************/
1165
1166             if (gmx_mm_any_lt(rsq20,rcutoff2))
1167             {
1168
1169             r20              = _mm_mul_pd(rsq20,rinv20);
1170
1171             /* Compute parameters for interactions between i and j atoms */
1172             qq20             = _mm_mul_pd(iq2,jq0);
1173
1174             /* EWALD ELECTROSTATICS */
1175
1176             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1177             ewrt             = _mm_mul_pd(r20,ewtabscale);
1178             ewitab           = _mm_cvttpd_epi32(ewrt);
1179 #ifdef __XOP__
1180             eweps            = _mm_frcz_pd(ewrt);
1181 #else
1182             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1183 #endif
1184             twoeweps         = _mm_add_pd(eweps,eweps);
1185             ewitab           = _mm_slli_epi32(ewitab,2);
1186             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1187             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1188             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1189             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1190             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1191             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1192             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1193             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1194             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1195             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1196
1197             d                = _mm_sub_pd(r20,rswitch);
1198             d                = _mm_max_pd(d,_mm_setzero_pd());
1199             d2               = _mm_mul_pd(d,d);
1200             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1201
1202             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1203
1204             /* Evaluate switch function */
1205             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1206             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1207             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1208
1209             fscal            = felec;
1210
1211             fscal            = _mm_and_pd(fscal,cutoff_mask);
1212
1213             /* Update vectorial force */
1214             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1215             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1216             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1217             
1218             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1219             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1220             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1221
1222             }
1223
1224             /**************************
1225              * CALCULATE INTERACTIONS *
1226              **************************/
1227
1228             if (gmx_mm_any_lt(rsq30,rcutoff2))
1229             {
1230
1231             r30              = _mm_mul_pd(rsq30,rinv30);
1232
1233             /* Compute parameters for interactions between i and j atoms */
1234             qq30             = _mm_mul_pd(iq3,jq0);
1235
1236             /* EWALD ELECTROSTATICS */
1237
1238             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1239             ewrt             = _mm_mul_pd(r30,ewtabscale);
1240             ewitab           = _mm_cvttpd_epi32(ewrt);
1241 #ifdef __XOP__
1242             eweps            = _mm_frcz_pd(ewrt);
1243 #else
1244             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1245 #endif
1246             twoeweps         = _mm_add_pd(eweps,eweps);
1247             ewitab           = _mm_slli_epi32(ewitab,2);
1248             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1249             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1250             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1251             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1252             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1253             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1254             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1255             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1256             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1257             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1258
1259             d                = _mm_sub_pd(r30,rswitch);
1260             d                = _mm_max_pd(d,_mm_setzero_pd());
1261             d2               = _mm_mul_pd(d,d);
1262             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1263
1264             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1265
1266             /* Evaluate switch function */
1267             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1268             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1269             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1270
1271             fscal            = felec;
1272
1273             fscal            = _mm_and_pd(fscal,cutoff_mask);
1274
1275             /* Update vectorial force */
1276             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1277             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1278             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1279             
1280             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1281             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1282             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1283
1284             }
1285
1286             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1287
1288             /* Inner loop uses 257 flops */
1289         }
1290
1291         if(jidx<j_index_end)
1292         {
1293
1294             jnrA             = jjnr[jidx];
1295             j_coord_offsetA  = DIM*jnrA;
1296
1297             /* load j atom coordinates */
1298             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1299                                               &jx0,&jy0,&jz0);
1300
1301             /* Calculate displacement vector */
1302             dx00             = _mm_sub_pd(ix0,jx0);
1303             dy00             = _mm_sub_pd(iy0,jy0);
1304             dz00             = _mm_sub_pd(iz0,jz0);
1305             dx10             = _mm_sub_pd(ix1,jx0);
1306             dy10             = _mm_sub_pd(iy1,jy0);
1307             dz10             = _mm_sub_pd(iz1,jz0);
1308             dx20             = _mm_sub_pd(ix2,jx0);
1309             dy20             = _mm_sub_pd(iy2,jy0);
1310             dz20             = _mm_sub_pd(iz2,jz0);
1311             dx30             = _mm_sub_pd(ix3,jx0);
1312             dy30             = _mm_sub_pd(iy3,jy0);
1313             dz30             = _mm_sub_pd(iz3,jz0);
1314
1315             /* Calculate squared distance and things based on it */
1316             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1317             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1318             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1319             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1320
1321             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1322             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1323             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1324             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1325
1326             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1327             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1328             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1329             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1330
1331             /* Load parameters for j particles */
1332             jq0              = _mm_load_sd(charge+jnrA+0);
1333             vdwjidx0A        = 2*vdwtype[jnrA+0];
1334
1335             fjx0             = _mm_setzero_pd();
1336             fjy0             = _mm_setzero_pd();
1337             fjz0             = _mm_setzero_pd();
1338
1339             /**************************
1340              * CALCULATE INTERACTIONS *
1341              **************************/
1342
1343             if (gmx_mm_any_lt(rsq00,rcutoff2))
1344             {
1345
1346             r00              = _mm_mul_pd(rsq00,rinv00);
1347
1348             /* Compute parameters for interactions between i and j atoms */
1349             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1350
1351             /* LENNARD-JONES DISPERSION/REPULSION */
1352
1353             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1354             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1355             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1356             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1357             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1358
1359             d                = _mm_sub_pd(r00,rswitch);
1360             d                = _mm_max_pd(d,_mm_setzero_pd());
1361             d2               = _mm_mul_pd(d,d);
1362             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1363
1364             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1365
1366             /* Evaluate switch function */
1367             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1368             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1369             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1370
1371             fscal            = fvdw;
1372
1373             fscal            = _mm_and_pd(fscal,cutoff_mask);
1374
1375             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1376
1377             /* Update vectorial force */
1378             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1379             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1380             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1381             
1382             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1383             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1384             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1385
1386             }
1387
1388             /**************************
1389              * CALCULATE INTERACTIONS *
1390              **************************/
1391
1392             if (gmx_mm_any_lt(rsq10,rcutoff2))
1393             {
1394
1395             r10              = _mm_mul_pd(rsq10,rinv10);
1396
1397             /* Compute parameters for interactions between i and j atoms */
1398             qq10             = _mm_mul_pd(iq1,jq0);
1399
1400             /* EWALD ELECTROSTATICS */
1401
1402             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1403             ewrt             = _mm_mul_pd(r10,ewtabscale);
1404             ewitab           = _mm_cvttpd_epi32(ewrt);
1405 #ifdef __XOP__
1406             eweps            = _mm_frcz_pd(ewrt);
1407 #else
1408             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1409 #endif
1410             twoeweps         = _mm_add_pd(eweps,eweps);
1411             ewitab           = _mm_slli_epi32(ewitab,2);
1412             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1413             ewtabD           = _mm_setzero_pd();
1414             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1415             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1416             ewtabFn          = _mm_setzero_pd();
1417             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1418             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1419             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1420             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1421             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1422
1423             d                = _mm_sub_pd(r10,rswitch);
1424             d                = _mm_max_pd(d,_mm_setzero_pd());
1425             d2               = _mm_mul_pd(d,d);
1426             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1427
1428             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1429
1430             /* Evaluate switch function */
1431             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1432             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1433             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1434
1435             fscal            = felec;
1436
1437             fscal            = _mm_and_pd(fscal,cutoff_mask);
1438
1439             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1440
1441             /* Update vectorial force */
1442             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1443             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1444             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1445             
1446             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1447             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1448             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1449
1450             }
1451
1452             /**************************
1453              * CALCULATE INTERACTIONS *
1454              **************************/
1455
1456             if (gmx_mm_any_lt(rsq20,rcutoff2))
1457             {
1458
1459             r20              = _mm_mul_pd(rsq20,rinv20);
1460
1461             /* Compute parameters for interactions between i and j atoms */
1462             qq20             = _mm_mul_pd(iq2,jq0);
1463
1464             /* EWALD ELECTROSTATICS */
1465
1466             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1467             ewrt             = _mm_mul_pd(r20,ewtabscale);
1468             ewitab           = _mm_cvttpd_epi32(ewrt);
1469 #ifdef __XOP__
1470             eweps            = _mm_frcz_pd(ewrt);
1471 #else
1472             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1473 #endif
1474             twoeweps         = _mm_add_pd(eweps,eweps);
1475             ewitab           = _mm_slli_epi32(ewitab,2);
1476             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1477             ewtabD           = _mm_setzero_pd();
1478             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1479             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1480             ewtabFn          = _mm_setzero_pd();
1481             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1482             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1483             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1484             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1485             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1486
1487             d                = _mm_sub_pd(r20,rswitch);
1488             d                = _mm_max_pd(d,_mm_setzero_pd());
1489             d2               = _mm_mul_pd(d,d);
1490             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1491
1492             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1493
1494             /* Evaluate switch function */
1495             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1496             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1497             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1498
1499             fscal            = felec;
1500
1501             fscal            = _mm_and_pd(fscal,cutoff_mask);
1502
1503             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1504
1505             /* Update vectorial force */
1506             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1507             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1508             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1509             
1510             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1511             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1512             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1513
1514             }
1515
1516             /**************************
1517              * CALCULATE INTERACTIONS *
1518              **************************/
1519
1520             if (gmx_mm_any_lt(rsq30,rcutoff2))
1521             {
1522
1523             r30              = _mm_mul_pd(rsq30,rinv30);
1524
1525             /* Compute parameters for interactions between i and j atoms */
1526             qq30             = _mm_mul_pd(iq3,jq0);
1527
1528             /* EWALD ELECTROSTATICS */
1529
1530             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1531             ewrt             = _mm_mul_pd(r30,ewtabscale);
1532             ewitab           = _mm_cvttpd_epi32(ewrt);
1533 #ifdef __XOP__
1534             eweps            = _mm_frcz_pd(ewrt);
1535 #else
1536             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1537 #endif
1538             twoeweps         = _mm_add_pd(eweps,eweps);
1539             ewitab           = _mm_slli_epi32(ewitab,2);
1540             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1541             ewtabD           = _mm_setzero_pd();
1542             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1543             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1544             ewtabFn          = _mm_setzero_pd();
1545             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1546             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1547             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1548             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1549             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1550
1551             d                = _mm_sub_pd(r30,rswitch);
1552             d                = _mm_max_pd(d,_mm_setzero_pd());
1553             d2               = _mm_mul_pd(d,d);
1554             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1555
1556             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1557
1558             /* Evaluate switch function */
1559             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1560             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1561             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1562
1563             fscal            = felec;
1564
1565             fscal            = _mm_and_pd(fscal,cutoff_mask);
1566
1567             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1568
1569             /* Update vectorial force */
1570             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1571             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1572             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1573             
1574             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1575             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1576             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1577
1578             }
1579
1580             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1581
1582             /* Inner loop uses 257 flops */
1583         }
1584
1585         /* End of innermost loop */
1586
1587         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1588                                               f+i_coord_offset,fshift+i_shift_offset);
1589
1590         /* Increment number of inner iterations */
1591         inneriter                  += j_index_end - j_index_start;
1592
1593         /* Outer loop uses 24 flops */
1594     }
1595
1596     /* Increment number of outer iterations */
1597     outeriter        += nri;
1598
1599     /* Update outer/inner flops */
1600
1601     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*257);
1602 }