Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          ewitab;
105     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
108     real             rswitch_scalar,d_scalar;
109     __m128d          dummy_mask,cutoff_mask;
110     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
111     __m128d          one     = _mm_set1_pd(1.0);
112     __m128d          two     = _mm_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
131     ewtab            = fr->ic->tabq_coul_FDV0;
132     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
133     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
138     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
139     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
143     rcutoff_scalar   = fr->rcoulomb;
144     rcutoff          = _mm_set1_pd(rcutoff_scalar);
145     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
146
147     rswitch_scalar   = fr->rcoulomb_switch;
148     rswitch          = _mm_set1_pd(rswitch_scalar);
149     /* Setup switch parameters */
150     d_scalar         = rcutoff_scalar-rswitch_scalar;
151     d                = _mm_set1_pd(d_scalar);
152     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
153     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
154     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
155     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
156     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
157     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
158
159     /* Avoid stupid compiler warnings */
160     jnrA = jnrB = 0;
161     j_coord_offsetA = 0;
162     j_coord_offsetB = 0;
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     /* Start outer loop over neighborlists */
168     for(iidx=0; iidx<nri; iidx++)
169     {
170         /* Load shift vector for this list */
171         i_shift_offset   = DIM*shiftidx[iidx];
172
173         /* Load limits for loop over neighbors */
174         j_index_start    = jindex[iidx];
175         j_index_end      = jindex[iidx+1];
176
177         /* Get outer coordinate index */
178         inr              = iinr[iidx];
179         i_coord_offset   = DIM*inr;
180
181         /* Load i particle coords and add shift vector */
182         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
183                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
184
185         fix0             = _mm_setzero_pd();
186         fiy0             = _mm_setzero_pd();
187         fiz0             = _mm_setzero_pd();
188         fix1             = _mm_setzero_pd();
189         fiy1             = _mm_setzero_pd();
190         fiz1             = _mm_setzero_pd();
191         fix2             = _mm_setzero_pd();
192         fiy2             = _mm_setzero_pd();
193         fiz2             = _mm_setzero_pd();
194         fix3             = _mm_setzero_pd();
195         fiy3             = _mm_setzero_pd();
196         fiz3             = _mm_setzero_pd();
197
198         /* Reset potential sums */
199         velecsum         = _mm_setzero_pd();
200         vvdwsum          = _mm_setzero_pd();
201
202         /* Start inner kernel loop */
203         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
204         {
205
206             /* Get j neighbor index, and coordinate index */
207             jnrA             = jjnr[jidx];
208             jnrB             = jjnr[jidx+1];
209             j_coord_offsetA  = DIM*jnrA;
210             j_coord_offsetB  = DIM*jnrB;
211
212             /* load j atom coordinates */
213             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
214                                               &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm_sub_pd(ix0,jx0);
218             dy00             = _mm_sub_pd(iy0,jy0);
219             dz00             = _mm_sub_pd(iz0,jz0);
220             dx10             = _mm_sub_pd(ix1,jx0);
221             dy10             = _mm_sub_pd(iy1,jy0);
222             dz10             = _mm_sub_pd(iz1,jz0);
223             dx20             = _mm_sub_pd(ix2,jx0);
224             dy20             = _mm_sub_pd(iy2,jy0);
225             dz20             = _mm_sub_pd(iz2,jz0);
226             dx30             = _mm_sub_pd(ix3,jx0);
227             dy30             = _mm_sub_pd(iy3,jy0);
228             dz30             = _mm_sub_pd(iz3,jz0);
229
230             /* Calculate squared distance and things based on it */
231             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
232             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
233             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
234             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
235
236             rinv00           = gmx_mm_invsqrt_pd(rsq00);
237             rinv10           = gmx_mm_invsqrt_pd(rsq10);
238             rinv20           = gmx_mm_invsqrt_pd(rsq20);
239             rinv30           = gmx_mm_invsqrt_pd(rsq30);
240
241             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
242             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
243             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
244             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
245
246             /* Load parameters for j particles */
247             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
248             vdwjidx0A        = 2*vdwtype[jnrA+0];
249             vdwjidx0B        = 2*vdwtype[jnrB+0];
250
251             fjx0             = _mm_setzero_pd();
252             fjy0             = _mm_setzero_pd();
253             fjz0             = _mm_setzero_pd();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             if (gmx_mm_any_lt(rsq00,rcutoff2))
260             {
261
262             r00              = _mm_mul_pd(rsq00,rinv00);
263
264             /* Compute parameters for interactions between i and j atoms */
265             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
266                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
267
268             /* LENNARD-JONES DISPERSION/REPULSION */
269
270             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
271             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
272             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
273             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
274             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
275
276             d                = _mm_sub_pd(r00,rswitch);
277             d                = _mm_max_pd(d,_mm_setzero_pd());
278             d2               = _mm_mul_pd(d,d);
279             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
280
281             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
282
283             /* Evaluate switch function */
284             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
285             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
286             vvdw             = _mm_mul_pd(vvdw,sw);
287             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
291             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
292
293             fscal            = fvdw;
294
295             fscal            = _mm_and_pd(fscal,cutoff_mask);
296
297             /* Update vectorial force */
298             fix0             = _mm_macc_pd(dx00,fscal,fix0);
299             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
300             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
301             
302             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
303             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
304             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
305
306             }
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (gmx_mm_any_lt(rsq10,rcutoff2))
313             {
314
315             r10              = _mm_mul_pd(rsq10,rinv10);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq10             = _mm_mul_pd(iq1,jq0);
319
320             /* EWALD ELECTROSTATICS */
321
322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
323             ewrt             = _mm_mul_pd(r10,ewtabscale);
324             ewitab           = _mm_cvttpd_epi32(ewrt);
325 #ifdef __XOP__
326             eweps            = _mm_frcz_pd(ewrt);
327 #else
328             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
329 #endif
330             twoeweps         = _mm_add_pd(eweps,eweps);
331             ewitab           = _mm_slli_epi32(ewitab,2);
332             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
333             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
334             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
335             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
336             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
337             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
338             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
339             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
340             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
341             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
342
343             d                = _mm_sub_pd(r10,rswitch);
344             d                = _mm_max_pd(d,_mm_setzero_pd());
345             d2               = _mm_mul_pd(d,d);
346             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
347
348             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
349
350             /* Evaluate switch function */
351             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
352             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
353             velec            = _mm_mul_pd(velec,sw);
354             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velec            = _mm_and_pd(velec,cutoff_mask);
358             velecsum         = _mm_add_pd(velecsum,velec);
359
360             fscal            = felec;
361
362             fscal            = _mm_and_pd(fscal,cutoff_mask);
363
364             /* Update vectorial force */
365             fix1             = _mm_macc_pd(dx10,fscal,fix1);
366             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
367             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
368             
369             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
370             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
371             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
372
373             }
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             if (gmx_mm_any_lt(rsq20,rcutoff2))
380             {
381
382             r20              = _mm_mul_pd(rsq20,rinv20);
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq20             = _mm_mul_pd(iq2,jq0);
386
387             /* EWALD ELECTROSTATICS */
388
389             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
390             ewrt             = _mm_mul_pd(r20,ewtabscale);
391             ewitab           = _mm_cvttpd_epi32(ewrt);
392 #ifdef __XOP__
393             eweps            = _mm_frcz_pd(ewrt);
394 #else
395             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
396 #endif
397             twoeweps         = _mm_add_pd(eweps,eweps);
398             ewitab           = _mm_slli_epi32(ewitab,2);
399             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
400             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
401             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
402             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
403             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
404             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
405             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
406             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
407             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
408             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
409
410             d                = _mm_sub_pd(r20,rswitch);
411             d                = _mm_max_pd(d,_mm_setzero_pd());
412             d2               = _mm_mul_pd(d,d);
413             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
414
415             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
416
417             /* Evaluate switch function */
418             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
419             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
420             velec            = _mm_mul_pd(velec,sw);
421             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
422
423             /* Update potential sum for this i atom from the interaction with this j atom. */
424             velec            = _mm_and_pd(velec,cutoff_mask);
425             velecsum         = _mm_add_pd(velecsum,velec);
426
427             fscal            = felec;
428
429             fscal            = _mm_and_pd(fscal,cutoff_mask);
430
431             /* Update vectorial force */
432             fix2             = _mm_macc_pd(dx20,fscal,fix2);
433             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
434             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
435             
436             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
437             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
438             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
439
440             }
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             if (gmx_mm_any_lt(rsq30,rcutoff2))
447             {
448
449             r30              = _mm_mul_pd(rsq30,rinv30);
450
451             /* Compute parameters for interactions between i and j atoms */
452             qq30             = _mm_mul_pd(iq3,jq0);
453
454             /* EWALD ELECTROSTATICS */
455
456             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
457             ewrt             = _mm_mul_pd(r30,ewtabscale);
458             ewitab           = _mm_cvttpd_epi32(ewrt);
459 #ifdef __XOP__
460             eweps            = _mm_frcz_pd(ewrt);
461 #else
462             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
463 #endif
464             twoeweps         = _mm_add_pd(eweps,eweps);
465             ewitab           = _mm_slli_epi32(ewitab,2);
466             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
467             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
468             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
469             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
470             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
471             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
472             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
473             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
474             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
475             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
476
477             d                = _mm_sub_pd(r30,rswitch);
478             d                = _mm_max_pd(d,_mm_setzero_pd());
479             d2               = _mm_mul_pd(d,d);
480             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
481
482             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
483
484             /* Evaluate switch function */
485             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
486             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
487             velec            = _mm_mul_pd(velec,sw);
488             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
489
490             /* Update potential sum for this i atom from the interaction with this j atom. */
491             velec            = _mm_and_pd(velec,cutoff_mask);
492             velecsum         = _mm_add_pd(velecsum,velec);
493
494             fscal            = felec;
495
496             fscal            = _mm_and_pd(fscal,cutoff_mask);
497
498             /* Update vectorial force */
499             fix3             = _mm_macc_pd(dx30,fscal,fix3);
500             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
501             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
502             
503             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
504             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
505             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
506
507             }
508
509             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
510
511             /* Inner loop uses 269 flops */
512         }
513
514         if(jidx<j_index_end)
515         {
516
517             jnrA             = jjnr[jidx];
518             j_coord_offsetA  = DIM*jnrA;
519
520             /* load j atom coordinates */
521             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
522                                               &jx0,&jy0,&jz0);
523
524             /* Calculate displacement vector */
525             dx00             = _mm_sub_pd(ix0,jx0);
526             dy00             = _mm_sub_pd(iy0,jy0);
527             dz00             = _mm_sub_pd(iz0,jz0);
528             dx10             = _mm_sub_pd(ix1,jx0);
529             dy10             = _mm_sub_pd(iy1,jy0);
530             dz10             = _mm_sub_pd(iz1,jz0);
531             dx20             = _mm_sub_pd(ix2,jx0);
532             dy20             = _mm_sub_pd(iy2,jy0);
533             dz20             = _mm_sub_pd(iz2,jz0);
534             dx30             = _mm_sub_pd(ix3,jx0);
535             dy30             = _mm_sub_pd(iy3,jy0);
536             dz30             = _mm_sub_pd(iz3,jz0);
537
538             /* Calculate squared distance and things based on it */
539             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
540             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
541             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
542             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
543
544             rinv00           = gmx_mm_invsqrt_pd(rsq00);
545             rinv10           = gmx_mm_invsqrt_pd(rsq10);
546             rinv20           = gmx_mm_invsqrt_pd(rsq20);
547             rinv30           = gmx_mm_invsqrt_pd(rsq30);
548
549             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
550             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
551             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
552             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
553
554             /* Load parameters for j particles */
555             jq0              = _mm_load_sd(charge+jnrA+0);
556             vdwjidx0A        = 2*vdwtype[jnrA+0];
557
558             fjx0             = _mm_setzero_pd();
559             fjy0             = _mm_setzero_pd();
560             fjz0             = _mm_setzero_pd();
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             if (gmx_mm_any_lt(rsq00,rcutoff2))
567             {
568
569             r00              = _mm_mul_pd(rsq00,rinv00);
570
571             /* Compute parameters for interactions between i and j atoms */
572             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
573
574             /* LENNARD-JONES DISPERSION/REPULSION */
575
576             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
577             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
578             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
579             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
580             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
581
582             d                = _mm_sub_pd(r00,rswitch);
583             d                = _mm_max_pd(d,_mm_setzero_pd());
584             d2               = _mm_mul_pd(d,d);
585             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
586
587             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
588
589             /* Evaluate switch function */
590             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
591             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
592             vvdw             = _mm_mul_pd(vvdw,sw);
593             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
594
595             /* Update potential sum for this i atom from the interaction with this j atom. */
596             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
597             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
598             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
599
600             fscal            = fvdw;
601
602             fscal            = _mm_and_pd(fscal,cutoff_mask);
603
604             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
605
606             /* Update vectorial force */
607             fix0             = _mm_macc_pd(dx00,fscal,fix0);
608             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
609             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
610             
611             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
612             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
613             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
614
615             }
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             if (gmx_mm_any_lt(rsq10,rcutoff2))
622             {
623
624             r10              = _mm_mul_pd(rsq10,rinv10);
625
626             /* Compute parameters for interactions between i and j atoms */
627             qq10             = _mm_mul_pd(iq1,jq0);
628
629             /* EWALD ELECTROSTATICS */
630
631             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
632             ewrt             = _mm_mul_pd(r10,ewtabscale);
633             ewitab           = _mm_cvttpd_epi32(ewrt);
634 #ifdef __XOP__
635             eweps            = _mm_frcz_pd(ewrt);
636 #else
637             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
638 #endif
639             twoeweps         = _mm_add_pd(eweps,eweps);
640             ewitab           = _mm_slli_epi32(ewitab,2);
641             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
642             ewtabD           = _mm_setzero_pd();
643             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
644             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
645             ewtabFn          = _mm_setzero_pd();
646             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
647             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
648             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
649             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
650             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
651
652             d                = _mm_sub_pd(r10,rswitch);
653             d                = _mm_max_pd(d,_mm_setzero_pd());
654             d2               = _mm_mul_pd(d,d);
655             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
656
657             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
658
659             /* Evaluate switch function */
660             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
661             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
662             velec            = _mm_mul_pd(velec,sw);
663             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
664
665             /* Update potential sum for this i atom from the interaction with this j atom. */
666             velec            = _mm_and_pd(velec,cutoff_mask);
667             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
668             velecsum         = _mm_add_pd(velecsum,velec);
669
670             fscal            = felec;
671
672             fscal            = _mm_and_pd(fscal,cutoff_mask);
673
674             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
675
676             /* Update vectorial force */
677             fix1             = _mm_macc_pd(dx10,fscal,fix1);
678             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
679             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
680             
681             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
682             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
683             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
684
685             }
686
687             /**************************
688              * CALCULATE INTERACTIONS *
689              **************************/
690
691             if (gmx_mm_any_lt(rsq20,rcutoff2))
692             {
693
694             r20              = _mm_mul_pd(rsq20,rinv20);
695
696             /* Compute parameters for interactions between i and j atoms */
697             qq20             = _mm_mul_pd(iq2,jq0);
698
699             /* EWALD ELECTROSTATICS */
700
701             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
702             ewrt             = _mm_mul_pd(r20,ewtabscale);
703             ewitab           = _mm_cvttpd_epi32(ewrt);
704 #ifdef __XOP__
705             eweps            = _mm_frcz_pd(ewrt);
706 #else
707             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
708 #endif
709             twoeweps         = _mm_add_pd(eweps,eweps);
710             ewitab           = _mm_slli_epi32(ewitab,2);
711             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
712             ewtabD           = _mm_setzero_pd();
713             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
714             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
715             ewtabFn          = _mm_setzero_pd();
716             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
717             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
718             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
719             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
720             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
721
722             d                = _mm_sub_pd(r20,rswitch);
723             d                = _mm_max_pd(d,_mm_setzero_pd());
724             d2               = _mm_mul_pd(d,d);
725             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
726
727             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
728
729             /* Evaluate switch function */
730             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
731             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
732             velec            = _mm_mul_pd(velec,sw);
733             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
734
735             /* Update potential sum for this i atom from the interaction with this j atom. */
736             velec            = _mm_and_pd(velec,cutoff_mask);
737             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
738             velecsum         = _mm_add_pd(velecsum,velec);
739
740             fscal            = felec;
741
742             fscal            = _mm_and_pd(fscal,cutoff_mask);
743
744             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
745
746             /* Update vectorial force */
747             fix2             = _mm_macc_pd(dx20,fscal,fix2);
748             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
749             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
750             
751             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
752             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
753             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
754
755             }
756
757             /**************************
758              * CALCULATE INTERACTIONS *
759              **************************/
760
761             if (gmx_mm_any_lt(rsq30,rcutoff2))
762             {
763
764             r30              = _mm_mul_pd(rsq30,rinv30);
765
766             /* Compute parameters for interactions between i and j atoms */
767             qq30             = _mm_mul_pd(iq3,jq0);
768
769             /* EWALD ELECTROSTATICS */
770
771             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
772             ewrt             = _mm_mul_pd(r30,ewtabscale);
773             ewitab           = _mm_cvttpd_epi32(ewrt);
774 #ifdef __XOP__
775             eweps            = _mm_frcz_pd(ewrt);
776 #else
777             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
778 #endif
779             twoeweps         = _mm_add_pd(eweps,eweps);
780             ewitab           = _mm_slli_epi32(ewitab,2);
781             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
782             ewtabD           = _mm_setzero_pd();
783             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
784             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
785             ewtabFn          = _mm_setzero_pd();
786             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
787             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
788             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
789             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
790             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
791
792             d                = _mm_sub_pd(r30,rswitch);
793             d                = _mm_max_pd(d,_mm_setzero_pd());
794             d2               = _mm_mul_pd(d,d);
795             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
796
797             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
798
799             /* Evaluate switch function */
800             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
801             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
802             velec            = _mm_mul_pd(velec,sw);
803             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
804
805             /* Update potential sum for this i atom from the interaction with this j atom. */
806             velec            = _mm_and_pd(velec,cutoff_mask);
807             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
808             velecsum         = _mm_add_pd(velecsum,velec);
809
810             fscal            = felec;
811
812             fscal            = _mm_and_pd(fscal,cutoff_mask);
813
814             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
815
816             /* Update vectorial force */
817             fix3             = _mm_macc_pd(dx30,fscal,fix3);
818             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
819             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
820             
821             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
822             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
823             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
824
825             }
826
827             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
828
829             /* Inner loop uses 269 flops */
830         }
831
832         /* End of innermost loop */
833
834         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
835                                               f+i_coord_offset,fshift+i_shift_offset);
836
837         ggid                        = gid[iidx];
838         /* Update potential energies */
839         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
840         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
841
842         /* Increment number of inner iterations */
843         inneriter                  += j_index_end - j_index_start;
844
845         /* Outer loop uses 26 flops */
846     }
847
848     /* Increment number of outer iterations */
849     outeriter        += nri;
850
851     /* Update outer/inner flops */
852
853     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*269);
854 }
855 /*
856  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_double
857  * Electrostatics interaction: Ewald
858  * VdW interaction:            LennardJones
859  * Geometry:                   Water4-Particle
860  * Calculate force/pot:        Force
861  */
862 void
863 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_avx_128_fma_double
864                     (t_nblist                    * gmx_restrict       nlist,
865                      rvec                        * gmx_restrict          xx,
866                      rvec                        * gmx_restrict          ff,
867                      t_forcerec                  * gmx_restrict          fr,
868                      t_mdatoms                   * gmx_restrict     mdatoms,
869                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
870                      t_nrnb                      * gmx_restrict        nrnb)
871 {
872     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
873      * just 0 for non-waters.
874      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
875      * jnr indices corresponding to data put in the four positions in the SIMD register.
876      */
877     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
878     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
879     int              jnrA,jnrB;
880     int              j_coord_offsetA,j_coord_offsetB;
881     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
882     real             rcutoff_scalar;
883     real             *shiftvec,*fshift,*x,*f;
884     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
885     int              vdwioffset0;
886     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
887     int              vdwioffset1;
888     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
889     int              vdwioffset2;
890     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
891     int              vdwioffset3;
892     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
893     int              vdwjidx0A,vdwjidx0B;
894     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
895     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
896     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
897     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
898     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
899     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
900     real             *charge;
901     int              nvdwtype;
902     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
903     int              *vdwtype;
904     real             *vdwparam;
905     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
906     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
907     __m128i          ewitab;
908     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
909     real             *ewtab;
910     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
911     real             rswitch_scalar,d_scalar;
912     __m128d          dummy_mask,cutoff_mask;
913     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
914     __m128d          one     = _mm_set1_pd(1.0);
915     __m128d          two     = _mm_set1_pd(2.0);
916     x                = xx[0];
917     f                = ff[0];
918
919     nri              = nlist->nri;
920     iinr             = nlist->iinr;
921     jindex           = nlist->jindex;
922     jjnr             = nlist->jjnr;
923     shiftidx         = nlist->shift;
924     gid              = nlist->gid;
925     shiftvec         = fr->shift_vec[0];
926     fshift           = fr->fshift[0];
927     facel            = _mm_set1_pd(fr->epsfac);
928     charge           = mdatoms->chargeA;
929     nvdwtype         = fr->ntype;
930     vdwparam         = fr->nbfp;
931     vdwtype          = mdatoms->typeA;
932
933     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
934     ewtab            = fr->ic->tabq_coul_FDV0;
935     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
936     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
937
938     /* Setup water-specific parameters */
939     inr              = nlist->iinr[0];
940     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
941     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
942     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
943     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
944
945     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
946     rcutoff_scalar   = fr->rcoulomb;
947     rcutoff          = _mm_set1_pd(rcutoff_scalar);
948     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
949
950     rswitch_scalar   = fr->rcoulomb_switch;
951     rswitch          = _mm_set1_pd(rswitch_scalar);
952     /* Setup switch parameters */
953     d_scalar         = rcutoff_scalar-rswitch_scalar;
954     d                = _mm_set1_pd(d_scalar);
955     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
956     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
957     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
958     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
959     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
960     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
961
962     /* Avoid stupid compiler warnings */
963     jnrA = jnrB = 0;
964     j_coord_offsetA = 0;
965     j_coord_offsetB = 0;
966
967     outeriter        = 0;
968     inneriter        = 0;
969
970     /* Start outer loop over neighborlists */
971     for(iidx=0; iidx<nri; iidx++)
972     {
973         /* Load shift vector for this list */
974         i_shift_offset   = DIM*shiftidx[iidx];
975
976         /* Load limits for loop over neighbors */
977         j_index_start    = jindex[iidx];
978         j_index_end      = jindex[iidx+1];
979
980         /* Get outer coordinate index */
981         inr              = iinr[iidx];
982         i_coord_offset   = DIM*inr;
983
984         /* Load i particle coords and add shift vector */
985         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
986                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
987
988         fix0             = _mm_setzero_pd();
989         fiy0             = _mm_setzero_pd();
990         fiz0             = _mm_setzero_pd();
991         fix1             = _mm_setzero_pd();
992         fiy1             = _mm_setzero_pd();
993         fiz1             = _mm_setzero_pd();
994         fix2             = _mm_setzero_pd();
995         fiy2             = _mm_setzero_pd();
996         fiz2             = _mm_setzero_pd();
997         fix3             = _mm_setzero_pd();
998         fiy3             = _mm_setzero_pd();
999         fiz3             = _mm_setzero_pd();
1000
1001         /* Start inner kernel loop */
1002         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1003         {
1004
1005             /* Get j neighbor index, and coordinate index */
1006             jnrA             = jjnr[jidx];
1007             jnrB             = jjnr[jidx+1];
1008             j_coord_offsetA  = DIM*jnrA;
1009             j_coord_offsetB  = DIM*jnrB;
1010
1011             /* load j atom coordinates */
1012             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1013                                               &jx0,&jy0,&jz0);
1014
1015             /* Calculate displacement vector */
1016             dx00             = _mm_sub_pd(ix0,jx0);
1017             dy00             = _mm_sub_pd(iy0,jy0);
1018             dz00             = _mm_sub_pd(iz0,jz0);
1019             dx10             = _mm_sub_pd(ix1,jx0);
1020             dy10             = _mm_sub_pd(iy1,jy0);
1021             dz10             = _mm_sub_pd(iz1,jz0);
1022             dx20             = _mm_sub_pd(ix2,jx0);
1023             dy20             = _mm_sub_pd(iy2,jy0);
1024             dz20             = _mm_sub_pd(iz2,jz0);
1025             dx30             = _mm_sub_pd(ix3,jx0);
1026             dy30             = _mm_sub_pd(iy3,jy0);
1027             dz30             = _mm_sub_pd(iz3,jz0);
1028
1029             /* Calculate squared distance and things based on it */
1030             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1031             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1032             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1033             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1034
1035             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1036             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1037             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1038             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1039
1040             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1041             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1042             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1043             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1044
1045             /* Load parameters for j particles */
1046             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
1047             vdwjidx0A        = 2*vdwtype[jnrA+0];
1048             vdwjidx0B        = 2*vdwtype[jnrB+0];
1049
1050             fjx0             = _mm_setzero_pd();
1051             fjy0             = _mm_setzero_pd();
1052             fjz0             = _mm_setzero_pd();
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             if (gmx_mm_any_lt(rsq00,rcutoff2))
1059             {
1060
1061             r00              = _mm_mul_pd(rsq00,rinv00);
1062
1063             /* Compute parameters for interactions between i and j atoms */
1064             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
1065                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
1066
1067             /* LENNARD-JONES DISPERSION/REPULSION */
1068
1069             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1070             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1071             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1072             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1073             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1074
1075             d                = _mm_sub_pd(r00,rswitch);
1076             d                = _mm_max_pd(d,_mm_setzero_pd());
1077             d2               = _mm_mul_pd(d,d);
1078             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1079
1080             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1081
1082             /* Evaluate switch function */
1083             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1084             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1085             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1086
1087             fscal            = fvdw;
1088
1089             fscal            = _mm_and_pd(fscal,cutoff_mask);
1090
1091             /* Update vectorial force */
1092             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1093             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1094             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1095             
1096             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1097             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1098             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1099
1100             }
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             if (gmx_mm_any_lt(rsq10,rcutoff2))
1107             {
1108
1109             r10              = _mm_mul_pd(rsq10,rinv10);
1110
1111             /* Compute parameters for interactions between i and j atoms */
1112             qq10             = _mm_mul_pd(iq1,jq0);
1113
1114             /* EWALD ELECTROSTATICS */
1115
1116             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1117             ewrt             = _mm_mul_pd(r10,ewtabscale);
1118             ewitab           = _mm_cvttpd_epi32(ewrt);
1119 #ifdef __XOP__
1120             eweps            = _mm_frcz_pd(ewrt);
1121 #else
1122             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1123 #endif
1124             twoeweps         = _mm_add_pd(eweps,eweps);
1125             ewitab           = _mm_slli_epi32(ewitab,2);
1126             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1127             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1128             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1129             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1130             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1131             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1132             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1133             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1134             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1135             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1136
1137             d                = _mm_sub_pd(r10,rswitch);
1138             d                = _mm_max_pd(d,_mm_setzero_pd());
1139             d2               = _mm_mul_pd(d,d);
1140             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1141
1142             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1143
1144             /* Evaluate switch function */
1145             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1146             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1147             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1148
1149             fscal            = felec;
1150
1151             fscal            = _mm_and_pd(fscal,cutoff_mask);
1152
1153             /* Update vectorial force */
1154             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1155             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1156             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1157             
1158             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1159             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1160             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1161
1162             }
1163
1164             /**************************
1165              * CALCULATE INTERACTIONS *
1166              **************************/
1167
1168             if (gmx_mm_any_lt(rsq20,rcutoff2))
1169             {
1170
1171             r20              = _mm_mul_pd(rsq20,rinv20);
1172
1173             /* Compute parameters for interactions between i and j atoms */
1174             qq20             = _mm_mul_pd(iq2,jq0);
1175
1176             /* EWALD ELECTROSTATICS */
1177
1178             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1179             ewrt             = _mm_mul_pd(r20,ewtabscale);
1180             ewitab           = _mm_cvttpd_epi32(ewrt);
1181 #ifdef __XOP__
1182             eweps            = _mm_frcz_pd(ewrt);
1183 #else
1184             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1185 #endif
1186             twoeweps         = _mm_add_pd(eweps,eweps);
1187             ewitab           = _mm_slli_epi32(ewitab,2);
1188             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1189             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1190             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1191             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1192             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1193             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1194             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1195             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1196             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1197             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1198
1199             d                = _mm_sub_pd(r20,rswitch);
1200             d                = _mm_max_pd(d,_mm_setzero_pd());
1201             d2               = _mm_mul_pd(d,d);
1202             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1203
1204             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1205
1206             /* Evaluate switch function */
1207             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1208             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1209             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1210
1211             fscal            = felec;
1212
1213             fscal            = _mm_and_pd(fscal,cutoff_mask);
1214
1215             /* Update vectorial force */
1216             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1217             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1218             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1219             
1220             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1221             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1222             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1223
1224             }
1225
1226             /**************************
1227              * CALCULATE INTERACTIONS *
1228              **************************/
1229
1230             if (gmx_mm_any_lt(rsq30,rcutoff2))
1231             {
1232
1233             r30              = _mm_mul_pd(rsq30,rinv30);
1234
1235             /* Compute parameters for interactions between i and j atoms */
1236             qq30             = _mm_mul_pd(iq3,jq0);
1237
1238             /* EWALD ELECTROSTATICS */
1239
1240             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1241             ewrt             = _mm_mul_pd(r30,ewtabscale);
1242             ewitab           = _mm_cvttpd_epi32(ewrt);
1243 #ifdef __XOP__
1244             eweps            = _mm_frcz_pd(ewrt);
1245 #else
1246             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1247 #endif
1248             twoeweps         = _mm_add_pd(eweps,eweps);
1249             ewitab           = _mm_slli_epi32(ewitab,2);
1250             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1251             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1252             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1253             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1254             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1255             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1256             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1257             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1258             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1259             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1260
1261             d                = _mm_sub_pd(r30,rswitch);
1262             d                = _mm_max_pd(d,_mm_setzero_pd());
1263             d2               = _mm_mul_pd(d,d);
1264             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1265
1266             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1267
1268             /* Evaluate switch function */
1269             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1270             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1271             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1272
1273             fscal            = felec;
1274
1275             fscal            = _mm_and_pd(fscal,cutoff_mask);
1276
1277             /* Update vectorial force */
1278             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1279             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1280             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1281             
1282             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1283             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1284             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1285
1286             }
1287
1288             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1289
1290             /* Inner loop uses 257 flops */
1291         }
1292
1293         if(jidx<j_index_end)
1294         {
1295
1296             jnrA             = jjnr[jidx];
1297             j_coord_offsetA  = DIM*jnrA;
1298
1299             /* load j atom coordinates */
1300             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1301                                               &jx0,&jy0,&jz0);
1302
1303             /* Calculate displacement vector */
1304             dx00             = _mm_sub_pd(ix0,jx0);
1305             dy00             = _mm_sub_pd(iy0,jy0);
1306             dz00             = _mm_sub_pd(iz0,jz0);
1307             dx10             = _mm_sub_pd(ix1,jx0);
1308             dy10             = _mm_sub_pd(iy1,jy0);
1309             dz10             = _mm_sub_pd(iz1,jz0);
1310             dx20             = _mm_sub_pd(ix2,jx0);
1311             dy20             = _mm_sub_pd(iy2,jy0);
1312             dz20             = _mm_sub_pd(iz2,jz0);
1313             dx30             = _mm_sub_pd(ix3,jx0);
1314             dy30             = _mm_sub_pd(iy3,jy0);
1315             dz30             = _mm_sub_pd(iz3,jz0);
1316
1317             /* Calculate squared distance and things based on it */
1318             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1319             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1320             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1321             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1322
1323             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1324             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1325             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1326             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1327
1328             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1329             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1330             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1331             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1332
1333             /* Load parameters for j particles */
1334             jq0              = _mm_load_sd(charge+jnrA+0);
1335             vdwjidx0A        = 2*vdwtype[jnrA+0];
1336
1337             fjx0             = _mm_setzero_pd();
1338             fjy0             = _mm_setzero_pd();
1339             fjz0             = _mm_setzero_pd();
1340
1341             /**************************
1342              * CALCULATE INTERACTIONS *
1343              **************************/
1344
1345             if (gmx_mm_any_lt(rsq00,rcutoff2))
1346             {
1347
1348             r00              = _mm_mul_pd(rsq00,rinv00);
1349
1350             /* Compute parameters for interactions between i and j atoms */
1351             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1352
1353             /* LENNARD-JONES DISPERSION/REPULSION */
1354
1355             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1356             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1357             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1358             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1359             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1360
1361             d                = _mm_sub_pd(r00,rswitch);
1362             d                = _mm_max_pd(d,_mm_setzero_pd());
1363             d2               = _mm_mul_pd(d,d);
1364             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1365
1366             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1367
1368             /* Evaluate switch function */
1369             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1370             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1371             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1372
1373             fscal            = fvdw;
1374
1375             fscal            = _mm_and_pd(fscal,cutoff_mask);
1376
1377             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1378
1379             /* Update vectorial force */
1380             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1381             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1382             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1383             
1384             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1385             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1386             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1387
1388             }
1389
1390             /**************************
1391              * CALCULATE INTERACTIONS *
1392              **************************/
1393
1394             if (gmx_mm_any_lt(rsq10,rcutoff2))
1395             {
1396
1397             r10              = _mm_mul_pd(rsq10,rinv10);
1398
1399             /* Compute parameters for interactions between i and j atoms */
1400             qq10             = _mm_mul_pd(iq1,jq0);
1401
1402             /* EWALD ELECTROSTATICS */
1403
1404             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1405             ewrt             = _mm_mul_pd(r10,ewtabscale);
1406             ewitab           = _mm_cvttpd_epi32(ewrt);
1407 #ifdef __XOP__
1408             eweps            = _mm_frcz_pd(ewrt);
1409 #else
1410             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1411 #endif
1412             twoeweps         = _mm_add_pd(eweps,eweps);
1413             ewitab           = _mm_slli_epi32(ewitab,2);
1414             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1415             ewtabD           = _mm_setzero_pd();
1416             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1417             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1418             ewtabFn          = _mm_setzero_pd();
1419             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1420             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1421             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1422             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1423             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1424
1425             d                = _mm_sub_pd(r10,rswitch);
1426             d                = _mm_max_pd(d,_mm_setzero_pd());
1427             d2               = _mm_mul_pd(d,d);
1428             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1429
1430             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1431
1432             /* Evaluate switch function */
1433             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1434             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1435             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1436
1437             fscal            = felec;
1438
1439             fscal            = _mm_and_pd(fscal,cutoff_mask);
1440
1441             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1442
1443             /* Update vectorial force */
1444             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1445             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1446             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1447             
1448             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1449             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1450             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1451
1452             }
1453
1454             /**************************
1455              * CALCULATE INTERACTIONS *
1456              **************************/
1457
1458             if (gmx_mm_any_lt(rsq20,rcutoff2))
1459             {
1460
1461             r20              = _mm_mul_pd(rsq20,rinv20);
1462
1463             /* Compute parameters for interactions between i and j atoms */
1464             qq20             = _mm_mul_pd(iq2,jq0);
1465
1466             /* EWALD ELECTROSTATICS */
1467
1468             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1469             ewrt             = _mm_mul_pd(r20,ewtabscale);
1470             ewitab           = _mm_cvttpd_epi32(ewrt);
1471 #ifdef __XOP__
1472             eweps            = _mm_frcz_pd(ewrt);
1473 #else
1474             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1475 #endif
1476             twoeweps         = _mm_add_pd(eweps,eweps);
1477             ewitab           = _mm_slli_epi32(ewitab,2);
1478             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1479             ewtabD           = _mm_setzero_pd();
1480             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1481             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1482             ewtabFn          = _mm_setzero_pd();
1483             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1484             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1485             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1486             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1487             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1488
1489             d                = _mm_sub_pd(r20,rswitch);
1490             d                = _mm_max_pd(d,_mm_setzero_pd());
1491             d2               = _mm_mul_pd(d,d);
1492             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1493
1494             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1495
1496             /* Evaluate switch function */
1497             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1498             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1499             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1500
1501             fscal            = felec;
1502
1503             fscal            = _mm_and_pd(fscal,cutoff_mask);
1504
1505             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1506
1507             /* Update vectorial force */
1508             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1509             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1510             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1511             
1512             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1513             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1514             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1515
1516             }
1517
1518             /**************************
1519              * CALCULATE INTERACTIONS *
1520              **************************/
1521
1522             if (gmx_mm_any_lt(rsq30,rcutoff2))
1523             {
1524
1525             r30              = _mm_mul_pd(rsq30,rinv30);
1526
1527             /* Compute parameters for interactions between i and j atoms */
1528             qq30             = _mm_mul_pd(iq3,jq0);
1529
1530             /* EWALD ELECTROSTATICS */
1531
1532             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1533             ewrt             = _mm_mul_pd(r30,ewtabscale);
1534             ewitab           = _mm_cvttpd_epi32(ewrt);
1535 #ifdef __XOP__
1536             eweps            = _mm_frcz_pd(ewrt);
1537 #else
1538             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1539 #endif
1540             twoeweps         = _mm_add_pd(eweps,eweps);
1541             ewitab           = _mm_slli_epi32(ewitab,2);
1542             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1543             ewtabD           = _mm_setzero_pd();
1544             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1545             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1546             ewtabFn          = _mm_setzero_pd();
1547             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1548             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1549             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1550             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
1551             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1552
1553             d                = _mm_sub_pd(r30,rswitch);
1554             d                = _mm_max_pd(d,_mm_setzero_pd());
1555             d2               = _mm_mul_pd(d,d);
1556             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1557
1558             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1559
1560             /* Evaluate switch function */
1561             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1562             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv30,_mm_mul_pd(velec,dsw)) );
1563             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1564
1565             fscal            = felec;
1566
1567             fscal            = _mm_and_pd(fscal,cutoff_mask);
1568
1569             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1570
1571             /* Update vectorial force */
1572             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1573             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1574             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1575             
1576             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1577             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1578             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1579
1580             }
1581
1582             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1583
1584             /* Inner loop uses 257 flops */
1585         }
1586
1587         /* End of innermost loop */
1588
1589         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1590                                               f+i_coord_offset,fshift+i_shift_offset);
1591
1592         /* Increment number of inner iterations */
1593         inneriter                  += j_index_end - j_index_start;
1594
1595         /* Outer loop uses 24 flops */
1596     }
1597
1598     /* Increment number of outer iterations */
1599     outeriter        += nri;
1600
1601     /* Update outer/inner flops */
1602
1603     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*257);
1604 }