Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW3W3_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3W3_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Water3
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomW3W3_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B;
91     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B;
93     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
96     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
97     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
99     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
100     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
102     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
103     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     int              nvdwtype;
106     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
107     int              *vdwtype;
108     real             *vdwparam;
109     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
110     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
111     __m128i          ewitab;
112     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     real             *ewtab;
114     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
115     real             rswitch_scalar,d_scalar;
116     __m128d          dummy_mask,cutoff_mask;
117     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
118     __m128d          one     = _mm_set1_pd(1.0);
119     __m128d          two     = _mm_set1_pd(2.0);
120     x                = xx[0];
121     f                = ff[0];
122
123     nri              = nlist->nri;
124     iinr             = nlist->iinr;
125     jindex           = nlist->jindex;
126     jjnr             = nlist->jjnr;
127     shiftidx         = nlist->shift;
128     gid              = nlist->gid;
129     shiftvec         = fr->shift_vec[0];
130     fshift           = fr->fshift[0];
131     facel            = _mm_set1_pd(fr->epsfac);
132     charge           = mdatoms->chargeA;
133     nvdwtype         = fr->ntype;
134     vdwparam         = fr->nbfp;
135     vdwtype          = mdatoms->typeA;
136
137     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
145     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
146     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
147     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149     jq0              = _mm_set1_pd(charge[inr+0]);
150     jq1              = _mm_set1_pd(charge[inr+1]);
151     jq2              = _mm_set1_pd(charge[inr+2]);
152     vdwjidx0A        = 2*vdwtype[inr+0];
153     qq00             = _mm_mul_pd(iq0,jq0);
154     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
155     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
156     qq01             = _mm_mul_pd(iq0,jq1);
157     qq02             = _mm_mul_pd(iq0,jq2);
158     qq10             = _mm_mul_pd(iq1,jq0);
159     qq11             = _mm_mul_pd(iq1,jq1);
160     qq12             = _mm_mul_pd(iq1,jq2);
161     qq20             = _mm_mul_pd(iq2,jq0);
162     qq21             = _mm_mul_pd(iq2,jq1);
163     qq22             = _mm_mul_pd(iq2,jq2);
164
165     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
166     rcutoff_scalar   = fr->rcoulomb;
167     rcutoff          = _mm_set1_pd(rcutoff_scalar);
168     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
169
170     rswitch_scalar   = fr->rcoulomb_switch;
171     rswitch          = _mm_set1_pd(rswitch_scalar);
172     /* Setup switch parameters */
173     d_scalar         = rcutoff_scalar-rswitch_scalar;
174     d                = _mm_set1_pd(d_scalar);
175     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
176     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
177     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
178     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
179     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
180     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
181
182     /* Avoid stupid compiler warnings */
183     jnrA = jnrB = 0;
184     j_coord_offsetA = 0;
185     j_coord_offsetB = 0;
186
187     outeriter        = 0;
188     inneriter        = 0;
189
190     /* Start outer loop over neighborlists */
191     for(iidx=0; iidx<nri; iidx++)
192     {
193         /* Load shift vector for this list */
194         i_shift_offset   = DIM*shiftidx[iidx];
195
196         /* Load limits for loop over neighbors */
197         j_index_start    = jindex[iidx];
198         j_index_end      = jindex[iidx+1];
199
200         /* Get outer coordinate index */
201         inr              = iinr[iidx];
202         i_coord_offset   = DIM*inr;
203
204         /* Load i particle coords and add shift vector */
205         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
206                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
207
208         fix0             = _mm_setzero_pd();
209         fiy0             = _mm_setzero_pd();
210         fiz0             = _mm_setzero_pd();
211         fix1             = _mm_setzero_pd();
212         fiy1             = _mm_setzero_pd();
213         fiz1             = _mm_setzero_pd();
214         fix2             = _mm_setzero_pd();
215         fiy2             = _mm_setzero_pd();
216         fiz2             = _mm_setzero_pd();
217
218         /* Reset potential sums */
219         velecsum         = _mm_setzero_pd();
220         vvdwsum          = _mm_setzero_pd();
221
222         /* Start inner kernel loop */
223         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
224         {
225
226             /* Get j neighbor index, and coordinate index */
227             jnrA             = jjnr[jidx];
228             jnrB             = jjnr[jidx+1];
229             j_coord_offsetA  = DIM*jnrA;
230             j_coord_offsetB  = DIM*jnrB;
231
232             /* load j atom coordinates */
233             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
234                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
235
236             /* Calculate displacement vector */
237             dx00             = _mm_sub_pd(ix0,jx0);
238             dy00             = _mm_sub_pd(iy0,jy0);
239             dz00             = _mm_sub_pd(iz0,jz0);
240             dx01             = _mm_sub_pd(ix0,jx1);
241             dy01             = _mm_sub_pd(iy0,jy1);
242             dz01             = _mm_sub_pd(iz0,jz1);
243             dx02             = _mm_sub_pd(ix0,jx2);
244             dy02             = _mm_sub_pd(iy0,jy2);
245             dz02             = _mm_sub_pd(iz0,jz2);
246             dx10             = _mm_sub_pd(ix1,jx0);
247             dy10             = _mm_sub_pd(iy1,jy0);
248             dz10             = _mm_sub_pd(iz1,jz0);
249             dx11             = _mm_sub_pd(ix1,jx1);
250             dy11             = _mm_sub_pd(iy1,jy1);
251             dz11             = _mm_sub_pd(iz1,jz1);
252             dx12             = _mm_sub_pd(ix1,jx2);
253             dy12             = _mm_sub_pd(iy1,jy2);
254             dz12             = _mm_sub_pd(iz1,jz2);
255             dx20             = _mm_sub_pd(ix2,jx0);
256             dy20             = _mm_sub_pd(iy2,jy0);
257             dz20             = _mm_sub_pd(iz2,jz0);
258             dx21             = _mm_sub_pd(ix2,jx1);
259             dy21             = _mm_sub_pd(iy2,jy1);
260             dz21             = _mm_sub_pd(iz2,jz1);
261             dx22             = _mm_sub_pd(ix2,jx2);
262             dy22             = _mm_sub_pd(iy2,jy2);
263             dz22             = _mm_sub_pd(iz2,jz2);
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
267             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
268             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
269             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
270             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
271             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
272             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
273             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
274             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
275
276             rinv00           = gmx_mm_invsqrt_pd(rsq00);
277             rinv01           = gmx_mm_invsqrt_pd(rsq01);
278             rinv02           = gmx_mm_invsqrt_pd(rsq02);
279             rinv10           = gmx_mm_invsqrt_pd(rsq10);
280             rinv11           = gmx_mm_invsqrt_pd(rsq11);
281             rinv12           = gmx_mm_invsqrt_pd(rsq12);
282             rinv20           = gmx_mm_invsqrt_pd(rsq20);
283             rinv21           = gmx_mm_invsqrt_pd(rsq21);
284             rinv22           = gmx_mm_invsqrt_pd(rsq22);
285
286             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
287             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
288             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
289             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
290             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
291             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
292             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
293             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
294             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
295
296             fjx0             = _mm_setzero_pd();
297             fjy0             = _mm_setzero_pd();
298             fjz0             = _mm_setzero_pd();
299             fjx1             = _mm_setzero_pd();
300             fjy1             = _mm_setzero_pd();
301             fjz1             = _mm_setzero_pd();
302             fjx2             = _mm_setzero_pd();
303             fjy2             = _mm_setzero_pd();
304             fjz2             = _mm_setzero_pd();
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             if (gmx_mm_any_lt(rsq00,rcutoff2))
311             {
312
313             r00              = _mm_mul_pd(rsq00,rinv00);
314
315             /* EWALD ELECTROSTATICS */
316
317             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
318             ewrt             = _mm_mul_pd(r00,ewtabscale);
319             ewitab           = _mm_cvttpd_epi32(ewrt);
320 #ifdef __XOP__
321             eweps            = _mm_frcz_pd(ewrt);
322 #else
323             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
324 #endif
325             twoeweps         = _mm_add_pd(eweps,eweps);
326             ewitab           = _mm_slli_epi32(ewitab,2);
327             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
328             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
329             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
330             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
331             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
332             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
333             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
334             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
335             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
336             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
337
338             /* LENNARD-JONES DISPERSION/REPULSION */
339
340             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
341             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
342             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
343             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
344             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
345
346             d                = _mm_sub_pd(r00,rswitch);
347             d                = _mm_max_pd(d,_mm_setzero_pd());
348             d2               = _mm_mul_pd(d,d);
349             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
350
351             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
352
353             /* Evaluate switch function */
354             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
355             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
356             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
357             velec            = _mm_mul_pd(velec,sw);
358             vvdw             = _mm_mul_pd(vvdw,sw);
359             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm_and_pd(velec,cutoff_mask);
363             velecsum         = _mm_add_pd(velecsum,velec);
364             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
365             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
366
367             fscal            = _mm_add_pd(felec,fvdw);
368
369             fscal            = _mm_and_pd(fscal,cutoff_mask);
370
371             /* Update vectorial force */
372             fix0             = _mm_macc_pd(dx00,fscal,fix0);
373             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
374             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
375             
376             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
377             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
378             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
379
380             }
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             if (gmx_mm_any_lt(rsq01,rcutoff2))
387             {
388
389             r01              = _mm_mul_pd(rsq01,rinv01);
390
391             /* EWALD ELECTROSTATICS */
392
393             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
394             ewrt             = _mm_mul_pd(r01,ewtabscale);
395             ewitab           = _mm_cvttpd_epi32(ewrt);
396 #ifdef __XOP__
397             eweps            = _mm_frcz_pd(ewrt);
398 #else
399             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
400 #endif
401             twoeweps         = _mm_add_pd(eweps,eweps);
402             ewitab           = _mm_slli_epi32(ewitab,2);
403             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
404             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
405             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
406             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
407             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
408             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
409             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
410             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
411             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
412             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
413
414             d                = _mm_sub_pd(r01,rswitch);
415             d                = _mm_max_pd(d,_mm_setzero_pd());
416             d2               = _mm_mul_pd(d,d);
417             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
418
419             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
420
421             /* Evaluate switch function */
422             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
423             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv01,_mm_mul_pd(velec,dsw)) );
424             velec            = _mm_mul_pd(velec,sw);
425             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velec            = _mm_and_pd(velec,cutoff_mask);
429             velecsum         = _mm_add_pd(velecsum,velec);
430
431             fscal            = felec;
432
433             fscal            = _mm_and_pd(fscal,cutoff_mask);
434
435             /* Update vectorial force */
436             fix0             = _mm_macc_pd(dx01,fscal,fix0);
437             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
438             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
439             
440             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
441             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
442             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
443
444             }
445
446             /**************************
447              * CALCULATE INTERACTIONS *
448              **************************/
449
450             if (gmx_mm_any_lt(rsq02,rcutoff2))
451             {
452
453             r02              = _mm_mul_pd(rsq02,rinv02);
454
455             /* EWALD ELECTROSTATICS */
456
457             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
458             ewrt             = _mm_mul_pd(r02,ewtabscale);
459             ewitab           = _mm_cvttpd_epi32(ewrt);
460 #ifdef __XOP__
461             eweps            = _mm_frcz_pd(ewrt);
462 #else
463             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
464 #endif
465             twoeweps         = _mm_add_pd(eweps,eweps);
466             ewitab           = _mm_slli_epi32(ewitab,2);
467             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
468             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
469             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
470             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
471             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
472             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
473             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
474             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
475             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
476             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
477
478             d                = _mm_sub_pd(r02,rswitch);
479             d                = _mm_max_pd(d,_mm_setzero_pd());
480             d2               = _mm_mul_pd(d,d);
481             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
482
483             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
484
485             /* Evaluate switch function */
486             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
487             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv02,_mm_mul_pd(velec,dsw)) );
488             velec            = _mm_mul_pd(velec,sw);
489             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
490
491             /* Update potential sum for this i atom from the interaction with this j atom. */
492             velec            = _mm_and_pd(velec,cutoff_mask);
493             velecsum         = _mm_add_pd(velecsum,velec);
494
495             fscal            = felec;
496
497             fscal            = _mm_and_pd(fscal,cutoff_mask);
498
499             /* Update vectorial force */
500             fix0             = _mm_macc_pd(dx02,fscal,fix0);
501             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
502             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
503             
504             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
505             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
506             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
507
508             }
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             if (gmx_mm_any_lt(rsq10,rcutoff2))
515             {
516
517             r10              = _mm_mul_pd(rsq10,rinv10);
518
519             /* EWALD ELECTROSTATICS */
520
521             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
522             ewrt             = _mm_mul_pd(r10,ewtabscale);
523             ewitab           = _mm_cvttpd_epi32(ewrt);
524 #ifdef __XOP__
525             eweps            = _mm_frcz_pd(ewrt);
526 #else
527             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
528 #endif
529             twoeweps         = _mm_add_pd(eweps,eweps);
530             ewitab           = _mm_slli_epi32(ewitab,2);
531             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
532             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
533             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
534             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
535             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
536             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
537             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
538             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
539             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
540             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
541
542             d                = _mm_sub_pd(r10,rswitch);
543             d                = _mm_max_pd(d,_mm_setzero_pd());
544             d2               = _mm_mul_pd(d,d);
545             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
546
547             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
548
549             /* Evaluate switch function */
550             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
551             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
552             velec            = _mm_mul_pd(velec,sw);
553             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
554
555             /* Update potential sum for this i atom from the interaction with this j atom. */
556             velec            = _mm_and_pd(velec,cutoff_mask);
557             velecsum         = _mm_add_pd(velecsum,velec);
558
559             fscal            = felec;
560
561             fscal            = _mm_and_pd(fscal,cutoff_mask);
562
563             /* Update vectorial force */
564             fix1             = _mm_macc_pd(dx10,fscal,fix1);
565             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
566             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
567             
568             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
569             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
570             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
571
572             }
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             if (gmx_mm_any_lt(rsq11,rcutoff2))
579             {
580
581             r11              = _mm_mul_pd(rsq11,rinv11);
582
583             /* EWALD ELECTROSTATICS */
584
585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586             ewrt             = _mm_mul_pd(r11,ewtabscale);
587             ewitab           = _mm_cvttpd_epi32(ewrt);
588 #ifdef __XOP__
589             eweps            = _mm_frcz_pd(ewrt);
590 #else
591             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
592 #endif
593             twoeweps         = _mm_add_pd(eweps,eweps);
594             ewitab           = _mm_slli_epi32(ewitab,2);
595             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
596             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
597             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
598             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
599             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
600             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
601             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
602             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
603             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
604             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
605
606             d                = _mm_sub_pd(r11,rswitch);
607             d                = _mm_max_pd(d,_mm_setzero_pd());
608             d2               = _mm_mul_pd(d,d);
609             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
610
611             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
612
613             /* Evaluate switch function */
614             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
615             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv11,_mm_mul_pd(velec,dsw)) );
616             velec            = _mm_mul_pd(velec,sw);
617             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
618
619             /* Update potential sum for this i atom from the interaction with this j atom. */
620             velec            = _mm_and_pd(velec,cutoff_mask);
621             velecsum         = _mm_add_pd(velecsum,velec);
622
623             fscal            = felec;
624
625             fscal            = _mm_and_pd(fscal,cutoff_mask);
626
627             /* Update vectorial force */
628             fix1             = _mm_macc_pd(dx11,fscal,fix1);
629             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
630             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
631             
632             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
633             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
634             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
635
636             }
637
638             /**************************
639              * CALCULATE INTERACTIONS *
640              **************************/
641
642             if (gmx_mm_any_lt(rsq12,rcutoff2))
643             {
644
645             r12              = _mm_mul_pd(rsq12,rinv12);
646
647             /* EWALD ELECTROSTATICS */
648
649             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
650             ewrt             = _mm_mul_pd(r12,ewtabscale);
651             ewitab           = _mm_cvttpd_epi32(ewrt);
652 #ifdef __XOP__
653             eweps            = _mm_frcz_pd(ewrt);
654 #else
655             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
656 #endif
657             twoeweps         = _mm_add_pd(eweps,eweps);
658             ewitab           = _mm_slli_epi32(ewitab,2);
659             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
660             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
661             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
662             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
663             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
664             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
665             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
666             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
667             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
668             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
669
670             d                = _mm_sub_pd(r12,rswitch);
671             d                = _mm_max_pd(d,_mm_setzero_pd());
672             d2               = _mm_mul_pd(d,d);
673             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
674
675             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
676
677             /* Evaluate switch function */
678             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
679             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv12,_mm_mul_pd(velec,dsw)) );
680             velec            = _mm_mul_pd(velec,sw);
681             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
682
683             /* Update potential sum for this i atom from the interaction with this j atom. */
684             velec            = _mm_and_pd(velec,cutoff_mask);
685             velecsum         = _mm_add_pd(velecsum,velec);
686
687             fscal            = felec;
688
689             fscal            = _mm_and_pd(fscal,cutoff_mask);
690
691             /* Update vectorial force */
692             fix1             = _mm_macc_pd(dx12,fscal,fix1);
693             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
694             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
695             
696             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
697             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
698             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
699
700             }
701
702             /**************************
703              * CALCULATE INTERACTIONS *
704              **************************/
705
706             if (gmx_mm_any_lt(rsq20,rcutoff2))
707             {
708
709             r20              = _mm_mul_pd(rsq20,rinv20);
710
711             /* EWALD ELECTROSTATICS */
712
713             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
714             ewrt             = _mm_mul_pd(r20,ewtabscale);
715             ewitab           = _mm_cvttpd_epi32(ewrt);
716 #ifdef __XOP__
717             eweps            = _mm_frcz_pd(ewrt);
718 #else
719             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
720 #endif
721             twoeweps         = _mm_add_pd(eweps,eweps);
722             ewitab           = _mm_slli_epi32(ewitab,2);
723             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
724             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
725             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
726             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
727             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
728             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
729             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
730             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
731             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
732             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
733
734             d                = _mm_sub_pd(r20,rswitch);
735             d                = _mm_max_pd(d,_mm_setzero_pd());
736             d2               = _mm_mul_pd(d,d);
737             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
738
739             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
740
741             /* Evaluate switch function */
742             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
743             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
744             velec            = _mm_mul_pd(velec,sw);
745             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
746
747             /* Update potential sum for this i atom from the interaction with this j atom. */
748             velec            = _mm_and_pd(velec,cutoff_mask);
749             velecsum         = _mm_add_pd(velecsum,velec);
750
751             fscal            = felec;
752
753             fscal            = _mm_and_pd(fscal,cutoff_mask);
754
755             /* Update vectorial force */
756             fix2             = _mm_macc_pd(dx20,fscal,fix2);
757             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
758             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
759             
760             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
761             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
762             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
763
764             }
765
766             /**************************
767              * CALCULATE INTERACTIONS *
768              **************************/
769
770             if (gmx_mm_any_lt(rsq21,rcutoff2))
771             {
772
773             r21              = _mm_mul_pd(rsq21,rinv21);
774
775             /* EWALD ELECTROSTATICS */
776
777             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
778             ewrt             = _mm_mul_pd(r21,ewtabscale);
779             ewitab           = _mm_cvttpd_epi32(ewrt);
780 #ifdef __XOP__
781             eweps            = _mm_frcz_pd(ewrt);
782 #else
783             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
784 #endif
785             twoeweps         = _mm_add_pd(eweps,eweps);
786             ewitab           = _mm_slli_epi32(ewitab,2);
787             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
788             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
789             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
790             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
791             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
792             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
793             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
794             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
795             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
796             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
797
798             d                = _mm_sub_pd(r21,rswitch);
799             d                = _mm_max_pd(d,_mm_setzero_pd());
800             d2               = _mm_mul_pd(d,d);
801             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
802
803             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
804
805             /* Evaluate switch function */
806             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
807             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv21,_mm_mul_pd(velec,dsw)) );
808             velec            = _mm_mul_pd(velec,sw);
809             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
810
811             /* Update potential sum for this i atom from the interaction with this j atom. */
812             velec            = _mm_and_pd(velec,cutoff_mask);
813             velecsum         = _mm_add_pd(velecsum,velec);
814
815             fscal            = felec;
816
817             fscal            = _mm_and_pd(fscal,cutoff_mask);
818
819             /* Update vectorial force */
820             fix2             = _mm_macc_pd(dx21,fscal,fix2);
821             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
822             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
823             
824             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
825             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
826             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
827
828             }
829
830             /**************************
831              * CALCULATE INTERACTIONS *
832              **************************/
833
834             if (gmx_mm_any_lt(rsq22,rcutoff2))
835             {
836
837             r22              = _mm_mul_pd(rsq22,rinv22);
838
839             /* EWALD ELECTROSTATICS */
840
841             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
842             ewrt             = _mm_mul_pd(r22,ewtabscale);
843             ewitab           = _mm_cvttpd_epi32(ewrt);
844 #ifdef __XOP__
845             eweps            = _mm_frcz_pd(ewrt);
846 #else
847             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
848 #endif
849             twoeweps         = _mm_add_pd(eweps,eweps);
850             ewitab           = _mm_slli_epi32(ewitab,2);
851             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
852             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
853             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
854             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
855             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
856             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
857             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
858             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
859             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
860             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
861
862             d                = _mm_sub_pd(r22,rswitch);
863             d                = _mm_max_pd(d,_mm_setzero_pd());
864             d2               = _mm_mul_pd(d,d);
865             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
866
867             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
868
869             /* Evaluate switch function */
870             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
871             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv22,_mm_mul_pd(velec,dsw)) );
872             velec            = _mm_mul_pd(velec,sw);
873             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
874
875             /* Update potential sum for this i atom from the interaction with this j atom. */
876             velec            = _mm_and_pd(velec,cutoff_mask);
877             velecsum         = _mm_add_pd(velecsum,velec);
878
879             fscal            = felec;
880
881             fscal            = _mm_and_pd(fscal,cutoff_mask);
882
883             /* Update vectorial force */
884             fix2             = _mm_macc_pd(dx22,fscal,fix2);
885             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
886             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
887             
888             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
889             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
890             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
891
892             }
893
894             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
895
896             /* Inner loop uses 630 flops */
897         }
898
899         if(jidx<j_index_end)
900         {
901
902             jnrA             = jjnr[jidx];
903             j_coord_offsetA  = DIM*jnrA;
904
905             /* load j atom coordinates */
906             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
907                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
908
909             /* Calculate displacement vector */
910             dx00             = _mm_sub_pd(ix0,jx0);
911             dy00             = _mm_sub_pd(iy0,jy0);
912             dz00             = _mm_sub_pd(iz0,jz0);
913             dx01             = _mm_sub_pd(ix0,jx1);
914             dy01             = _mm_sub_pd(iy0,jy1);
915             dz01             = _mm_sub_pd(iz0,jz1);
916             dx02             = _mm_sub_pd(ix0,jx2);
917             dy02             = _mm_sub_pd(iy0,jy2);
918             dz02             = _mm_sub_pd(iz0,jz2);
919             dx10             = _mm_sub_pd(ix1,jx0);
920             dy10             = _mm_sub_pd(iy1,jy0);
921             dz10             = _mm_sub_pd(iz1,jz0);
922             dx11             = _mm_sub_pd(ix1,jx1);
923             dy11             = _mm_sub_pd(iy1,jy1);
924             dz11             = _mm_sub_pd(iz1,jz1);
925             dx12             = _mm_sub_pd(ix1,jx2);
926             dy12             = _mm_sub_pd(iy1,jy2);
927             dz12             = _mm_sub_pd(iz1,jz2);
928             dx20             = _mm_sub_pd(ix2,jx0);
929             dy20             = _mm_sub_pd(iy2,jy0);
930             dz20             = _mm_sub_pd(iz2,jz0);
931             dx21             = _mm_sub_pd(ix2,jx1);
932             dy21             = _mm_sub_pd(iy2,jy1);
933             dz21             = _mm_sub_pd(iz2,jz1);
934             dx22             = _mm_sub_pd(ix2,jx2);
935             dy22             = _mm_sub_pd(iy2,jy2);
936             dz22             = _mm_sub_pd(iz2,jz2);
937
938             /* Calculate squared distance and things based on it */
939             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
940             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
941             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
942             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
943             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
944             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
945             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
946             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
947             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
948
949             rinv00           = gmx_mm_invsqrt_pd(rsq00);
950             rinv01           = gmx_mm_invsqrt_pd(rsq01);
951             rinv02           = gmx_mm_invsqrt_pd(rsq02);
952             rinv10           = gmx_mm_invsqrt_pd(rsq10);
953             rinv11           = gmx_mm_invsqrt_pd(rsq11);
954             rinv12           = gmx_mm_invsqrt_pd(rsq12);
955             rinv20           = gmx_mm_invsqrt_pd(rsq20);
956             rinv21           = gmx_mm_invsqrt_pd(rsq21);
957             rinv22           = gmx_mm_invsqrt_pd(rsq22);
958
959             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
960             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
961             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
962             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
963             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
964             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
965             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
966             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
967             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
968
969             fjx0             = _mm_setzero_pd();
970             fjy0             = _mm_setzero_pd();
971             fjz0             = _mm_setzero_pd();
972             fjx1             = _mm_setzero_pd();
973             fjy1             = _mm_setzero_pd();
974             fjz1             = _mm_setzero_pd();
975             fjx2             = _mm_setzero_pd();
976             fjy2             = _mm_setzero_pd();
977             fjz2             = _mm_setzero_pd();
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             if (gmx_mm_any_lt(rsq00,rcutoff2))
984             {
985
986             r00              = _mm_mul_pd(rsq00,rinv00);
987
988             /* EWALD ELECTROSTATICS */
989
990             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
991             ewrt             = _mm_mul_pd(r00,ewtabscale);
992             ewitab           = _mm_cvttpd_epi32(ewrt);
993 #ifdef __XOP__
994             eweps            = _mm_frcz_pd(ewrt);
995 #else
996             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
997 #endif
998             twoeweps         = _mm_add_pd(eweps,eweps);
999             ewitab           = _mm_slli_epi32(ewitab,2);
1000             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1001             ewtabD           = _mm_setzero_pd();
1002             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1003             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1004             ewtabFn          = _mm_setzero_pd();
1005             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1006             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1007             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1008             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
1009             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1010
1011             /* LENNARD-JONES DISPERSION/REPULSION */
1012
1013             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1014             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1015             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1016             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1017             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1018
1019             d                = _mm_sub_pd(r00,rswitch);
1020             d                = _mm_max_pd(d,_mm_setzero_pd());
1021             d2               = _mm_mul_pd(d,d);
1022             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1023
1024             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1025
1026             /* Evaluate switch function */
1027             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1028             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
1029             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1030             velec            = _mm_mul_pd(velec,sw);
1031             vvdw             = _mm_mul_pd(vvdw,sw);
1032             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1033
1034             /* Update potential sum for this i atom from the interaction with this j atom. */
1035             velec            = _mm_and_pd(velec,cutoff_mask);
1036             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1037             velecsum         = _mm_add_pd(velecsum,velec);
1038             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
1039             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
1040             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
1041
1042             fscal            = _mm_add_pd(felec,fvdw);
1043
1044             fscal            = _mm_and_pd(fscal,cutoff_mask);
1045
1046             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1047
1048             /* Update vectorial force */
1049             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1050             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1051             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1052             
1053             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1054             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1055             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1056
1057             }
1058
1059             /**************************
1060              * CALCULATE INTERACTIONS *
1061              **************************/
1062
1063             if (gmx_mm_any_lt(rsq01,rcutoff2))
1064             {
1065
1066             r01              = _mm_mul_pd(rsq01,rinv01);
1067
1068             /* EWALD ELECTROSTATICS */
1069
1070             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1071             ewrt             = _mm_mul_pd(r01,ewtabscale);
1072             ewitab           = _mm_cvttpd_epi32(ewrt);
1073 #ifdef __XOP__
1074             eweps            = _mm_frcz_pd(ewrt);
1075 #else
1076             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1077 #endif
1078             twoeweps         = _mm_add_pd(eweps,eweps);
1079             ewitab           = _mm_slli_epi32(ewitab,2);
1080             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1081             ewtabD           = _mm_setzero_pd();
1082             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1083             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1084             ewtabFn          = _mm_setzero_pd();
1085             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1086             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1087             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1088             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
1089             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1090
1091             d                = _mm_sub_pd(r01,rswitch);
1092             d                = _mm_max_pd(d,_mm_setzero_pd());
1093             d2               = _mm_mul_pd(d,d);
1094             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1095
1096             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1097
1098             /* Evaluate switch function */
1099             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1100             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv01,_mm_mul_pd(velec,dsw)) );
1101             velec            = _mm_mul_pd(velec,sw);
1102             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
1103
1104             /* Update potential sum for this i atom from the interaction with this j atom. */
1105             velec            = _mm_and_pd(velec,cutoff_mask);
1106             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1107             velecsum         = _mm_add_pd(velecsum,velec);
1108
1109             fscal            = felec;
1110
1111             fscal            = _mm_and_pd(fscal,cutoff_mask);
1112
1113             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1114
1115             /* Update vectorial force */
1116             fix0             = _mm_macc_pd(dx01,fscal,fix0);
1117             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
1118             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
1119             
1120             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
1121             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
1122             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
1123
1124             }
1125
1126             /**************************
1127              * CALCULATE INTERACTIONS *
1128              **************************/
1129
1130             if (gmx_mm_any_lt(rsq02,rcutoff2))
1131             {
1132
1133             r02              = _mm_mul_pd(rsq02,rinv02);
1134
1135             /* EWALD ELECTROSTATICS */
1136
1137             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1138             ewrt             = _mm_mul_pd(r02,ewtabscale);
1139             ewitab           = _mm_cvttpd_epi32(ewrt);
1140 #ifdef __XOP__
1141             eweps            = _mm_frcz_pd(ewrt);
1142 #else
1143             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1144 #endif
1145             twoeweps         = _mm_add_pd(eweps,eweps);
1146             ewitab           = _mm_slli_epi32(ewitab,2);
1147             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1148             ewtabD           = _mm_setzero_pd();
1149             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1150             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1151             ewtabFn          = _mm_setzero_pd();
1152             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1153             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1154             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1155             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
1156             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1157
1158             d                = _mm_sub_pd(r02,rswitch);
1159             d                = _mm_max_pd(d,_mm_setzero_pd());
1160             d2               = _mm_mul_pd(d,d);
1161             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1162
1163             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1164
1165             /* Evaluate switch function */
1166             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1167             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv02,_mm_mul_pd(velec,dsw)) );
1168             velec            = _mm_mul_pd(velec,sw);
1169             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1170
1171             /* Update potential sum for this i atom from the interaction with this j atom. */
1172             velec            = _mm_and_pd(velec,cutoff_mask);
1173             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1174             velecsum         = _mm_add_pd(velecsum,velec);
1175
1176             fscal            = felec;
1177
1178             fscal            = _mm_and_pd(fscal,cutoff_mask);
1179
1180             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1181
1182             /* Update vectorial force */
1183             fix0             = _mm_macc_pd(dx02,fscal,fix0);
1184             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
1185             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
1186             
1187             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
1188             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
1189             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
1190
1191             }
1192
1193             /**************************
1194              * CALCULATE INTERACTIONS *
1195              **************************/
1196
1197             if (gmx_mm_any_lt(rsq10,rcutoff2))
1198             {
1199
1200             r10              = _mm_mul_pd(rsq10,rinv10);
1201
1202             /* EWALD ELECTROSTATICS */
1203
1204             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1205             ewrt             = _mm_mul_pd(r10,ewtabscale);
1206             ewitab           = _mm_cvttpd_epi32(ewrt);
1207 #ifdef __XOP__
1208             eweps            = _mm_frcz_pd(ewrt);
1209 #else
1210             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1211 #endif
1212             twoeweps         = _mm_add_pd(eweps,eweps);
1213             ewitab           = _mm_slli_epi32(ewitab,2);
1214             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1215             ewtabD           = _mm_setzero_pd();
1216             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1217             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1218             ewtabFn          = _mm_setzero_pd();
1219             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1220             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1221             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1222             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1223             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1224
1225             d                = _mm_sub_pd(r10,rswitch);
1226             d                = _mm_max_pd(d,_mm_setzero_pd());
1227             d2               = _mm_mul_pd(d,d);
1228             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1229
1230             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1231
1232             /* Evaluate switch function */
1233             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1234             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1235             velec            = _mm_mul_pd(velec,sw);
1236             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1237
1238             /* Update potential sum for this i atom from the interaction with this j atom. */
1239             velec            = _mm_and_pd(velec,cutoff_mask);
1240             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1241             velecsum         = _mm_add_pd(velecsum,velec);
1242
1243             fscal            = felec;
1244
1245             fscal            = _mm_and_pd(fscal,cutoff_mask);
1246
1247             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1248
1249             /* Update vectorial force */
1250             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1251             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1252             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1253             
1254             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1255             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1256             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1257
1258             }
1259
1260             /**************************
1261              * CALCULATE INTERACTIONS *
1262              **************************/
1263
1264             if (gmx_mm_any_lt(rsq11,rcutoff2))
1265             {
1266
1267             r11              = _mm_mul_pd(rsq11,rinv11);
1268
1269             /* EWALD ELECTROSTATICS */
1270
1271             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1272             ewrt             = _mm_mul_pd(r11,ewtabscale);
1273             ewitab           = _mm_cvttpd_epi32(ewrt);
1274 #ifdef __XOP__
1275             eweps            = _mm_frcz_pd(ewrt);
1276 #else
1277             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1278 #endif
1279             twoeweps         = _mm_add_pd(eweps,eweps);
1280             ewitab           = _mm_slli_epi32(ewitab,2);
1281             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1282             ewtabD           = _mm_setzero_pd();
1283             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1284             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1285             ewtabFn          = _mm_setzero_pd();
1286             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1287             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1288             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1289             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
1290             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1291
1292             d                = _mm_sub_pd(r11,rswitch);
1293             d                = _mm_max_pd(d,_mm_setzero_pd());
1294             d2               = _mm_mul_pd(d,d);
1295             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1296
1297             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1298
1299             /* Evaluate switch function */
1300             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1301             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv11,_mm_mul_pd(velec,dsw)) );
1302             velec            = _mm_mul_pd(velec,sw);
1303             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1304
1305             /* Update potential sum for this i atom from the interaction with this j atom. */
1306             velec            = _mm_and_pd(velec,cutoff_mask);
1307             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1308             velecsum         = _mm_add_pd(velecsum,velec);
1309
1310             fscal            = felec;
1311
1312             fscal            = _mm_and_pd(fscal,cutoff_mask);
1313
1314             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1315
1316             /* Update vectorial force */
1317             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1318             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1319             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1320             
1321             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1322             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1323             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1324
1325             }
1326
1327             /**************************
1328              * CALCULATE INTERACTIONS *
1329              **************************/
1330
1331             if (gmx_mm_any_lt(rsq12,rcutoff2))
1332             {
1333
1334             r12              = _mm_mul_pd(rsq12,rinv12);
1335
1336             /* EWALD ELECTROSTATICS */
1337
1338             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1339             ewrt             = _mm_mul_pd(r12,ewtabscale);
1340             ewitab           = _mm_cvttpd_epi32(ewrt);
1341 #ifdef __XOP__
1342             eweps            = _mm_frcz_pd(ewrt);
1343 #else
1344             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1345 #endif
1346             twoeweps         = _mm_add_pd(eweps,eweps);
1347             ewitab           = _mm_slli_epi32(ewitab,2);
1348             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1349             ewtabD           = _mm_setzero_pd();
1350             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1351             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1352             ewtabFn          = _mm_setzero_pd();
1353             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1354             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1355             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1356             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
1357             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1358
1359             d                = _mm_sub_pd(r12,rswitch);
1360             d                = _mm_max_pd(d,_mm_setzero_pd());
1361             d2               = _mm_mul_pd(d,d);
1362             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1363
1364             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1365
1366             /* Evaluate switch function */
1367             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1368             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv12,_mm_mul_pd(velec,dsw)) );
1369             velec            = _mm_mul_pd(velec,sw);
1370             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1371
1372             /* Update potential sum for this i atom from the interaction with this j atom. */
1373             velec            = _mm_and_pd(velec,cutoff_mask);
1374             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1375             velecsum         = _mm_add_pd(velecsum,velec);
1376
1377             fscal            = felec;
1378
1379             fscal            = _mm_and_pd(fscal,cutoff_mask);
1380
1381             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1382
1383             /* Update vectorial force */
1384             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1385             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1386             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1387             
1388             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1389             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1390             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1391
1392             }
1393
1394             /**************************
1395              * CALCULATE INTERACTIONS *
1396              **************************/
1397
1398             if (gmx_mm_any_lt(rsq20,rcutoff2))
1399             {
1400
1401             r20              = _mm_mul_pd(rsq20,rinv20);
1402
1403             /* EWALD ELECTROSTATICS */
1404
1405             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1406             ewrt             = _mm_mul_pd(r20,ewtabscale);
1407             ewitab           = _mm_cvttpd_epi32(ewrt);
1408 #ifdef __XOP__
1409             eweps            = _mm_frcz_pd(ewrt);
1410 #else
1411             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1412 #endif
1413             twoeweps         = _mm_add_pd(eweps,eweps);
1414             ewitab           = _mm_slli_epi32(ewitab,2);
1415             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1416             ewtabD           = _mm_setzero_pd();
1417             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1418             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1419             ewtabFn          = _mm_setzero_pd();
1420             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1421             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1422             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1423             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1424             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1425
1426             d                = _mm_sub_pd(r20,rswitch);
1427             d                = _mm_max_pd(d,_mm_setzero_pd());
1428             d2               = _mm_mul_pd(d,d);
1429             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1430
1431             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1432
1433             /* Evaluate switch function */
1434             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1435             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1436             velec            = _mm_mul_pd(velec,sw);
1437             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1438
1439             /* Update potential sum for this i atom from the interaction with this j atom. */
1440             velec            = _mm_and_pd(velec,cutoff_mask);
1441             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1442             velecsum         = _mm_add_pd(velecsum,velec);
1443
1444             fscal            = felec;
1445
1446             fscal            = _mm_and_pd(fscal,cutoff_mask);
1447
1448             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1449
1450             /* Update vectorial force */
1451             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1452             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1453             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1454             
1455             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1456             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1457             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1458
1459             }
1460
1461             /**************************
1462              * CALCULATE INTERACTIONS *
1463              **************************/
1464
1465             if (gmx_mm_any_lt(rsq21,rcutoff2))
1466             {
1467
1468             r21              = _mm_mul_pd(rsq21,rinv21);
1469
1470             /* EWALD ELECTROSTATICS */
1471
1472             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1473             ewrt             = _mm_mul_pd(r21,ewtabscale);
1474             ewitab           = _mm_cvttpd_epi32(ewrt);
1475 #ifdef __XOP__
1476             eweps            = _mm_frcz_pd(ewrt);
1477 #else
1478             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1479 #endif
1480             twoeweps         = _mm_add_pd(eweps,eweps);
1481             ewitab           = _mm_slli_epi32(ewitab,2);
1482             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1483             ewtabD           = _mm_setzero_pd();
1484             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1485             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1486             ewtabFn          = _mm_setzero_pd();
1487             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1488             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1489             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1490             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1491             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1492
1493             d                = _mm_sub_pd(r21,rswitch);
1494             d                = _mm_max_pd(d,_mm_setzero_pd());
1495             d2               = _mm_mul_pd(d,d);
1496             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1497
1498             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1499
1500             /* Evaluate switch function */
1501             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1502             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv21,_mm_mul_pd(velec,dsw)) );
1503             velec            = _mm_mul_pd(velec,sw);
1504             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1505
1506             /* Update potential sum for this i atom from the interaction with this j atom. */
1507             velec            = _mm_and_pd(velec,cutoff_mask);
1508             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1509             velecsum         = _mm_add_pd(velecsum,velec);
1510
1511             fscal            = felec;
1512
1513             fscal            = _mm_and_pd(fscal,cutoff_mask);
1514
1515             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1516
1517             /* Update vectorial force */
1518             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1519             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1520             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1521             
1522             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1523             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1524             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1525
1526             }
1527
1528             /**************************
1529              * CALCULATE INTERACTIONS *
1530              **************************/
1531
1532             if (gmx_mm_any_lt(rsq22,rcutoff2))
1533             {
1534
1535             r22              = _mm_mul_pd(rsq22,rinv22);
1536
1537             /* EWALD ELECTROSTATICS */
1538
1539             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1540             ewrt             = _mm_mul_pd(r22,ewtabscale);
1541             ewitab           = _mm_cvttpd_epi32(ewrt);
1542 #ifdef __XOP__
1543             eweps            = _mm_frcz_pd(ewrt);
1544 #else
1545             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1546 #endif
1547             twoeweps         = _mm_add_pd(eweps,eweps);
1548             ewitab           = _mm_slli_epi32(ewitab,2);
1549             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1550             ewtabD           = _mm_setzero_pd();
1551             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1552             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1553             ewtabFn          = _mm_setzero_pd();
1554             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1555             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1556             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1557             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1558             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1559
1560             d                = _mm_sub_pd(r22,rswitch);
1561             d                = _mm_max_pd(d,_mm_setzero_pd());
1562             d2               = _mm_mul_pd(d,d);
1563             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1564
1565             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1566
1567             /* Evaluate switch function */
1568             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1569             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv22,_mm_mul_pd(velec,dsw)) );
1570             velec            = _mm_mul_pd(velec,sw);
1571             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1572
1573             /* Update potential sum for this i atom from the interaction with this j atom. */
1574             velec            = _mm_and_pd(velec,cutoff_mask);
1575             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1576             velecsum         = _mm_add_pd(velecsum,velec);
1577
1578             fscal            = felec;
1579
1580             fscal            = _mm_and_pd(fscal,cutoff_mask);
1581
1582             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1583
1584             /* Update vectorial force */
1585             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1586             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1587             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1588             
1589             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1590             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1591             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1592
1593             }
1594
1595             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1596
1597             /* Inner loop uses 630 flops */
1598         }
1599
1600         /* End of innermost loop */
1601
1602         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1603                                               f+i_coord_offset,fshift+i_shift_offset);
1604
1605         ggid                        = gid[iidx];
1606         /* Update potential energies */
1607         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1608         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1609
1610         /* Increment number of inner iterations */
1611         inneriter                  += j_index_end - j_index_start;
1612
1613         /* Outer loop uses 20 flops */
1614     }
1615
1616     /* Increment number of outer iterations */
1617     outeriter        += nri;
1618
1619     /* Update outer/inner flops */
1620
1621     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*630);
1622 }
1623 /*
1624  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3W3_F_avx_128_fma_double
1625  * Electrostatics interaction: Ewald
1626  * VdW interaction:            LennardJones
1627  * Geometry:                   Water3-Water3
1628  * Calculate force/pot:        Force
1629  */
1630 void
1631 nb_kernel_ElecEwSw_VdwLJSw_GeomW3W3_F_avx_128_fma_double
1632                     (t_nblist                    * gmx_restrict       nlist,
1633                      rvec                        * gmx_restrict          xx,
1634                      rvec                        * gmx_restrict          ff,
1635                      t_forcerec                  * gmx_restrict          fr,
1636                      t_mdatoms                   * gmx_restrict     mdatoms,
1637                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1638                      t_nrnb                      * gmx_restrict        nrnb)
1639 {
1640     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1641      * just 0 for non-waters.
1642      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1643      * jnr indices corresponding to data put in the four positions in the SIMD register.
1644      */
1645     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1646     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1647     int              jnrA,jnrB;
1648     int              j_coord_offsetA,j_coord_offsetB;
1649     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1650     real             rcutoff_scalar;
1651     real             *shiftvec,*fshift,*x,*f;
1652     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1653     int              vdwioffset0;
1654     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1655     int              vdwioffset1;
1656     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1657     int              vdwioffset2;
1658     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1659     int              vdwjidx0A,vdwjidx0B;
1660     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1661     int              vdwjidx1A,vdwjidx1B;
1662     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1663     int              vdwjidx2A,vdwjidx2B;
1664     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1665     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1666     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1667     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1668     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1669     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1670     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1671     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1672     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1673     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1674     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1675     real             *charge;
1676     int              nvdwtype;
1677     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1678     int              *vdwtype;
1679     real             *vdwparam;
1680     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1681     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1682     __m128i          ewitab;
1683     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1684     real             *ewtab;
1685     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
1686     real             rswitch_scalar,d_scalar;
1687     __m128d          dummy_mask,cutoff_mask;
1688     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1689     __m128d          one     = _mm_set1_pd(1.0);
1690     __m128d          two     = _mm_set1_pd(2.0);
1691     x                = xx[0];
1692     f                = ff[0];
1693
1694     nri              = nlist->nri;
1695     iinr             = nlist->iinr;
1696     jindex           = nlist->jindex;
1697     jjnr             = nlist->jjnr;
1698     shiftidx         = nlist->shift;
1699     gid              = nlist->gid;
1700     shiftvec         = fr->shift_vec[0];
1701     fshift           = fr->fshift[0];
1702     facel            = _mm_set1_pd(fr->epsfac);
1703     charge           = mdatoms->chargeA;
1704     nvdwtype         = fr->ntype;
1705     vdwparam         = fr->nbfp;
1706     vdwtype          = mdatoms->typeA;
1707
1708     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1709     ewtab            = fr->ic->tabq_coul_FDV0;
1710     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1711     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1712
1713     /* Setup water-specific parameters */
1714     inr              = nlist->iinr[0];
1715     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1716     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1717     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1718     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1719
1720     jq0              = _mm_set1_pd(charge[inr+0]);
1721     jq1              = _mm_set1_pd(charge[inr+1]);
1722     jq2              = _mm_set1_pd(charge[inr+2]);
1723     vdwjidx0A        = 2*vdwtype[inr+0];
1724     qq00             = _mm_mul_pd(iq0,jq0);
1725     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1726     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1727     qq01             = _mm_mul_pd(iq0,jq1);
1728     qq02             = _mm_mul_pd(iq0,jq2);
1729     qq10             = _mm_mul_pd(iq1,jq0);
1730     qq11             = _mm_mul_pd(iq1,jq1);
1731     qq12             = _mm_mul_pd(iq1,jq2);
1732     qq20             = _mm_mul_pd(iq2,jq0);
1733     qq21             = _mm_mul_pd(iq2,jq1);
1734     qq22             = _mm_mul_pd(iq2,jq2);
1735
1736     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1737     rcutoff_scalar   = fr->rcoulomb;
1738     rcutoff          = _mm_set1_pd(rcutoff_scalar);
1739     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
1740
1741     rswitch_scalar   = fr->rcoulomb_switch;
1742     rswitch          = _mm_set1_pd(rswitch_scalar);
1743     /* Setup switch parameters */
1744     d_scalar         = rcutoff_scalar-rswitch_scalar;
1745     d                = _mm_set1_pd(d_scalar);
1746     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
1747     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
1748     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
1749     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
1750     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
1751     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
1752
1753     /* Avoid stupid compiler warnings */
1754     jnrA = jnrB = 0;
1755     j_coord_offsetA = 0;
1756     j_coord_offsetB = 0;
1757
1758     outeriter        = 0;
1759     inneriter        = 0;
1760
1761     /* Start outer loop over neighborlists */
1762     for(iidx=0; iidx<nri; iidx++)
1763     {
1764         /* Load shift vector for this list */
1765         i_shift_offset   = DIM*shiftidx[iidx];
1766
1767         /* Load limits for loop over neighbors */
1768         j_index_start    = jindex[iidx];
1769         j_index_end      = jindex[iidx+1];
1770
1771         /* Get outer coordinate index */
1772         inr              = iinr[iidx];
1773         i_coord_offset   = DIM*inr;
1774
1775         /* Load i particle coords and add shift vector */
1776         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1777                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1778
1779         fix0             = _mm_setzero_pd();
1780         fiy0             = _mm_setzero_pd();
1781         fiz0             = _mm_setzero_pd();
1782         fix1             = _mm_setzero_pd();
1783         fiy1             = _mm_setzero_pd();
1784         fiz1             = _mm_setzero_pd();
1785         fix2             = _mm_setzero_pd();
1786         fiy2             = _mm_setzero_pd();
1787         fiz2             = _mm_setzero_pd();
1788
1789         /* Start inner kernel loop */
1790         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1791         {
1792
1793             /* Get j neighbor index, and coordinate index */
1794             jnrA             = jjnr[jidx];
1795             jnrB             = jjnr[jidx+1];
1796             j_coord_offsetA  = DIM*jnrA;
1797             j_coord_offsetB  = DIM*jnrB;
1798
1799             /* load j atom coordinates */
1800             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1801                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1802
1803             /* Calculate displacement vector */
1804             dx00             = _mm_sub_pd(ix0,jx0);
1805             dy00             = _mm_sub_pd(iy0,jy0);
1806             dz00             = _mm_sub_pd(iz0,jz0);
1807             dx01             = _mm_sub_pd(ix0,jx1);
1808             dy01             = _mm_sub_pd(iy0,jy1);
1809             dz01             = _mm_sub_pd(iz0,jz1);
1810             dx02             = _mm_sub_pd(ix0,jx2);
1811             dy02             = _mm_sub_pd(iy0,jy2);
1812             dz02             = _mm_sub_pd(iz0,jz2);
1813             dx10             = _mm_sub_pd(ix1,jx0);
1814             dy10             = _mm_sub_pd(iy1,jy0);
1815             dz10             = _mm_sub_pd(iz1,jz0);
1816             dx11             = _mm_sub_pd(ix1,jx1);
1817             dy11             = _mm_sub_pd(iy1,jy1);
1818             dz11             = _mm_sub_pd(iz1,jz1);
1819             dx12             = _mm_sub_pd(ix1,jx2);
1820             dy12             = _mm_sub_pd(iy1,jy2);
1821             dz12             = _mm_sub_pd(iz1,jz2);
1822             dx20             = _mm_sub_pd(ix2,jx0);
1823             dy20             = _mm_sub_pd(iy2,jy0);
1824             dz20             = _mm_sub_pd(iz2,jz0);
1825             dx21             = _mm_sub_pd(ix2,jx1);
1826             dy21             = _mm_sub_pd(iy2,jy1);
1827             dz21             = _mm_sub_pd(iz2,jz1);
1828             dx22             = _mm_sub_pd(ix2,jx2);
1829             dy22             = _mm_sub_pd(iy2,jy2);
1830             dz22             = _mm_sub_pd(iz2,jz2);
1831
1832             /* Calculate squared distance and things based on it */
1833             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1834             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1835             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1836             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1837             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1838             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1839             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1840             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1841             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1842
1843             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1844             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1845             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1846             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1847             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1848             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1849             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1850             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1851             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1852
1853             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1854             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1855             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1856             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1857             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1858             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1859             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1860             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1861             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1862
1863             fjx0             = _mm_setzero_pd();
1864             fjy0             = _mm_setzero_pd();
1865             fjz0             = _mm_setzero_pd();
1866             fjx1             = _mm_setzero_pd();
1867             fjy1             = _mm_setzero_pd();
1868             fjz1             = _mm_setzero_pd();
1869             fjx2             = _mm_setzero_pd();
1870             fjy2             = _mm_setzero_pd();
1871             fjz2             = _mm_setzero_pd();
1872
1873             /**************************
1874              * CALCULATE INTERACTIONS *
1875              **************************/
1876
1877             if (gmx_mm_any_lt(rsq00,rcutoff2))
1878             {
1879
1880             r00              = _mm_mul_pd(rsq00,rinv00);
1881
1882             /* EWALD ELECTROSTATICS */
1883
1884             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1885             ewrt             = _mm_mul_pd(r00,ewtabscale);
1886             ewitab           = _mm_cvttpd_epi32(ewrt);
1887 #ifdef __XOP__
1888             eweps            = _mm_frcz_pd(ewrt);
1889 #else
1890             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1891 #endif
1892             twoeweps         = _mm_add_pd(eweps,eweps);
1893             ewitab           = _mm_slli_epi32(ewitab,2);
1894             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1895             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1896             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1897             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1898             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1899             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1900             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1901             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1902             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
1903             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1904
1905             /* LENNARD-JONES DISPERSION/REPULSION */
1906
1907             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1908             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1909             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1910             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1911             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1912
1913             d                = _mm_sub_pd(r00,rswitch);
1914             d                = _mm_max_pd(d,_mm_setzero_pd());
1915             d2               = _mm_mul_pd(d,d);
1916             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1917
1918             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1919
1920             /* Evaluate switch function */
1921             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1922             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
1923             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1924             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1925
1926             fscal            = _mm_add_pd(felec,fvdw);
1927
1928             fscal            = _mm_and_pd(fscal,cutoff_mask);
1929
1930             /* Update vectorial force */
1931             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1932             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1933             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1934             
1935             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1936             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1937             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1938
1939             }
1940
1941             /**************************
1942              * CALCULATE INTERACTIONS *
1943              **************************/
1944
1945             if (gmx_mm_any_lt(rsq01,rcutoff2))
1946             {
1947
1948             r01              = _mm_mul_pd(rsq01,rinv01);
1949
1950             /* EWALD ELECTROSTATICS */
1951
1952             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1953             ewrt             = _mm_mul_pd(r01,ewtabscale);
1954             ewitab           = _mm_cvttpd_epi32(ewrt);
1955 #ifdef __XOP__
1956             eweps            = _mm_frcz_pd(ewrt);
1957 #else
1958             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1959 #endif
1960             twoeweps         = _mm_add_pd(eweps,eweps);
1961             ewitab           = _mm_slli_epi32(ewitab,2);
1962             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1963             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1964             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1965             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1966             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1967             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1968             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1969             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1970             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
1971             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1972
1973             d                = _mm_sub_pd(r01,rswitch);
1974             d                = _mm_max_pd(d,_mm_setzero_pd());
1975             d2               = _mm_mul_pd(d,d);
1976             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1977
1978             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1979
1980             /* Evaluate switch function */
1981             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1982             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv01,_mm_mul_pd(velec,dsw)) );
1983             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
1984
1985             fscal            = felec;
1986
1987             fscal            = _mm_and_pd(fscal,cutoff_mask);
1988
1989             /* Update vectorial force */
1990             fix0             = _mm_macc_pd(dx01,fscal,fix0);
1991             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
1992             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
1993             
1994             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
1995             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
1996             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
1997
1998             }
1999
2000             /**************************
2001              * CALCULATE INTERACTIONS *
2002              **************************/
2003
2004             if (gmx_mm_any_lt(rsq02,rcutoff2))
2005             {
2006
2007             r02              = _mm_mul_pd(rsq02,rinv02);
2008
2009             /* EWALD ELECTROSTATICS */
2010
2011             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2012             ewrt             = _mm_mul_pd(r02,ewtabscale);
2013             ewitab           = _mm_cvttpd_epi32(ewrt);
2014 #ifdef __XOP__
2015             eweps            = _mm_frcz_pd(ewrt);
2016 #else
2017             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2018 #endif
2019             twoeweps         = _mm_add_pd(eweps,eweps);
2020             ewitab           = _mm_slli_epi32(ewitab,2);
2021             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2022             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
2023             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2024             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2025             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
2026             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2027             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2028             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2029             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
2030             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2031
2032             d                = _mm_sub_pd(r02,rswitch);
2033             d                = _mm_max_pd(d,_mm_setzero_pd());
2034             d2               = _mm_mul_pd(d,d);
2035             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2036
2037             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2038
2039             /* Evaluate switch function */
2040             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2041             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv02,_mm_mul_pd(velec,dsw)) );
2042             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
2043
2044             fscal            = felec;
2045
2046             fscal            = _mm_and_pd(fscal,cutoff_mask);
2047
2048             /* Update vectorial force */
2049             fix0             = _mm_macc_pd(dx02,fscal,fix0);
2050             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
2051             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
2052             
2053             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
2054             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
2055             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
2056
2057             }
2058
2059             /**************************
2060              * CALCULATE INTERACTIONS *
2061              **************************/
2062
2063             if (gmx_mm_any_lt(rsq10,rcutoff2))
2064             {
2065
2066             r10              = _mm_mul_pd(rsq10,rinv10);
2067
2068             /* EWALD ELECTROSTATICS */
2069
2070             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2071             ewrt             = _mm_mul_pd(r10,ewtabscale);
2072             ewitab           = _mm_cvttpd_epi32(ewrt);
2073 #ifdef __XOP__
2074             eweps            = _mm_frcz_pd(ewrt);
2075 #else
2076             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2077 #endif
2078             twoeweps         = _mm_add_pd(eweps,eweps);
2079             ewitab           = _mm_slli_epi32(ewitab,2);
2080             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2081             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
2082             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2083             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2084             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
2085             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2086             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2087             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2088             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
2089             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2090
2091             d                = _mm_sub_pd(r10,rswitch);
2092             d                = _mm_max_pd(d,_mm_setzero_pd());
2093             d2               = _mm_mul_pd(d,d);
2094             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2095
2096             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2097
2098             /* Evaluate switch function */
2099             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2100             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
2101             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
2102
2103             fscal            = felec;
2104
2105             fscal            = _mm_and_pd(fscal,cutoff_mask);
2106
2107             /* Update vectorial force */
2108             fix1             = _mm_macc_pd(dx10,fscal,fix1);
2109             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
2110             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
2111             
2112             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
2113             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
2114             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
2115
2116             }
2117
2118             /**************************
2119              * CALCULATE INTERACTIONS *
2120              **************************/
2121
2122             if (gmx_mm_any_lt(rsq11,rcutoff2))
2123             {
2124
2125             r11              = _mm_mul_pd(rsq11,rinv11);
2126
2127             /* EWALD ELECTROSTATICS */
2128
2129             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2130             ewrt             = _mm_mul_pd(r11,ewtabscale);
2131             ewitab           = _mm_cvttpd_epi32(ewrt);
2132 #ifdef __XOP__
2133             eweps            = _mm_frcz_pd(ewrt);
2134 #else
2135             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2136 #endif
2137             twoeweps         = _mm_add_pd(eweps,eweps);
2138             ewitab           = _mm_slli_epi32(ewitab,2);
2139             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2140             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
2141             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2142             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2143             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
2144             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2145             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2146             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2147             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
2148             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2149
2150             d                = _mm_sub_pd(r11,rswitch);
2151             d                = _mm_max_pd(d,_mm_setzero_pd());
2152             d2               = _mm_mul_pd(d,d);
2153             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2154
2155             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2156
2157             /* Evaluate switch function */
2158             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2159             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv11,_mm_mul_pd(velec,dsw)) );
2160             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2161
2162             fscal            = felec;
2163
2164             fscal            = _mm_and_pd(fscal,cutoff_mask);
2165
2166             /* Update vectorial force */
2167             fix1             = _mm_macc_pd(dx11,fscal,fix1);
2168             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
2169             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
2170             
2171             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
2172             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
2173             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
2174
2175             }
2176
2177             /**************************
2178              * CALCULATE INTERACTIONS *
2179              **************************/
2180
2181             if (gmx_mm_any_lt(rsq12,rcutoff2))
2182             {
2183
2184             r12              = _mm_mul_pd(rsq12,rinv12);
2185
2186             /* EWALD ELECTROSTATICS */
2187
2188             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2189             ewrt             = _mm_mul_pd(r12,ewtabscale);
2190             ewitab           = _mm_cvttpd_epi32(ewrt);
2191 #ifdef __XOP__
2192             eweps            = _mm_frcz_pd(ewrt);
2193 #else
2194             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2195 #endif
2196             twoeweps         = _mm_add_pd(eweps,eweps);
2197             ewitab           = _mm_slli_epi32(ewitab,2);
2198             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2199             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
2200             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2201             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2202             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
2203             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2204             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2205             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2206             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
2207             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2208
2209             d                = _mm_sub_pd(r12,rswitch);
2210             d                = _mm_max_pd(d,_mm_setzero_pd());
2211             d2               = _mm_mul_pd(d,d);
2212             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2213
2214             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2215
2216             /* Evaluate switch function */
2217             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2218             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv12,_mm_mul_pd(velec,dsw)) );
2219             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2220
2221             fscal            = felec;
2222
2223             fscal            = _mm_and_pd(fscal,cutoff_mask);
2224
2225             /* Update vectorial force */
2226             fix1             = _mm_macc_pd(dx12,fscal,fix1);
2227             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
2228             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
2229             
2230             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
2231             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
2232             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
2233
2234             }
2235
2236             /**************************
2237              * CALCULATE INTERACTIONS *
2238              **************************/
2239
2240             if (gmx_mm_any_lt(rsq20,rcutoff2))
2241             {
2242
2243             r20              = _mm_mul_pd(rsq20,rinv20);
2244
2245             /* EWALD ELECTROSTATICS */
2246
2247             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2248             ewrt             = _mm_mul_pd(r20,ewtabscale);
2249             ewitab           = _mm_cvttpd_epi32(ewrt);
2250 #ifdef __XOP__
2251             eweps            = _mm_frcz_pd(ewrt);
2252 #else
2253             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2254 #endif
2255             twoeweps         = _mm_add_pd(eweps,eweps);
2256             ewitab           = _mm_slli_epi32(ewitab,2);
2257             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2258             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
2259             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2260             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2261             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
2262             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2263             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2264             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2265             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
2266             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2267
2268             d                = _mm_sub_pd(r20,rswitch);
2269             d                = _mm_max_pd(d,_mm_setzero_pd());
2270             d2               = _mm_mul_pd(d,d);
2271             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2272
2273             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2274
2275             /* Evaluate switch function */
2276             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2277             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
2278             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
2279
2280             fscal            = felec;
2281
2282             fscal            = _mm_and_pd(fscal,cutoff_mask);
2283
2284             /* Update vectorial force */
2285             fix2             = _mm_macc_pd(dx20,fscal,fix2);
2286             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
2287             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
2288             
2289             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
2290             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
2291             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
2292
2293             }
2294
2295             /**************************
2296              * CALCULATE INTERACTIONS *
2297              **************************/
2298
2299             if (gmx_mm_any_lt(rsq21,rcutoff2))
2300             {
2301
2302             r21              = _mm_mul_pd(rsq21,rinv21);
2303
2304             /* EWALD ELECTROSTATICS */
2305
2306             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2307             ewrt             = _mm_mul_pd(r21,ewtabscale);
2308             ewitab           = _mm_cvttpd_epi32(ewrt);
2309 #ifdef __XOP__
2310             eweps            = _mm_frcz_pd(ewrt);
2311 #else
2312             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2313 #endif
2314             twoeweps         = _mm_add_pd(eweps,eweps);
2315             ewitab           = _mm_slli_epi32(ewitab,2);
2316             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2317             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
2318             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2319             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2320             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
2321             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2322             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2323             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2324             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
2325             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2326
2327             d                = _mm_sub_pd(r21,rswitch);
2328             d                = _mm_max_pd(d,_mm_setzero_pd());
2329             d2               = _mm_mul_pd(d,d);
2330             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2331
2332             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2333
2334             /* Evaluate switch function */
2335             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2336             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv21,_mm_mul_pd(velec,dsw)) );
2337             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2338
2339             fscal            = felec;
2340
2341             fscal            = _mm_and_pd(fscal,cutoff_mask);
2342
2343             /* Update vectorial force */
2344             fix2             = _mm_macc_pd(dx21,fscal,fix2);
2345             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
2346             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
2347             
2348             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
2349             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
2350             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
2351
2352             }
2353
2354             /**************************
2355              * CALCULATE INTERACTIONS *
2356              **************************/
2357
2358             if (gmx_mm_any_lt(rsq22,rcutoff2))
2359             {
2360
2361             r22              = _mm_mul_pd(rsq22,rinv22);
2362
2363             /* EWALD ELECTROSTATICS */
2364
2365             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2366             ewrt             = _mm_mul_pd(r22,ewtabscale);
2367             ewitab           = _mm_cvttpd_epi32(ewrt);
2368 #ifdef __XOP__
2369             eweps            = _mm_frcz_pd(ewrt);
2370 #else
2371             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2372 #endif
2373             twoeweps         = _mm_add_pd(eweps,eweps);
2374             ewitab           = _mm_slli_epi32(ewitab,2);
2375             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2376             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
2377             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2378             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2379             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
2380             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2381             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2382             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2383             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
2384             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2385
2386             d                = _mm_sub_pd(r22,rswitch);
2387             d                = _mm_max_pd(d,_mm_setzero_pd());
2388             d2               = _mm_mul_pd(d,d);
2389             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2390
2391             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2392
2393             /* Evaluate switch function */
2394             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2395             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv22,_mm_mul_pd(velec,dsw)) );
2396             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2397
2398             fscal            = felec;
2399
2400             fscal            = _mm_and_pd(fscal,cutoff_mask);
2401
2402             /* Update vectorial force */
2403             fix2             = _mm_macc_pd(dx22,fscal,fix2);
2404             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
2405             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
2406             
2407             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
2408             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
2409             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
2410
2411             }
2412
2413             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2414
2415             /* Inner loop uses 600 flops */
2416         }
2417
2418         if(jidx<j_index_end)
2419         {
2420
2421             jnrA             = jjnr[jidx];
2422             j_coord_offsetA  = DIM*jnrA;
2423
2424             /* load j atom coordinates */
2425             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
2426                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
2427
2428             /* Calculate displacement vector */
2429             dx00             = _mm_sub_pd(ix0,jx0);
2430             dy00             = _mm_sub_pd(iy0,jy0);
2431             dz00             = _mm_sub_pd(iz0,jz0);
2432             dx01             = _mm_sub_pd(ix0,jx1);
2433             dy01             = _mm_sub_pd(iy0,jy1);
2434             dz01             = _mm_sub_pd(iz0,jz1);
2435             dx02             = _mm_sub_pd(ix0,jx2);
2436             dy02             = _mm_sub_pd(iy0,jy2);
2437             dz02             = _mm_sub_pd(iz0,jz2);
2438             dx10             = _mm_sub_pd(ix1,jx0);
2439             dy10             = _mm_sub_pd(iy1,jy0);
2440             dz10             = _mm_sub_pd(iz1,jz0);
2441             dx11             = _mm_sub_pd(ix1,jx1);
2442             dy11             = _mm_sub_pd(iy1,jy1);
2443             dz11             = _mm_sub_pd(iz1,jz1);
2444             dx12             = _mm_sub_pd(ix1,jx2);
2445             dy12             = _mm_sub_pd(iy1,jy2);
2446             dz12             = _mm_sub_pd(iz1,jz2);
2447             dx20             = _mm_sub_pd(ix2,jx0);
2448             dy20             = _mm_sub_pd(iy2,jy0);
2449             dz20             = _mm_sub_pd(iz2,jz0);
2450             dx21             = _mm_sub_pd(ix2,jx1);
2451             dy21             = _mm_sub_pd(iy2,jy1);
2452             dz21             = _mm_sub_pd(iz2,jz1);
2453             dx22             = _mm_sub_pd(ix2,jx2);
2454             dy22             = _mm_sub_pd(iy2,jy2);
2455             dz22             = _mm_sub_pd(iz2,jz2);
2456
2457             /* Calculate squared distance and things based on it */
2458             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2459             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
2460             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
2461             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
2462             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2463             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2464             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
2465             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2466             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2467
2468             rinv00           = gmx_mm_invsqrt_pd(rsq00);
2469             rinv01           = gmx_mm_invsqrt_pd(rsq01);
2470             rinv02           = gmx_mm_invsqrt_pd(rsq02);
2471             rinv10           = gmx_mm_invsqrt_pd(rsq10);
2472             rinv11           = gmx_mm_invsqrt_pd(rsq11);
2473             rinv12           = gmx_mm_invsqrt_pd(rsq12);
2474             rinv20           = gmx_mm_invsqrt_pd(rsq20);
2475             rinv21           = gmx_mm_invsqrt_pd(rsq21);
2476             rinv22           = gmx_mm_invsqrt_pd(rsq22);
2477
2478             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
2479             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
2480             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
2481             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
2482             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2483             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2484             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
2485             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2486             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2487
2488             fjx0             = _mm_setzero_pd();
2489             fjy0             = _mm_setzero_pd();
2490             fjz0             = _mm_setzero_pd();
2491             fjx1             = _mm_setzero_pd();
2492             fjy1             = _mm_setzero_pd();
2493             fjz1             = _mm_setzero_pd();
2494             fjx2             = _mm_setzero_pd();
2495             fjy2             = _mm_setzero_pd();
2496             fjz2             = _mm_setzero_pd();
2497
2498             /**************************
2499              * CALCULATE INTERACTIONS *
2500              **************************/
2501
2502             if (gmx_mm_any_lt(rsq00,rcutoff2))
2503             {
2504
2505             r00              = _mm_mul_pd(rsq00,rinv00);
2506
2507             /* EWALD ELECTROSTATICS */
2508
2509             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2510             ewrt             = _mm_mul_pd(r00,ewtabscale);
2511             ewitab           = _mm_cvttpd_epi32(ewrt);
2512 #ifdef __XOP__
2513             eweps            = _mm_frcz_pd(ewrt);
2514 #else
2515             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2516 #endif
2517             twoeweps         = _mm_add_pd(eweps,eweps);
2518             ewitab           = _mm_slli_epi32(ewitab,2);
2519             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2520             ewtabD           = _mm_setzero_pd();
2521             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2522             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2523             ewtabFn          = _mm_setzero_pd();
2524             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2525             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2526             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2527             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
2528             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
2529
2530             /* LENNARD-JONES DISPERSION/REPULSION */
2531
2532             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
2533             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
2534             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
2535             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
2536             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
2537
2538             d                = _mm_sub_pd(r00,rswitch);
2539             d                = _mm_max_pd(d,_mm_setzero_pd());
2540             d2               = _mm_mul_pd(d,d);
2541             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2542
2543             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2544
2545             /* Evaluate switch function */
2546             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2547             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
2548             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
2549             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
2550
2551             fscal            = _mm_add_pd(felec,fvdw);
2552
2553             fscal            = _mm_and_pd(fscal,cutoff_mask);
2554
2555             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2556
2557             /* Update vectorial force */
2558             fix0             = _mm_macc_pd(dx00,fscal,fix0);
2559             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
2560             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
2561             
2562             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
2563             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
2564             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
2565
2566             }
2567
2568             /**************************
2569              * CALCULATE INTERACTIONS *
2570              **************************/
2571
2572             if (gmx_mm_any_lt(rsq01,rcutoff2))
2573             {
2574
2575             r01              = _mm_mul_pd(rsq01,rinv01);
2576
2577             /* EWALD ELECTROSTATICS */
2578
2579             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2580             ewrt             = _mm_mul_pd(r01,ewtabscale);
2581             ewitab           = _mm_cvttpd_epi32(ewrt);
2582 #ifdef __XOP__
2583             eweps            = _mm_frcz_pd(ewrt);
2584 #else
2585             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2586 #endif
2587             twoeweps         = _mm_add_pd(eweps,eweps);
2588             ewitab           = _mm_slli_epi32(ewitab,2);
2589             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2590             ewtabD           = _mm_setzero_pd();
2591             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2592             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2593             ewtabFn          = _mm_setzero_pd();
2594             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2595             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2596             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2597             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
2598             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2599
2600             d                = _mm_sub_pd(r01,rswitch);
2601             d                = _mm_max_pd(d,_mm_setzero_pd());
2602             d2               = _mm_mul_pd(d,d);
2603             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2604
2605             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2606
2607             /* Evaluate switch function */
2608             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2609             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv01,_mm_mul_pd(velec,dsw)) );
2610             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
2611
2612             fscal            = felec;
2613
2614             fscal            = _mm_and_pd(fscal,cutoff_mask);
2615
2616             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2617
2618             /* Update vectorial force */
2619             fix0             = _mm_macc_pd(dx01,fscal,fix0);
2620             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
2621             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
2622             
2623             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
2624             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
2625             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
2626
2627             }
2628
2629             /**************************
2630              * CALCULATE INTERACTIONS *
2631              **************************/
2632
2633             if (gmx_mm_any_lt(rsq02,rcutoff2))
2634             {
2635
2636             r02              = _mm_mul_pd(rsq02,rinv02);
2637
2638             /* EWALD ELECTROSTATICS */
2639
2640             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2641             ewrt             = _mm_mul_pd(r02,ewtabscale);
2642             ewitab           = _mm_cvttpd_epi32(ewrt);
2643 #ifdef __XOP__
2644             eweps            = _mm_frcz_pd(ewrt);
2645 #else
2646             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2647 #endif
2648             twoeweps         = _mm_add_pd(eweps,eweps);
2649             ewitab           = _mm_slli_epi32(ewitab,2);
2650             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2651             ewtabD           = _mm_setzero_pd();
2652             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2653             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2654             ewtabFn          = _mm_setzero_pd();
2655             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2656             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2657             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2658             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
2659             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2660
2661             d                = _mm_sub_pd(r02,rswitch);
2662             d                = _mm_max_pd(d,_mm_setzero_pd());
2663             d2               = _mm_mul_pd(d,d);
2664             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2665
2666             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2667
2668             /* Evaluate switch function */
2669             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2670             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv02,_mm_mul_pd(velec,dsw)) );
2671             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
2672
2673             fscal            = felec;
2674
2675             fscal            = _mm_and_pd(fscal,cutoff_mask);
2676
2677             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2678
2679             /* Update vectorial force */
2680             fix0             = _mm_macc_pd(dx02,fscal,fix0);
2681             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
2682             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
2683             
2684             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
2685             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
2686             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
2687
2688             }
2689
2690             /**************************
2691              * CALCULATE INTERACTIONS *
2692              **************************/
2693
2694             if (gmx_mm_any_lt(rsq10,rcutoff2))
2695             {
2696
2697             r10              = _mm_mul_pd(rsq10,rinv10);
2698
2699             /* EWALD ELECTROSTATICS */
2700
2701             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2702             ewrt             = _mm_mul_pd(r10,ewtabscale);
2703             ewitab           = _mm_cvttpd_epi32(ewrt);
2704 #ifdef __XOP__
2705             eweps            = _mm_frcz_pd(ewrt);
2706 #else
2707             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2708 #endif
2709             twoeweps         = _mm_add_pd(eweps,eweps);
2710             ewitab           = _mm_slli_epi32(ewitab,2);
2711             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2712             ewtabD           = _mm_setzero_pd();
2713             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2714             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2715             ewtabFn          = _mm_setzero_pd();
2716             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2717             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2718             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2719             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
2720             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2721
2722             d                = _mm_sub_pd(r10,rswitch);
2723             d                = _mm_max_pd(d,_mm_setzero_pd());
2724             d2               = _mm_mul_pd(d,d);
2725             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2726
2727             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2728
2729             /* Evaluate switch function */
2730             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2731             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
2732             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
2733
2734             fscal            = felec;
2735
2736             fscal            = _mm_and_pd(fscal,cutoff_mask);
2737
2738             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2739
2740             /* Update vectorial force */
2741             fix1             = _mm_macc_pd(dx10,fscal,fix1);
2742             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
2743             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
2744             
2745             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
2746             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
2747             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
2748
2749             }
2750
2751             /**************************
2752              * CALCULATE INTERACTIONS *
2753              **************************/
2754
2755             if (gmx_mm_any_lt(rsq11,rcutoff2))
2756             {
2757
2758             r11              = _mm_mul_pd(rsq11,rinv11);
2759
2760             /* EWALD ELECTROSTATICS */
2761
2762             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2763             ewrt             = _mm_mul_pd(r11,ewtabscale);
2764             ewitab           = _mm_cvttpd_epi32(ewrt);
2765 #ifdef __XOP__
2766             eweps            = _mm_frcz_pd(ewrt);
2767 #else
2768             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2769 #endif
2770             twoeweps         = _mm_add_pd(eweps,eweps);
2771             ewitab           = _mm_slli_epi32(ewitab,2);
2772             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2773             ewtabD           = _mm_setzero_pd();
2774             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2775             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2776             ewtabFn          = _mm_setzero_pd();
2777             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2778             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2779             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2780             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
2781             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2782
2783             d                = _mm_sub_pd(r11,rswitch);
2784             d                = _mm_max_pd(d,_mm_setzero_pd());
2785             d2               = _mm_mul_pd(d,d);
2786             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2787
2788             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2789
2790             /* Evaluate switch function */
2791             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2792             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv11,_mm_mul_pd(velec,dsw)) );
2793             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2794
2795             fscal            = felec;
2796
2797             fscal            = _mm_and_pd(fscal,cutoff_mask);
2798
2799             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2800
2801             /* Update vectorial force */
2802             fix1             = _mm_macc_pd(dx11,fscal,fix1);
2803             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
2804             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
2805             
2806             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
2807             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
2808             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
2809
2810             }
2811
2812             /**************************
2813              * CALCULATE INTERACTIONS *
2814              **************************/
2815
2816             if (gmx_mm_any_lt(rsq12,rcutoff2))
2817             {
2818
2819             r12              = _mm_mul_pd(rsq12,rinv12);
2820
2821             /* EWALD ELECTROSTATICS */
2822
2823             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2824             ewrt             = _mm_mul_pd(r12,ewtabscale);
2825             ewitab           = _mm_cvttpd_epi32(ewrt);
2826 #ifdef __XOP__
2827             eweps            = _mm_frcz_pd(ewrt);
2828 #else
2829             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2830 #endif
2831             twoeweps         = _mm_add_pd(eweps,eweps);
2832             ewitab           = _mm_slli_epi32(ewitab,2);
2833             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2834             ewtabD           = _mm_setzero_pd();
2835             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2836             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2837             ewtabFn          = _mm_setzero_pd();
2838             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2839             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2840             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2841             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
2842             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2843
2844             d                = _mm_sub_pd(r12,rswitch);
2845             d                = _mm_max_pd(d,_mm_setzero_pd());
2846             d2               = _mm_mul_pd(d,d);
2847             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2848
2849             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2850
2851             /* Evaluate switch function */
2852             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2853             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv12,_mm_mul_pd(velec,dsw)) );
2854             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2855
2856             fscal            = felec;
2857
2858             fscal            = _mm_and_pd(fscal,cutoff_mask);
2859
2860             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2861
2862             /* Update vectorial force */
2863             fix1             = _mm_macc_pd(dx12,fscal,fix1);
2864             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
2865             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
2866             
2867             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
2868             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
2869             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
2870
2871             }
2872
2873             /**************************
2874              * CALCULATE INTERACTIONS *
2875              **************************/
2876
2877             if (gmx_mm_any_lt(rsq20,rcutoff2))
2878             {
2879
2880             r20              = _mm_mul_pd(rsq20,rinv20);
2881
2882             /* EWALD ELECTROSTATICS */
2883
2884             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2885             ewrt             = _mm_mul_pd(r20,ewtabscale);
2886             ewitab           = _mm_cvttpd_epi32(ewrt);
2887 #ifdef __XOP__
2888             eweps            = _mm_frcz_pd(ewrt);
2889 #else
2890             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2891 #endif
2892             twoeweps         = _mm_add_pd(eweps,eweps);
2893             ewitab           = _mm_slli_epi32(ewitab,2);
2894             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2895             ewtabD           = _mm_setzero_pd();
2896             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2897             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2898             ewtabFn          = _mm_setzero_pd();
2899             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2900             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2901             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2902             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
2903             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2904
2905             d                = _mm_sub_pd(r20,rswitch);
2906             d                = _mm_max_pd(d,_mm_setzero_pd());
2907             d2               = _mm_mul_pd(d,d);
2908             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2909
2910             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2911
2912             /* Evaluate switch function */
2913             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2914             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
2915             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
2916
2917             fscal            = felec;
2918
2919             fscal            = _mm_and_pd(fscal,cutoff_mask);
2920
2921             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2922
2923             /* Update vectorial force */
2924             fix2             = _mm_macc_pd(dx20,fscal,fix2);
2925             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
2926             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
2927             
2928             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
2929             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
2930             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
2931
2932             }
2933
2934             /**************************
2935              * CALCULATE INTERACTIONS *
2936              **************************/
2937
2938             if (gmx_mm_any_lt(rsq21,rcutoff2))
2939             {
2940
2941             r21              = _mm_mul_pd(rsq21,rinv21);
2942
2943             /* EWALD ELECTROSTATICS */
2944
2945             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2946             ewrt             = _mm_mul_pd(r21,ewtabscale);
2947             ewitab           = _mm_cvttpd_epi32(ewrt);
2948 #ifdef __XOP__
2949             eweps            = _mm_frcz_pd(ewrt);
2950 #else
2951             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2952 #endif
2953             twoeweps         = _mm_add_pd(eweps,eweps);
2954             ewitab           = _mm_slli_epi32(ewitab,2);
2955             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
2956             ewtabD           = _mm_setzero_pd();
2957             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
2958             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
2959             ewtabFn          = _mm_setzero_pd();
2960             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
2961             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
2962             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
2963             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
2964             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2965
2966             d                = _mm_sub_pd(r21,rswitch);
2967             d                = _mm_max_pd(d,_mm_setzero_pd());
2968             d2               = _mm_mul_pd(d,d);
2969             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
2970
2971             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
2972
2973             /* Evaluate switch function */
2974             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
2975             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv21,_mm_mul_pd(velec,dsw)) );
2976             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2977
2978             fscal            = felec;
2979
2980             fscal            = _mm_and_pd(fscal,cutoff_mask);
2981
2982             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2983
2984             /* Update vectorial force */
2985             fix2             = _mm_macc_pd(dx21,fscal,fix2);
2986             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
2987             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
2988             
2989             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
2990             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
2991             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
2992
2993             }
2994
2995             /**************************
2996              * CALCULATE INTERACTIONS *
2997              **************************/
2998
2999             if (gmx_mm_any_lt(rsq22,rcutoff2))
3000             {
3001
3002             r22              = _mm_mul_pd(rsq22,rinv22);
3003
3004             /* EWALD ELECTROSTATICS */
3005
3006             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
3007             ewrt             = _mm_mul_pd(r22,ewtabscale);
3008             ewitab           = _mm_cvttpd_epi32(ewrt);
3009 #ifdef __XOP__
3010             eweps            = _mm_frcz_pd(ewrt);
3011 #else
3012             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
3013 #endif
3014             twoeweps         = _mm_add_pd(eweps,eweps);
3015             ewitab           = _mm_slli_epi32(ewitab,2);
3016             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
3017             ewtabD           = _mm_setzero_pd();
3018             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
3019             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
3020             ewtabFn          = _mm_setzero_pd();
3021             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
3022             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
3023             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
3024             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
3025             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
3026
3027             d                = _mm_sub_pd(r22,rswitch);
3028             d                = _mm_max_pd(d,_mm_setzero_pd());
3029             d2               = _mm_mul_pd(d,d);
3030             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
3031
3032             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
3033
3034             /* Evaluate switch function */
3035             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
3036             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv22,_mm_mul_pd(velec,dsw)) );
3037             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
3038
3039             fscal            = felec;
3040
3041             fscal            = _mm_and_pd(fscal,cutoff_mask);
3042
3043             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
3044
3045             /* Update vectorial force */
3046             fix2             = _mm_macc_pd(dx22,fscal,fix2);
3047             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
3048             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
3049             
3050             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
3051             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
3052             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
3053
3054             }
3055
3056             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
3057
3058             /* Inner loop uses 600 flops */
3059         }
3060
3061         /* End of innermost loop */
3062
3063         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
3064                                               f+i_coord_offset,fshift+i_shift_offset);
3065
3066         /* Increment number of inner iterations */
3067         inneriter                  += j_index_end - j_index_start;
3068
3069         /* Outer loop uses 18 flops */
3070     }
3071
3072     /* Increment number of outer iterations */
3073     outeriter        += nri;
3074
3075     /* Update outer/inner flops */
3076
3077     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*600);
3078 }