Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          ewitab;
102     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     real             *ewtab;
104     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
105     real             rswitch_scalar,d_scalar;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
128     ewtab            = fr->ic->tabq_coul_FDV0;
129     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
130     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->rcoulomb;
141     rcutoff          = _mm_set1_pd(rcutoff_scalar);
142     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
143
144     rswitch_scalar   = fr->rcoulomb_switch;
145     rswitch          = _mm_set1_pd(rswitch_scalar);
146     /* Setup switch parameters */
147     d_scalar         = rcutoff_scalar-rswitch_scalar;
148     d                = _mm_set1_pd(d_scalar);
149     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
150     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
153     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
154     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181
182         fix0             = _mm_setzero_pd();
183         fiy0             = _mm_setzero_pd();
184         fiz0             = _mm_setzero_pd();
185         fix1             = _mm_setzero_pd();
186         fiy1             = _mm_setzero_pd();
187         fiz1             = _mm_setzero_pd();
188         fix2             = _mm_setzero_pd();
189         fiy2             = _mm_setzero_pd();
190         fiz2             = _mm_setzero_pd();
191
192         /* Reset potential sums */
193         velecsum         = _mm_setzero_pd();
194         vvdwsum          = _mm_setzero_pd();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm_sub_pd(ix0,jx0);
212             dy00             = _mm_sub_pd(iy0,jy0);
213             dz00             = _mm_sub_pd(iz0,jz0);
214             dx10             = _mm_sub_pd(ix1,jx0);
215             dy10             = _mm_sub_pd(iy1,jy0);
216             dz10             = _mm_sub_pd(iz1,jz0);
217             dx20             = _mm_sub_pd(ix2,jx0);
218             dy20             = _mm_sub_pd(iy2,jy0);
219             dz20             = _mm_sub_pd(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
223             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
224             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
225
226             rinv00           = gmx_mm_invsqrt_pd(rsq00);
227             rinv10           = gmx_mm_invsqrt_pd(rsq10);
228             rinv20           = gmx_mm_invsqrt_pd(rsq20);
229
230             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
231             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
232             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238
239             fjx0             = _mm_setzero_pd();
240             fjy0             = _mm_setzero_pd();
241             fjz0             = _mm_setzero_pd();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_mm_any_lt(rsq00,rcutoff2))
248             {
249
250             r00              = _mm_mul_pd(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm_mul_pd(iq0,jq0);
254             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
256
257             /* EWALD ELECTROSTATICS */
258
259             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
260             ewrt             = _mm_mul_pd(r00,ewtabscale);
261             ewitab           = _mm_cvttpd_epi32(ewrt);
262 #ifdef __XOP__
263             eweps            = _mm_frcz_pd(ewrt);
264 #else
265             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
266 #endif
267             twoeweps         = _mm_add_pd(eweps,eweps);
268             ewitab           = _mm_slli_epi32(ewitab,2);
269             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
270             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
271             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
272             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
273             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
274             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
275             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
276             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
277             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
278             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
279
280             /* LENNARD-JONES DISPERSION/REPULSION */
281
282             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
283             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
284             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
285             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
286             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
287
288             d                = _mm_sub_pd(r00,rswitch);
289             d                = _mm_max_pd(d,_mm_setzero_pd());
290             d2               = _mm_mul_pd(d,d);
291             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
292
293             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
294
295             /* Evaluate switch function */
296             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
297             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
298             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
299             velec            = _mm_mul_pd(velec,sw);
300             vvdw             = _mm_mul_pd(vvdw,sw);
301             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velec            = _mm_and_pd(velec,cutoff_mask);
305             velecsum         = _mm_add_pd(velecsum,velec);
306             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
307             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
308
309             fscal            = _mm_add_pd(felec,fvdw);
310
311             fscal            = _mm_and_pd(fscal,cutoff_mask);
312
313             /* Update vectorial force */
314             fix0             = _mm_macc_pd(dx00,fscal,fix0);
315             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
316             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
317             
318             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
319             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
320             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
321
322             }
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             if (gmx_mm_any_lt(rsq10,rcutoff2))
329             {
330
331             r10              = _mm_mul_pd(rsq10,rinv10);
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq10             = _mm_mul_pd(iq1,jq0);
335
336             /* EWALD ELECTROSTATICS */
337
338             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
339             ewrt             = _mm_mul_pd(r10,ewtabscale);
340             ewitab           = _mm_cvttpd_epi32(ewrt);
341 #ifdef __XOP__
342             eweps            = _mm_frcz_pd(ewrt);
343 #else
344             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
345 #endif
346             twoeweps         = _mm_add_pd(eweps,eweps);
347             ewitab           = _mm_slli_epi32(ewitab,2);
348             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
349             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
350             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
351             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
352             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
353             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
354             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
355             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
356             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
357             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
358
359             d                = _mm_sub_pd(r10,rswitch);
360             d                = _mm_max_pd(d,_mm_setzero_pd());
361             d2               = _mm_mul_pd(d,d);
362             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
363
364             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
365
366             /* Evaluate switch function */
367             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
368             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
369             velec            = _mm_mul_pd(velec,sw);
370             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velec            = _mm_and_pd(velec,cutoff_mask);
374             velecsum         = _mm_add_pd(velecsum,velec);
375
376             fscal            = felec;
377
378             fscal            = _mm_and_pd(fscal,cutoff_mask);
379
380             /* Update vectorial force */
381             fix1             = _mm_macc_pd(dx10,fscal,fix1);
382             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
383             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
384             
385             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
386             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
387             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
388
389             }
390
391             /**************************
392              * CALCULATE INTERACTIONS *
393              **************************/
394
395             if (gmx_mm_any_lt(rsq20,rcutoff2))
396             {
397
398             r20              = _mm_mul_pd(rsq20,rinv20);
399
400             /* Compute parameters for interactions between i and j atoms */
401             qq20             = _mm_mul_pd(iq2,jq0);
402
403             /* EWALD ELECTROSTATICS */
404
405             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
406             ewrt             = _mm_mul_pd(r20,ewtabscale);
407             ewitab           = _mm_cvttpd_epi32(ewrt);
408 #ifdef __XOP__
409             eweps            = _mm_frcz_pd(ewrt);
410 #else
411             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
412 #endif
413             twoeweps         = _mm_add_pd(eweps,eweps);
414             ewitab           = _mm_slli_epi32(ewitab,2);
415             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
416             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
417             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
418             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
419             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
420             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
421             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
422             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
423             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
424             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
425
426             d                = _mm_sub_pd(r20,rswitch);
427             d                = _mm_max_pd(d,_mm_setzero_pd());
428             d2               = _mm_mul_pd(d,d);
429             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
430
431             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
432
433             /* Evaluate switch function */
434             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
435             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
436             velec            = _mm_mul_pd(velec,sw);
437             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
438
439             /* Update potential sum for this i atom from the interaction with this j atom. */
440             velec            = _mm_and_pd(velec,cutoff_mask);
441             velecsum         = _mm_add_pd(velecsum,velec);
442
443             fscal            = felec;
444
445             fscal            = _mm_and_pd(fscal,cutoff_mask);
446
447             /* Update vectorial force */
448             fix2             = _mm_macc_pd(dx20,fscal,fix2);
449             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
450             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
451             
452             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
453             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
454             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
455
456             }
457
458             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
459
460             /* Inner loop uses 225 flops */
461         }
462
463         if(jidx<j_index_end)
464         {
465
466             jnrA             = jjnr[jidx];
467             j_coord_offsetA  = DIM*jnrA;
468
469             /* load j atom coordinates */
470             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
471                                               &jx0,&jy0,&jz0);
472
473             /* Calculate displacement vector */
474             dx00             = _mm_sub_pd(ix0,jx0);
475             dy00             = _mm_sub_pd(iy0,jy0);
476             dz00             = _mm_sub_pd(iz0,jz0);
477             dx10             = _mm_sub_pd(ix1,jx0);
478             dy10             = _mm_sub_pd(iy1,jy0);
479             dz10             = _mm_sub_pd(iz1,jz0);
480             dx20             = _mm_sub_pd(ix2,jx0);
481             dy20             = _mm_sub_pd(iy2,jy0);
482             dz20             = _mm_sub_pd(iz2,jz0);
483
484             /* Calculate squared distance and things based on it */
485             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
486             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
487             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
488
489             rinv00           = gmx_mm_invsqrt_pd(rsq00);
490             rinv10           = gmx_mm_invsqrt_pd(rsq10);
491             rinv20           = gmx_mm_invsqrt_pd(rsq20);
492
493             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
494             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
495             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
496
497             /* Load parameters for j particles */
498             jq0              = _mm_load_sd(charge+jnrA+0);
499             vdwjidx0A        = 2*vdwtype[jnrA+0];
500
501             fjx0             = _mm_setzero_pd();
502             fjy0             = _mm_setzero_pd();
503             fjz0             = _mm_setzero_pd();
504
505             /**************************
506              * CALCULATE INTERACTIONS *
507              **************************/
508
509             if (gmx_mm_any_lt(rsq00,rcutoff2))
510             {
511
512             r00              = _mm_mul_pd(rsq00,rinv00);
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq00             = _mm_mul_pd(iq0,jq0);
516             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
517
518             /* EWALD ELECTROSTATICS */
519
520             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
521             ewrt             = _mm_mul_pd(r00,ewtabscale);
522             ewitab           = _mm_cvttpd_epi32(ewrt);
523 #ifdef __XOP__
524             eweps            = _mm_frcz_pd(ewrt);
525 #else
526             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
527 #endif
528             twoeweps         = _mm_add_pd(eweps,eweps);
529             ewitab           = _mm_slli_epi32(ewitab,2);
530             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
531             ewtabD           = _mm_setzero_pd();
532             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
533             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
534             ewtabFn          = _mm_setzero_pd();
535             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
536             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
537             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
538             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
539             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
540
541             /* LENNARD-JONES DISPERSION/REPULSION */
542
543             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
544             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
545             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
546             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
547             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
548
549             d                = _mm_sub_pd(r00,rswitch);
550             d                = _mm_max_pd(d,_mm_setzero_pd());
551             d2               = _mm_mul_pd(d,d);
552             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
553
554             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
555
556             /* Evaluate switch function */
557             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
558             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
559             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
560             velec            = _mm_mul_pd(velec,sw);
561             vvdw             = _mm_mul_pd(vvdw,sw);
562             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
563
564             /* Update potential sum for this i atom from the interaction with this j atom. */
565             velec            = _mm_and_pd(velec,cutoff_mask);
566             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
567             velecsum         = _mm_add_pd(velecsum,velec);
568             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
569             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
570             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
571
572             fscal            = _mm_add_pd(felec,fvdw);
573
574             fscal            = _mm_and_pd(fscal,cutoff_mask);
575
576             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
577
578             /* Update vectorial force */
579             fix0             = _mm_macc_pd(dx00,fscal,fix0);
580             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
581             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
582             
583             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
584             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
585             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
586
587             }
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             if (gmx_mm_any_lt(rsq10,rcutoff2))
594             {
595
596             r10              = _mm_mul_pd(rsq10,rinv10);
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq10             = _mm_mul_pd(iq1,jq0);
600
601             /* EWALD ELECTROSTATICS */
602
603             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
604             ewrt             = _mm_mul_pd(r10,ewtabscale);
605             ewitab           = _mm_cvttpd_epi32(ewrt);
606 #ifdef __XOP__
607             eweps            = _mm_frcz_pd(ewrt);
608 #else
609             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
610 #endif
611             twoeweps         = _mm_add_pd(eweps,eweps);
612             ewitab           = _mm_slli_epi32(ewitab,2);
613             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
614             ewtabD           = _mm_setzero_pd();
615             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
616             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
617             ewtabFn          = _mm_setzero_pd();
618             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
619             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
620             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
621             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
622             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
623
624             d                = _mm_sub_pd(r10,rswitch);
625             d                = _mm_max_pd(d,_mm_setzero_pd());
626             d2               = _mm_mul_pd(d,d);
627             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
628
629             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
630
631             /* Evaluate switch function */
632             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
633             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
634             velec            = _mm_mul_pd(velec,sw);
635             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
636
637             /* Update potential sum for this i atom from the interaction with this j atom. */
638             velec            = _mm_and_pd(velec,cutoff_mask);
639             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
640             velecsum         = _mm_add_pd(velecsum,velec);
641
642             fscal            = felec;
643
644             fscal            = _mm_and_pd(fscal,cutoff_mask);
645
646             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
647
648             /* Update vectorial force */
649             fix1             = _mm_macc_pd(dx10,fscal,fix1);
650             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
651             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
652             
653             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
654             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
655             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
656
657             }
658
659             /**************************
660              * CALCULATE INTERACTIONS *
661              **************************/
662
663             if (gmx_mm_any_lt(rsq20,rcutoff2))
664             {
665
666             r20              = _mm_mul_pd(rsq20,rinv20);
667
668             /* Compute parameters for interactions between i and j atoms */
669             qq20             = _mm_mul_pd(iq2,jq0);
670
671             /* EWALD ELECTROSTATICS */
672
673             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
674             ewrt             = _mm_mul_pd(r20,ewtabscale);
675             ewitab           = _mm_cvttpd_epi32(ewrt);
676 #ifdef __XOP__
677             eweps            = _mm_frcz_pd(ewrt);
678 #else
679             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
680 #endif
681             twoeweps         = _mm_add_pd(eweps,eweps);
682             ewitab           = _mm_slli_epi32(ewitab,2);
683             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
684             ewtabD           = _mm_setzero_pd();
685             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
686             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
687             ewtabFn          = _mm_setzero_pd();
688             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
689             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
690             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
691             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
692             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
693
694             d                = _mm_sub_pd(r20,rswitch);
695             d                = _mm_max_pd(d,_mm_setzero_pd());
696             d2               = _mm_mul_pd(d,d);
697             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
698
699             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
700
701             /* Evaluate switch function */
702             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
703             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
704             velec            = _mm_mul_pd(velec,sw);
705             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
706
707             /* Update potential sum for this i atom from the interaction with this j atom. */
708             velec            = _mm_and_pd(velec,cutoff_mask);
709             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
710             velecsum         = _mm_add_pd(velecsum,velec);
711
712             fscal            = felec;
713
714             fscal            = _mm_and_pd(fscal,cutoff_mask);
715
716             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
717
718             /* Update vectorial force */
719             fix2             = _mm_macc_pd(dx20,fscal,fix2);
720             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
721             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
722             
723             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
724             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
725             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
726
727             }
728
729             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
730
731             /* Inner loop uses 225 flops */
732         }
733
734         /* End of innermost loop */
735
736         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
737                                               f+i_coord_offset,fshift+i_shift_offset);
738
739         ggid                        = gid[iidx];
740         /* Update potential energies */
741         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
742         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
743
744         /* Increment number of inner iterations */
745         inneriter                  += j_index_end - j_index_start;
746
747         /* Outer loop uses 20 flops */
748     }
749
750     /* Increment number of outer iterations */
751     outeriter        += nri;
752
753     /* Update outer/inner flops */
754
755     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*225);
756 }
757 /*
758  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_double
759  * Electrostatics interaction: Ewald
760  * VdW interaction:            LennardJones
761  * Geometry:                   Water3-Particle
762  * Calculate force/pot:        Force
763  */
764 void
765 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_double
766                     (t_nblist                    * gmx_restrict       nlist,
767                      rvec                        * gmx_restrict          xx,
768                      rvec                        * gmx_restrict          ff,
769                      t_forcerec                  * gmx_restrict          fr,
770                      t_mdatoms                   * gmx_restrict     mdatoms,
771                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
772                      t_nrnb                      * gmx_restrict        nrnb)
773 {
774     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
775      * just 0 for non-waters.
776      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
777      * jnr indices corresponding to data put in the four positions in the SIMD register.
778      */
779     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
780     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
781     int              jnrA,jnrB;
782     int              j_coord_offsetA,j_coord_offsetB;
783     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
784     real             rcutoff_scalar;
785     real             *shiftvec,*fshift,*x,*f;
786     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
787     int              vdwioffset0;
788     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
789     int              vdwioffset1;
790     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
791     int              vdwioffset2;
792     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
793     int              vdwjidx0A,vdwjidx0B;
794     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
795     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
796     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
797     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
798     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
799     real             *charge;
800     int              nvdwtype;
801     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
802     int              *vdwtype;
803     real             *vdwparam;
804     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
805     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
806     __m128i          ewitab;
807     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
808     real             *ewtab;
809     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
810     real             rswitch_scalar,d_scalar;
811     __m128d          dummy_mask,cutoff_mask;
812     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
813     __m128d          one     = _mm_set1_pd(1.0);
814     __m128d          two     = _mm_set1_pd(2.0);
815     x                = xx[0];
816     f                = ff[0];
817
818     nri              = nlist->nri;
819     iinr             = nlist->iinr;
820     jindex           = nlist->jindex;
821     jjnr             = nlist->jjnr;
822     shiftidx         = nlist->shift;
823     gid              = nlist->gid;
824     shiftvec         = fr->shift_vec[0];
825     fshift           = fr->fshift[0];
826     facel            = _mm_set1_pd(fr->epsfac);
827     charge           = mdatoms->chargeA;
828     nvdwtype         = fr->ntype;
829     vdwparam         = fr->nbfp;
830     vdwtype          = mdatoms->typeA;
831
832     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
833     ewtab            = fr->ic->tabq_coul_FDV0;
834     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
835     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
836
837     /* Setup water-specific parameters */
838     inr              = nlist->iinr[0];
839     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
840     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
841     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
842     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
843
844     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
845     rcutoff_scalar   = fr->rcoulomb;
846     rcutoff          = _mm_set1_pd(rcutoff_scalar);
847     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
848
849     rswitch_scalar   = fr->rcoulomb_switch;
850     rswitch          = _mm_set1_pd(rswitch_scalar);
851     /* Setup switch parameters */
852     d_scalar         = rcutoff_scalar-rswitch_scalar;
853     d                = _mm_set1_pd(d_scalar);
854     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
855     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
856     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
857     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
858     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
859     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
860
861     /* Avoid stupid compiler warnings */
862     jnrA = jnrB = 0;
863     j_coord_offsetA = 0;
864     j_coord_offsetB = 0;
865
866     outeriter        = 0;
867     inneriter        = 0;
868
869     /* Start outer loop over neighborlists */
870     for(iidx=0; iidx<nri; iidx++)
871     {
872         /* Load shift vector for this list */
873         i_shift_offset   = DIM*shiftidx[iidx];
874
875         /* Load limits for loop over neighbors */
876         j_index_start    = jindex[iidx];
877         j_index_end      = jindex[iidx+1];
878
879         /* Get outer coordinate index */
880         inr              = iinr[iidx];
881         i_coord_offset   = DIM*inr;
882
883         /* Load i particle coords and add shift vector */
884         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
885                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
886
887         fix0             = _mm_setzero_pd();
888         fiy0             = _mm_setzero_pd();
889         fiz0             = _mm_setzero_pd();
890         fix1             = _mm_setzero_pd();
891         fiy1             = _mm_setzero_pd();
892         fiz1             = _mm_setzero_pd();
893         fix2             = _mm_setzero_pd();
894         fiy2             = _mm_setzero_pd();
895         fiz2             = _mm_setzero_pd();
896
897         /* Start inner kernel loop */
898         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
899         {
900
901             /* Get j neighbor index, and coordinate index */
902             jnrA             = jjnr[jidx];
903             jnrB             = jjnr[jidx+1];
904             j_coord_offsetA  = DIM*jnrA;
905             j_coord_offsetB  = DIM*jnrB;
906
907             /* load j atom coordinates */
908             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
909                                               &jx0,&jy0,&jz0);
910
911             /* Calculate displacement vector */
912             dx00             = _mm_sub_pd(ix0,jx0);
913             dy00             = _mm_sub_pd(iy0,jy0);
914             dz00             = _mm_sub_pd(iz0,jz0);
915             dx10             = _mm_sub_pd(ix1,jx0);
916             dy10             = _mm_sub_pd(iy1,jy0);
917             dz10             = _mm_sub_pd(iz1,jz0);
918             dx20             = _mm_sub_pd(ix2,jx0);
919             dy20             = _mm_sub_pd(iy2,jy0);
920             dz20             = _mm_sub_pd(iz2,jz0);
921
922             /* Calculate squared distance and things based on it */
923             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
924             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
925             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
926
927             rinv00           = gmx_mm_invsqrt_pd(rsq00);
928             rinv10           = gmx_mm_invsqrt_pd(rsq10);
929             rinv20           = gmx_mm_invsqrt_pd(rsq20);
930
931             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
932             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
933             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
934
935             /* Load parameters for j particles */
936             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
937             vdwjidx0A        = 2*vdwtype[jnrA+0];
938             vdwjidx0B        = 2*vdwtype[jnrB+0];
939
940             fjx0             = _mm_setzero_pd();
941             fjy0             = _mm_setzero_pd();
942             fjz0             = _mm_setzero_pd();
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             if (gmx_mm_any_lt(rsq00,rcutoff2))
949             {
950
951             r00              = _mm_mul_pd(rsq00,rinv00);
952
953             /* Compute parameters for interactions between i and j atoms */
954             qq00             = _mm_mul_pd(iq0,jq0);
955             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
956                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
957
958             /* EWALD ELECTROSTATICS */
959
960             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
961             ewrt             = _mm_mul_pd(r00,ewtabscale);
962             ewitab           = _mm_cvttpd_epi32(ewrt);
963 #ifdef __XOP__
964             eweps            = _mm_frcz_pd(ewrt);
965 #else
966             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
967 #endif
968             twoeweps         = _mm_add_pd(eweps,eweps);
969             ewitab           = _mm_slli_epi32(ewitab,2);
970             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
971             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
972             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
973             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
974             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
975             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
976             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
977             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
978             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
979             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
980
981             /* LENNARD-JONES DISPERSION/REPULSION */
982
983             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
984             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
985             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
986             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
987             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
988
989             d                = _mm_sub_pd(r00,rswitch);
990             d                = _mm_max_pd(d,_mm_setzero_pd());
991             d2               = _mm_mul_pd(d,d);
992             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
993
994             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
995
996             /* Evaluate switch function */
997             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
998             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
999             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1000             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1001
1002             fscal            = _mm_add_pd(felec,fvdw);
1003
1004             fscal            = _mm_and_pd(fscal,cutoff_mask);
1005
1006             /* Update vectorial force */
1007             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1008             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1009             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1010             
1011             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1012             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1013             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1014
1015             }
1016
1017             /**************************
1018              * CALCULATE INTERACTIONS *
1019              **************************/
1020
1021             if (gmx_mm_any_lt(rsq10,rcutoff2))
1022             {
1023
1024             r10              = _mm_mul_pd(rsq10,rinv10);
1025
1026             /* Compute parameters for interactions between i and j atoms */
1027             qq10             = _mm_mul_pd(iq1,jq0);
1028
1029             /* EWALD ELECTROSTATICS */
1030
1031             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1032             ewrt             = _mm_mul_pd(r10,ewtabscale);
1033             ewitab           = _mm_cvttpd_epi32(ewrt);
1034 #ifdef __XOP__
1035             eweps            = _mm_frcz_pd(ewrt);
1036 #else
1037             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1038 #endif
1039             twoeweps         = _mm_add_pd(eweps,eweps);
1040             ewitab           = _mm_slli_epi32(ewitab,2);
1041             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1042             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1043             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1044             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1045             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1046             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1047             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1048             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1049             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1050             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1051
1052             d                = _mm_sub_pd(r10,rswitch);
1053             d                = _mm_max_pd(d,_mm_setzero_pd());
1054             d2               = _mm_mul_pd(d,d);
1055             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1056
1057             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1058
1059             /* Evaluate switch function */
1060             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1061             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1062             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1063
1064             fscal            = felec;
1065
1066             fscal            = _mm_and_pd(fscal,cutoff_mask);
1067
1068             /* Update vectorial force */
1069             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1070             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1071             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1072             
1073             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1074             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1075             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1076
1077             }
1078
1079             /**************************
1080              * CALCULATE INTERACTIONS *
1081              **************************/
1082
1083             if (gmx_mm_any_lt(rsq20,rcutoff2))
1084             {
1085
1086             r20              = _mm_mul_pd(rsq20,rinv20);
1087
1088             /* Compute parameters for interactions between i and j atoms */
1089             qq20             = _mm_mul_pd(iq2,jq0);
1090
1091             /* EWALD ELECTROSTATICS */
1092
1093             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1094             ewrt             = _mm_mul_pd(r20,ewtabscale);
1095             ewitab           = _mm_cvttpd_epi32(ewrt);
1096 #ifdef __XOP__
1097             eweps            = _mm_frcz_pd(ewrt);
1098 #else
1099             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1100 #endif
1101             twoeweps         = _mm_add_pd(eweps,eweps);
1102             ewitab           = _mm_slli_epi32(ewitab,2);
1103             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1104             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1105             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1106             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1107             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1108             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1109             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1110             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1111             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1112             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1113
1114             d                = _mm_sub_pd(r20,rswitch);
1115             d                = _mm_max_pd(d,_mm_setzero_pd());
1116             d2               = _mm_mul_pd(d,d);
1117             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1118
1119             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1120
1121             /* Evaluate switch function */
1122             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1123             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1124             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1125
1126             fscal            = felec;
1127
1128             fscal            = _mm_and_pd(fscal,cutoff_mask);
1129
1130             /* Update vectorial force */
1131             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1132             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1133             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1134             
1135             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1136             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1137             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1138
1139             }
1140
1141             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1142
1143             /* Inner loop uses 213 flops */
1144         }
1145
1146         if(jidx<j_index_end)
1147         {
1148
1149             jnrA             = jjnr[jidx];
1150             j_coord_offsetA  = DIM*jnrA;
1151
1152             /* load j atom coordinates */
1153             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1154                                               &jx0,&jy0,&jz0);
1155
1156             /* Calculate displacement vector */
1157             dx00             = _mm_sub_pd(ix0,jx0);
1158             dy00             = _mm_sub_pd(iy0,jy0);
1159             dz00             = _mm_sub_pd(iz0,jz0);
1160             dx10             = _mm_sub_pd(ix1,jx0);
1161             dy10             = _mm_sub_pd(iy1,jy0);
1162             dz10             = _mm_sub_pd(iz1,jz0);
1163             dx20             = _mm_sub_pd(ix2,jx0);
1164             dy20             = _mm_sub_pd(iy2,jy0);
1165             dz20             = _mm_sub_pd(iz2,jz0);
1166
1167             /* Calculate squared distance and things based on it */
1168             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1169             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1170             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1171
1172             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1173             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1174             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1175
1176             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1177             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1178             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1179
1180             /* Load parameters for j particles */
1181             jq0              = _mm_load_sd(charge+jnrA+0);
1182             vdwjidx0A        = 2*vdwtype[jnrA+0];
1183
1184             fjx0             = _mm_setzero_pd();
1185             fjy0             = _mm_setzero_pd();
1186             fjz0             = _mm_setzero_pd();
1187
1188             /**************************
1189              * CALCULATE INTERACTIONS *
1190              **************************/
1191
1192             if (gmx_mm_any_lt(rsq00,rcutoff2))
1193             {
1194
1195             r00              = _mm_mul_pd(rsq00,rinv00);
1196
1197             /* Compute parameters for interactions between i and j atoms */
1198             qq00             = _mm_mul_pd(iq0,jq0);
1199             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1200
1201             /* EWALD ELECTROSTATICS */
1202
1203             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1204             ewrt             = _mm_mul_pd(r00,ewtabscale);
1205             ewitab           = _mm_cvttpd_epi32(ewrt);
1206 #ifdef __XOP__
1207             eweps            = _mm_frcz_pd(ewrt);
1208 #else
1209             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1210 #endif
1211             twoeweps         = _mm_add_pd(eweps,eweps);
1212             ewitab           = _mm_slli_epi32(ewitab,2);
1213             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1214             ewtabD           = _mm_setzero_pd();
1215             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1216             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1217             ewtabFn          = _mm_setzero_pd();
1218             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1219             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1220             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1221             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
1222             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1223
1224             /* LENNARD-JONES DISPERSION/REPULSION */
1225
1226             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1227             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1228             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1229             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1230             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1231
1232             d                = _mm_sub_pd(r00,rswitch);
1233             d                = _mm_max_pd(d,_mm_setzero_pd());
1234             d2               = _mm_mul_pd(d,d);
1235             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1236
1237             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1238
1239             /* Evaluate switch function */
1240             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1241             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
1242             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1243             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1244
1245             fscal            = _mm_add_pd(felec,fvdw);
1246
1247             fscal            = _mm_and_pd(fscal,cutoff_mask);
1248
1249             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1250
1251             /* Update vectorial force */
1252             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1253             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1254             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1255             
1256             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1257             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1258             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1259
1260             }
1261
1262             /**************************
1263              * CALCULATE INTERACTIONS *
1264              **************************/
1265
1266             if (gmx_mm_any_lt(rsq10,rcutoff2))
1267             {
1268
1269             r10              = _mm_mul_pd(rsq10,rinv10);
1270
1271             /* Compute parameters for interactions between i and j atoms */
1272             qq10             = _mm_mul_pd(iq1,jq0);
1273
1274             /* EWALD ELECTROSTATICS */
1275
1276             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1277             ewrt             = _mm_mul_pd(r10,ewtabscale);
1278             ewitab           = _mm_cvttpd_epi32(ewrt);
1279 #ifdef __XOP__
1280             eweps            = _mm_frcz_pd(ewrt);
1281 #else
1282             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1283 #endif
1284             twoeweps         = _mm_add_pd(eweps,eweps);
1285             ewitab           = _mm_slli_epi32(ewitab,2);
1286             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1287             ewtabD           = _mm_setzero_pd();
1288             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1289             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1290             ewtabFn          = _mm_setzero_pd();
1291             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1292             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1293             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1294             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1295             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1296
1297             d                = _mm_sub_pd(r10,rswitch);
1298             d                = _mm_max_pd(d,_mm_setzero_pd());
1299             d2               = _mm_mul_pd(d,d);
1300             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1301
1302             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1303
1304             /* Evaluate switch function */
1305             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1306             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1307             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1308
1309             fscal            = felec;
1310
1311             fscal            = _mm_and_pd(fscal,cutoff_mask);
1312
1313             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1314
1315             /* Update vectorial force */
1316             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1317             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1318             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1319             
1320             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1321             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1322             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1323
1324             }
1325
1326             /**************************
1327              * CALCULATE INTERACTIONS *
1328              **************************/
1329
1330             if (gmx_mm_any_lt(rsq20,rcutoff2))
1331             {
1332
1333             r20              = _mm_mul_pd(rsq20,rinv20);
1334
1335             /* Compute parameters for interactions between i and j atoms */
1336             qq20             = _mm_mul_pd(iq2,jq0);
1337
1338             /* EWALD ELECTROSTATICS */
1339
1340             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1341             ewrt             = _mm_mul_pd(r20,ewtabscale);
1342             ewitab           = _mm_cvttpd_epi32(ewrt);
1343 #ifdef __XOP__
1344             eweps            = _mm_frcz_pd(ewrt);
1345 #else
1346             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1347 #endif
1348             twoeweps         = _mm_add_pd(eweps,eweps);
1349             ewitab           = _mm_slli_epi32(ewitab,2);
1350             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1351             ewtabD           = _mm_setzero_pd();
1352             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1353             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1354             ewtabFn          = _mm_setzero_pd();
1355             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1356             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1357             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1358             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1359             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1360
1361             d                = _mm_sub_pd(r20,rswitch);
1362             d                = _mm_max_pd(d,_mm_setzero_pd());
1363             d2               = _mm_mul_pd(d,d);
1364             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1365
1366             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1367
1368             /* Evaluate switch function */
1369             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1370             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1371             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1372
1373             fscal            = felec;
1374
1375             fscal            = _mm_and_pd(fscal,cutoff_mask);
1376
1377             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1378
1379             /* Update vectorial force */
1380             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1381             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1382             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1383             
1384             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1385             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1386             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1387
1388             }
1389
1390             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1391
1392             /* Inner loop uses 213 flops */
1393         }
1394
1395         /* End of innermost loop */
1396
1397         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1398                                               f+i_coord_offset,fshift+i_shift_offset);
1399
1400         /* Increment number of inner iterations */
1401         inneriter                  += j_index_end - j_index_start;
1402
1403         /* Outer loop uses 18 flops */
1404     }
1405
1406     /* Increment number of outer iterations */
1407     outeriter        += nri;
1408
1409     /* Update outer/inner flops */
1410
1411     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*213);
1412 }