Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128i          ewitab;
99     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
102     real             rswitch_scalar,d_scalar;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff_scalar   = fr->ic->rcoulomb;
138     rcutoff          = _mm_set1_pd(rcutoff_scalar);
139     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
140
141     rswitch_scalar   = fr->ic->rcoulomb_switch;
142     rswitch          = _mm_set1_pd(rswitch_scalar);
143     /* Setup switch parameters */
144     d_scalar         = rcutoff_scalar-rswitch_scalar;
145     d                = _mm_set1_pd(d_scalar);
146     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
147     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
148     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
149     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
150     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
151     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
152
153     /* Avoid stupid compiler warnings */
154     jnrA = jnrB = 0;
155     j_coord_offsetA = 0;
156     j_coord_offsetB = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
178
179         fix0             = _mm_setzero_pd();
180         fiy0             = _mm_setzero_pd();
181         fiz0             = _mm_setzero_pd();
182         fix1             = _mm_setzero_pd();
183         fiy1             = _mm_setzero_pd();
184         fiz1             = _mm_setzero_pd();
185         fix2             = _mm_setzero_pd();
186         fiy2             = _mm_setzero_pd();
187         fiz2             = _mm_setzero_pd();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_pd();
191         vvdwsum          = _mm_setzero_pd();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_pd(ix0,jx0);
209             dy00             = _mm_sub_pd(iy0,jy0);
210             dz00             = _mm_sub_pd(iz0,jz0);
211             dx10             = _mm_sub_pd(ix1,jx0);
212             dy10             = _mm_sub_pd(iy1,jy0);
213             dz10             = _mm_sub_pd(iz1,jz0);
214             dx20             = _mm_sub_pd(ix2,jx0);
215             dy20             = _mm_sub_pd(iy2,jy0);
216             dz20             = _mm_sub_pd(iz2,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
220             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
221             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
222
223             rinv00           = avx128fma_invsqrt_d(rsq00);
224             rinv10           = avx128fma_invsqrt_d(rsq10);
225             rinv20           = avx128fma_invsqrt_d(rsq20);
226
227             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
228             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
229             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235
236             fjx0             = _mm_setzero_pd();
237             fjy0             = _mm_setzero_pd();
238             fjz0             = _mm_setzero_pd();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             if (gmx_mm_any_lt(rsq00,rcutoff2))
245             {
246
247             r00              = _mm_mul_pd(rsq00,rinv00);
248
249             /* Compute parameters for interactions between i and j atoms */
250             qq00             = _mm_mul_pd(iq0,jq0);
251             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
253
254             /* EWALD ELECTROSTATICS */
255
256             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
257             ewrt             = _mm_mul_pd(r00,ewtabscale);
258             ewitab           = _mm_cvttpd_epi32(ewrt);
259 #ifdef __XOP__
260             eweps            = _mm_frcz_pd(ewrt);
261 #else
262             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
263 #endif
264             twoeweps         = _mm_add_pd(eweps,eweps);
265             ewitab           = _mm_slli_epi32(ewitab,2);
266             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
267             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
268             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
269             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
270             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
271             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
272             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
273             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
274             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
275             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
276
277             /* LENNARD-JONES DISPERSION/REPULSION */
278
279             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
280             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
281             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
282             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
283             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
284
285             d                = _mm_sub_pd(r00,rswitch);
286             d                = _mm_max_pd(d,_mm_setzero_pd());
287             d2               = _mm_mul_pd(d,d);
288             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
289
290             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
291
292             /* Evaluate switch function */
293             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
294             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
295             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
296             velec            = _mm_mul_pd(velec,sw);
297             vvdw             = _mm_mul_pd(vvdw,sw);
298             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velec            = _mm_and_pd(velec,cutoff_mask);
302             velecsum         = _mm_add_pd(velecsum,velec);
303             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
304             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
305
306             fscal            = _mm_add_pd(felec,fvdw);
307
308             fscal            = _mm_and_pd(fscal,cutoff_mask);
309
310             /* Update vectorial force */
311             fix0             = _mm_macc_pd(dx00,fscal,fix0);
312             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
313             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
314             
315             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
316             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
317             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
318
319             }
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             if (gmx_mm_any_lt(rsq10,rcutoff2))
326             {
327
328             r10              = _mm_mul_pd(rsq10,rinv10);
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq10             = _mm_mul_pd(iq1,jq0);
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = _mm_mul_pd(r10,ewtabscale);
337             ewitab           = _mm_cvttpd_epi32(ewrt);
338 #ifdef __XOP__
339             eweps            = _mm_frcz_pd(ewrt);
340 #else
341             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
342 #endif
343             twoeweps         = _mm_add_pd(eweps,eweps);
344             ewitab           = _mm_slli_epi32(ewitab,2);
345             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
346             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
347             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
348             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
349             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
350             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
351             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
352             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
353             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
354             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
355
356             d                = _mm_sub_pd(r10,rswitch);
357             d                = _mm_max_pd(d,_mm_setzero_pd());
358             d2               = _mm_mul_pd(d,d);
359             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
360
361             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
362
363             /* Evaluate switch function */
364             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
365             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
366             velec            = _mm_mul_pd(velec,sw);
367             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _mm_and_pd(velec,cutoff_mask);
371             velecsum         = _mm_add_pd(velecsum,velec);
372
373             fscal            = felec;
374
375             fscal            = _mm_and_pd(fscal,cutoff_mask);
376
377             /* Update vectorial force */
378             fix1             = _mm_macc_pd(dx10,fscal,fix1);
379             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
380             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
381             
382             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
383             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
384             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
385
386             }
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             if (gmx_mm_any_lt(rsq20,rcutoff2))
393             {
394
395             r20              = _mm_mul_pd(rsq20,rinv20);
396
397             /* Compute parameters for interactions between i and j atoms */
398             qq20             = _mm_mul_pd(iq2,jq0);
399
400             /* EWALD ELECTROSTATICS */
401
402             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
403             ewrt             = _mm_mul_pd(r20,ewtabscale);
404             ewitab           = _mm_cvttpd_epi32(ewrt);
405 #ifdef __XOP__
406             eweps            = _mm_frcz_pd(ewrt);
407 #else
408             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
409 #endif
410             twoeweps         = _mm_add_pd(eweps,eweps);
411             ewitab           = _mm_slli_epi32(ewitab,2);
412             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
413             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
414             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
415             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
416             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
417             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
418             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
419             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
420             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
421             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
422
423             d                = _mm_sub_pd(r20,rswitch);
424             d                = _mm_max_pd(d,_mm_setzero_pd());
425             d2               = _mm_mul_pd(d,d);
426             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
427
428             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
429
430             /* Evaluate switch function */
431             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
432             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
433             velec            = _mm_mul_pd(velec,sw);
434             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
435
436             /* Update potential sum for this i atom from the interaction with this j atom. */
437             velec            = _mm_and_pd(velec,cutoff_mask);
438             velecsum         = _mm_add_pd(velecsum,velec);
439
440             fscal            = felec;
441
442             fscal            = _mm_and_pd(fscal,cutoff_mask);
443
444             /* Update vectorial force */
445             fix2             = _mm_macc_pd(dx20,fscal,fix2);
446             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
447             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
448             
449             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
450             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
451             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
452
453             }
454
455             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
456
457             /* Inner loop uses 225 flops */
458         }
459
460         if(jidx<j_index_end)
461         {
462
463             jnrA             = jjnr[jidx];
464             j_coord_offsetA  = DIM*jnrA;
465
466             /* load j atom coordinates */
467             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
468                                               &jx0,&jy0,&jz0);
469
470             /* Calculate displacement vector */
471             dx00             = _mm_sub_pd(ix0,jx0);
472             dy00             = _mm_sub_pd(iy0,jy0);
473             dz00             = _mm_sub_pd(iz0,jz0);
474             dx10             = _mm_sub_pd(ix1,jx0);
475             dy10             = _mm_sub_pd(iy1,jy0);
476             dz10             = _mm_sub_pd(iz1,jz0);
477             dx20             = _mm_sub_pd(ix2,jx0);
478             dy20             = _mm_sub_pd(iy2,jy0);
479             dz20             = _mm_sub_pd(iz2,jz0);
480
481             /* Calculate squared distance and things based on it */
482             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
483             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
484             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
485
486             rinv00           = avx128fma_invsqrt_d(rsq00);
487             rinv10           = avx128fma_invsqrt_d(rsq10);
488             rinv20           = avx128fma_invsqrt_d(rsq20);
489
490             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
491             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
492             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
493
494             /* Load parameters for j particles */
495             jq0              = _mm_load_sd(charge+jnrA+0);
496             vdwjidx0A        = 2*vdwtype[jnrA+0];
497
498             fjx0             = _mm_setzero_pd();
499             fjy0             = _mm_setzero_pd();
500             fjz0             = _mm_setzero_pd();
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             if (gmx_mm_any_lt(rsq00,rcutoff2))
507             {
508
509             r00              = _mm_mul_pd(rsq00,rinv00);
510
511             /* Compute parameters for interactions between i and j atoms */
512             qq00             = _mm_mul_pd(iq0,jq0);
513             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
514
515             /* EWALD ELECTROSTATICS */
516
517             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
518             ewrt             = _mm_mul_pd(r00,ewtabscale);
519             ewitab           = _mm_cvttpd_epi32(ewrt);
520 #ifdef __XOP__
521             eweps            = _mm_frcz_pd(ewrt);
522 #else
523             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
524 #endif
525             twoeweps         = _mm_add_pd(eweps,eweps);
526             ewitab           = _mm_slli_epi32(ewitab,2);
527             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
528             ewtabD           = _mm_setzero_pd();
529             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
530             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
531             ewtabFn          = _mm_setzero_pd();
532             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
533             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
534             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
535             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
536             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
537
538             /* LENNARD-JONES DISPERSION/REPULSION */
539
540             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
541             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
542             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
543             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
544             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
545
546             d                = _mm_sub_pd(r00,rswitch);
547             d                = _mm_max_pd(d,_mm_setzero_pd());
548             d2               = _mm_mul_pd(d,d);
549             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
550
551             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
552
553             /* Evaluate switch function */
554             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
555             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
556             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
557             velec            = _mm_mul_pd(velec,sw);
558             vvdw             = _mm_mul_pd(vvdw,sw);
559             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             velec            = _mm_and_pd(velec,cutoff_mask);
563             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
564             velecsum         = _mm_add_pd(velecsum,velec);
565             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
566             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
567             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
568
569             fscal            = _mm_add_pd(felec,fvdw);
570
571             fscal            = _mm_and_pd(fscal,cutoff_mask);
572
573             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
574
575             /* Update vectorial force */
576             fix0             = _mm_macc_pd(dx00,fscal,fix0);
577             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
578             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
579             
580             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
581             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
582             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
583
584             }
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             if (gmx_mm_any_lt(rsq10,rcutoff2))
591             {
592
593             r10              = _mm_mul_pd(rsq10,rinv10);
594
595             /* Compute parameters for interactions between i and j atoms */
596             qq10             = _mm_mul_pd(iq1,jq0);
597
598             /* EWALD ELECTROSTATICS */
599
600             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
601             ewrt             = _mm_mul_pd(r10,ewtabscale);
602             ewitab           = _mm_cvttpd_epi32(ewrt);
603 #ifdef __XOP__
604             eweps            = _mm_frcz_pd(ewrt);
605 #else
606             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
607 #endif
608             twoeweps         = _mm_add_pd(eweps,eweps);
609             ewitab           = _mm_slli_epi32(ewitab,2);
610             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
611             ewtabD           = _mm_setzero_pd();
612             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
613             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
614             ewtabFn          = _mm_setzero_pd();
615             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
616             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
617             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
618             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
619             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
620
621             d                = _mm_sub_pd(r10,rswitch);
622             d                = _mm_max_pd(d,_mm_setzero_pd());
623             d2               = _mm_mul_pd(d,d);
624             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
625
626             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
627
628             /* Evaluate switch function */
629             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
630             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
631             velec            = _mm_mul_pd(velec,sw);
632             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
633
634             /* Update potential sum for this i atom from the interaction with this j atom. */
635             velec            = _mm_and_pd(velec,cutoff_mask);
636             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
637             velecsum         = _mm_add_pd(velecsum,velec);
638
639             fscal            = felec;
640
641             fscal            = _mm_and_pd(fscal,cutoff_mask);
642
643             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
644
645             /* Update vectorial force */
646             fix1             = _mm_macc_pd(dx10,fscal,fix1);
647             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
648             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
649             
650             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
651             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
652             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
653
654             }
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             if (gmx_mm_any_lt(rsq20,rcutoff2))
661             {
662
663             r20              = _mm_mul_pd(rsq20,rinv20);
664
665             /* Compute parameters for interactions between i and j atoms */
666             qq20             = _mm_mul_pd(iq2,jq0);
667
668             /* EWALD ELECTROSTATICS */
669
670             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
671             ewrt             = _mm_mul_pd(r20,ewtabscale);
672             ewitab           = _mm_cvttpd_epi32(ewrt);
673 #ifdef __XOP__
674             eweps            = _mm_frcz_pd(ewrt);
675 #else
676             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
677 #endif
678             twoeweps         = _mm_add_pd(eweps,eweps);
679             ewitab           = _mm_slli_epi32(ewitab,2);
680             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
681             ewtabD           = _mm_setzero_pd();
682             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
683             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
684             ewtabFn          = _mm_setzero_pd();
685             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
686             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
687             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
688             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
689             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
690
691             d                = _mm_sub_pd(r20,rswitch);
692             d                = _mm_max_pd(d,_mm_setzero_pd());
693             d2               = _mm_mul_pd(d,d);
694             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
695
696             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
697
698             /* Evaluate switch function */
699             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
700             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
701             velec            = _mm_mul_pd(velec,sw);
702             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
703
704             /* Update potential sum for this i atom from the interaction with this j atom. */
705             velec            = _mm_and_pd(velec,cutoff_mask);
706             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
707             velecsum         = _mm_add_pd(velecsum,velec);
708
709             fscal            = felec;
710
711             fscal            = _mm_and_pd(fscal,cutoff_mask);
712
713             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
714
715             /* Update vectorial force */
716             fix2             = _mm_macc_pd(dx20,fscal,fix2);
717             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
718             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
719             
720             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
721             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
722             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
723
724             }
725
726             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
727
728             /* Inner loop uses 225 flops */
729         }
730
731         /* End of innermost loop */
732
733         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
734                                               f+i_coord_offset,fshift+i_shift_offset);
735
736         ggid                        = gid[iidx];
737         /* Update potential energies */
738         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
739         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
740
741         /* Increment number of inner iterations */
742         inneriter                  += j_index_end - j_index_start;
743
744         /* Outer loop uses 20 flops */
745     }
746
747     /* Increment number of outer iterations */
748     outeriter        += nri;
749
750     /* Update outer/inner flops */
751
752     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*225);
753 }
754 /*
755  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_double
756  * Electrostatics interaction: Ewald
757  * VdW interaction:            LennardJones
758  * Geometry:                   Water3-Particle
759  * Calculate force/pot:        Force
760  */
761 void
762 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_128_fma_double
763                     (t_nblist                    * gmx_restrict       nlist,
764                      rvec                        * gmx_restrict          xx,
765                      rvec                        * gmx_restrict          ff,
766                      struct t_forcerec           * gmx_restrict          fr,
767                      t_mdatoms                   * gmx_restrict     mdatoms,
768                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
769                      t_nrnb                      * gmx_restrict        nrnb)
770 {
771     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
772      * just 0 for non-waters.
773      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
774      * jnr indices corresponding to data put in the four positions in the SIMD register.
775      */
776     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
777     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
778     int              jnrA,jnrB;
779     int              j_coord_offsetA,j_coord_offsetB;
780     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
781     real             rcutoff_scalar;
782     real             *shiftvec,*fshift,*x,*f;
783     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
784     int              vdwioffset0;
785     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
786     int              vdwioffset1;
787     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
788     int              vdwioffset2;
789     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
790     int              vdwjidx0A,vdwjidx0B;
791     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
792     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
793     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
794     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
795     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
796     real             *charge;
797     int              nvdwtype;
798     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
799     int              *vdwtype;
800     real             *vdwparam;
801     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
802     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
803     __m128i          ewitab;
804     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
805     real             *ewtab;
806     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
807     real             rswitch_scalar,d_scalar;
808     __m128d          dummy_mask,cutoff_mask;
809     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
810     __m128d          one     = _mm_set1_pd(1.0);
811     __m128d          two     = _mm_set1_pd(2.0);
812     x                = xx[0];
813     f                = ff[0];
814
815     nri              = nlist->nri;
816     iinr             = nlist->iinr;
817     jindex           = nlist->jindex;
818     jjnr             = nlist->jjnr;
819     shiftidx         = nlist->shift;
820     gid              = nlist->gid;
821     shiftvec         = fr->shift_vec[0];
822     fshift           = fr->fshift[0];
823     facel            = _mm_set1_pd(fr->ic->epsfac);
824     charge           = mdatoms->chargeA;
825     nvdwtype         = fr->ntype;
826     vdwparam         = fr->nbfp;
827     vdwtype          = mdatoms->typeA;
828
829     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
830     ewtab            = fr->ic->tabq_coul_FDV0;
831     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
832     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
833
834     /* Setup water-specific parameters */
835     inr              = nlist->iinr[0];
836     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
837     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
838     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
839     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
840
841     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
842     rcutoff_scalar   = fr->ic->rcoulomb;
843     rcutoff          = _mm_set1_pd(rcutoff_scalar);
844     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
845
846     rswitch_scalar   = fr->ic->rcoulomb_switch;
847     rswitch          = _mm_set1_pd(rswitch_scalar);
848     /* Setup switch parameters */
849     d_scalar         = rcutoff_scalar-rswitch_scalar;
850     d                = _mm_set1_pd(d_scalar);
851     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
852     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
853     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
854     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
855     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
856     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
857
858     /* Avoid stupid compiler warnings */
859     jnrA = jnrB = 0;
860     j_coord_offsetA = 0;
861     j_coord_offsetB = 0;
862
863     outeriter        = 0;
864     inneriter        = 0;
865
866     /* Start outer loop over neighborlists */
867     for(iidx=0; iidx<nri; iidx++)
868     {
869         /* Load shift vector for this list */
870         i_shift_offset   = DIM*shiftidx[iidx];
871
872         /* Load limits for loop over neighbors */
873         j_index_start    = jindex[iidx];
874         j_index_end      = jindex[iidx+1];
875
876         /* Get outer coordinate index */
877         inr              = iinr[iidx];
878         i_coord_offset   = DIM*inr;
879
880         /* Load i particle coords and add shift vector */
881         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
882                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
883
884         fix0             = _mm_setzero_pd();
885         fiy0             = _mm_setzero_pd();
886         fiz0             = _mm_setzero_pd();
887         fix1             = _mm_setzero_pd();
888         fiy1             = _mm_setzero_pd();
889         fiz1             = _mm_setzero_pd();
890         fix2             = _mm_setzero_pd();
891         fiy2             = _mm_setzero_pd();
892         fiz2             = _mm_setzero_pd();
893
894         /* Start inner kernel loop */
895         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
896         {
897
898             /* Get j neighbor index, and coordinate index */
899             jnrA             = jjnr[jidx];
900             jnrB             = jjnr[jidx+1];
901             j_coord_offsetA  = DIM*jnrA;
902             j_coord_offsetB  = DIM*jnrB;
903
904             /* load j atom coordinates */
905             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
906                                               &jx0,&jy0,&jz0);
907
908             /* Calculate displacement vector */
909             dx00             = _mm_sub_pd(ix0,jx0);
910             dy00             = _mm_sub_pd(iy0,jy0);
911             dz00             = _mm_sub_pd(iz0,jz0);
912             dx10             = _mm_sub_pd(ix1,jx0);
913             dy10             = _mm_sub_pd(iy1,jy0);
914             dz10             = _mm_sub_pd(iz1,jz0);
915             dx20             = _mm_sub_pd(ix2,jx0);
916             dy20             = _mm_sub_pd(iy2,jy0);
917             dz20             = _mm_sub_pd(iz2,jz0);
918
919             /* Calculate squared distance and things based on it */
920             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
921             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
922             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
923
924             rinv00           = avx128fma_invsqrt_d(rsq00);
925             rinv10           = avx128fma_invsqrt_d(rsq10);
926             rinv20           = avx128fma_invsqrt_d(rsq20);
927
928             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
929             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
930             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
931
932             /* Load parameters for j particles */
933             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
934             vdwjidx0A        = 2*vdwtype[jnrA+0];
935             vdwjidx0B        = 2*vdwtype[jnrB+0];
936
937             fjx0             = _mm_setzero_pd();
938             fjy0             = _mm_setzero_pd();
939             fjz0             = _mm_setzero_pd();
940
941             /**************************
942              * CALCULATE INTERACTIONS *
943              **************************/
944
945             if (gmx_mm_any_lt(rsq00,rcutoff2))
946             {
947
948             r00              = _mm_mul_pd(rsq00,rinv00);
949
950             /* Compute parameters for interactions between i and j atoms */
951             qq00             = _mm_mul_pd(iq0,jq0);
952             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
953                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
954
955             /* EWALD ELECTROSTATICS */
956
957             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
958             ewrt             = _mm_mul_pd(r00,ewtabscale);
959             ewitab           = _mm_cvttpd_epi32(ewrt);
960 #ifdef __XOP__
961             eweps            = _mm_frcz_pd(ewrt);
962 #else
963             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
964 #endif
965             twoeweps         = _mm_add_pd(eweps,eweps);
966             ewitab           = _mm_slli_epi32(ewitab,2);
967             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
968             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
969             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
970             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
971             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
972             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
973             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
974             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
975             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
976             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
977
978             /* LENNARD-JONES DISPERSION/REPULSION */
979
980             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
981             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
982             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
983             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
984             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
985
986             d                = _mm_sub_pd(r00,rswitch);
987             d                = _mm_max_pd(d,_mm_setzero_pd());
988             d2               = _mm_mul_pd(d,d);
989             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
990
991             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
992
993             /* Evaluate switch function */
994             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
995             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
996             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
997             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
998
999             fscal            = _mm_add_pd(felec,fvdw);
1000
1001             fscal            = _mm_and_pd(fscal,cutoff_mask);
1002
1003             /* Update vectorial force */
1004             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1005             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1006             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1007             
1008             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1009             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1010             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1011
1012             }
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             if (gmx_mm_any_lt(rsq10,rcutoff2))
1019             {
1020
1021             r10              = _mm_mul_pd(rsq10,rinv10);
1022
1023             /* Compute parameters for interactions between i and j atoms */
1024             qq10             = _mm_mul_pd(iq1,jq0);
1025
1026             /* EWALD ELECTROSTATICS */
1027
1028             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1029             ewrt             = _mm_mul_pd(r10,ewtabscale);
1030             ewitab           = _mm_cvttpd_epi32(ewrt);
1031 #ifdef __XOP__
1032             eweps            = _mm_frcz_pd(ewrt);
1033 #else
1034             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1035 #endif
1036             twoeweps         = _mm_add_pd(eweps,eweps);
1037             ewitab           = _mm_slli_epi32(ewitab,2);
1038             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1039             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1040             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1041             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1042             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1043             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1044             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1045             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1046             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1047             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1048
1049             d                = _mm_sub_pd(r10,rswitch);
1050             d                = _mm_max_pd(d,_mm_setzero_pd());
1051             d2               = _mm_mul_pd(d,d);
1052             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1053
1054             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1055
1056             /* Evaluate switch function */
1057             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1058             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1059             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1060
1061             fscal            = felec;
1062
1063             fscal            = _mm_and_pd(fscal,cutoff_mask);
1064
1065             /* Update vectorial force */
1066             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1067             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1068             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1069             
1070             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1071             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1072             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1073
1074             }
1075
1076             /**************************
1077              * CALCULATE INTERACTIONS *
1078              **************************/
1079
1080             if (gmx_mm_any_lt(rsq20,rcutoff2))
1081             {
1082
1083             r20              = _mm_mul_pd(rsq20,rinv20);
1084
1085             /* Compute parameters for interactions between i and j atoms */
1086             qq20             = _mm_mul_pd(iq2,jq0);
1087
1088             /* EWALD ELECTROSTATICS */
1089
1090             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1091             ewrt             = _mm_mul_pd(r20,ewtabscale);
1092             ewitab           = _mm_cvttpd_epi32(ewrt);
1093 #ifdef __XOP__
1094             eweps            = _mm_frcz_pd(ewrt);
1095 #else
1096             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1097 #endif
1098             twoeweps         = _mm_add_pd(eweps,eweps);
1099             ewitab           = _mm_slli_epi32(ewitab,2);
1100             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1101             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1102             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1103             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1104             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
1105             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1106             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1107             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1108             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1109             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1110
1111             d                = _mm_sub_pd(r20,rswitch);
1112             d                = _mm_max_pd(d,_mm_setzero_pd());
1113             d2               = _mm_mul_pd(d,d);
1114             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1115
1116             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1117
1118             /* Evaluate switch function */
1119             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1120             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1121             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1122
1123             fscal            = felec;
1124
1125             fscal            = _mm_and_pd(fscal,cutoff_mask);
1126
1127             /* Update vectorial force */
1128             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1129             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1130             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1131             
1132             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1133             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1134             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1135
1136             }
1137
1138             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1139
1140             /* Inner loop uses 213 flops */
1141         }
1142
1143         if(jidx<j_index_end)
1144         {
1145
1146             jnrA             = jjnr[jidx];
1147             j_coord_offsetA  = DIM*jnrA;
1148
1149             /* load j atom coordinates */
1150             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1151                                               &jx0,&jy0,&jz0);
1152
1153             /* Calculate displacement vector */
1154             dx00             = _mm_sub_pd(ix0,jx0);
1155             dy00             = _mm_sub_pd(iy0,jy0);
1156             dz00             = _mm_sub_pd(iz0,jz0);
1157             dx10             = _mm_sub_pd(ix1,jx0);
1158             dy10             = _mm_sub_pd(iy1,jy0);
1159             dz10             = _mm_sub_pd(iz1,jz0);
1160             dx20             = _mm_sub_pd(ix2,jx0);
1161             dy20             = _mm_sub_pd(iy2,jy0);
1162             dz20             = _mm_sub_pd(iz2,jz0);
1163
1164             /* Calculate squared distance and things based on it */
1165             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1166             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1167             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1168
1169             rinv00           = avx128fma_invsqrt_d(rsq00);
1170             rinv10           = avx128fma_invsqrt_d(rsq10);
1171             rinv20           = avx128fma_invsqrt_d(rsq20);
1172
1173             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1174             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1175             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1176
1177             /* Load parameters for j particles */
1178             jq0              = _mm_load_sd(charge+jnrA+0);
1179             vdwjidx0A        = 2*vdwtype[jnrA+0];
1180
1181             fjx0             = _mm_setzero_pd();
1182             fjy0             = _mm_setzero_pd();
1183             fjz0             = _mm_setzero_pd();
1184
1185             /**************************
1186              * CALCULATE INTERACTIONS *
1187              **************************/
1188
1189             if (gmx_mm_any_lt(rsq00,rcutoff2))
1190             {
1191
1192             r00              = _mm_mul_pd(rsq00,rinv00);
1193
1194             /* Compute parameters for interactions between i and j atoms */
1195             qq00             = _mm_mul_pd(iq0,jq0);
1196             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1197
1198             /* EWALD ELECTROSTATICS */
1199
1200             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1201             ewrt             = _mm_mul_pd(r00,ewtabscale);
1202             ewitab           = _mm_cvttpd_epi32(ewrt);
1203 #ifdef __XOP__
1204             eweps            = _mm_frcz_pd(ewrt);
1205 #else
1206             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1207 #endif
1208             twoeweps         = _mm_add_pd(eweps,eweps);
1209             ewitab           = _mm_slli_epi32(ewitab,2);
1210             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1211             ewtabD           = _mm_setzero_pd();
1212             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1213             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1214             ewtabFn          = _mm_setzero_pd();
1215             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1216             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1217             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1218             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
1219             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1220
1221             /* LENNARD-JONES DISPERSION/REPULSION */
1222
1223             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1224             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
1225             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
1226             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
1227             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
1228
1229             d                = _mm_sub_pd(r00,rswitch);
1230             d                = _mm_max_pd(d,_mm_setzero_pd());
1231             d2               = _mm_mul_pd(d,d);
1232             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1233
1234             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1235
1236             /* Evaluate switch function */
1237             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1238             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
1239             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1240             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1241
1242             fscal            = _mm_add_pd(felec,fvdw);
1243
1244             fscal            = _mm_and_pd(fscal,cutoff_mask);
1245
1246             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1247
1248             /* Update vectorial force */
1249             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1250             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1251             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1252             
1253             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1254             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1255             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1256
1257             }
1258
1259             /**************************
1260              * CALCULATE INTERACTIONS *
1261              **************************/
1262
1263             if (gmx_mm_any_lt(rsq10,rcutoff2))
1264             {
1265
1266             r10              = _mm_mul_pd(rsq10,rinv10);
1267
1268             /* Compute parameters for interactions between i and j atoms */
1269             qq10             = _mm_mul_pd(iq1,jq0);
1270
1271             /* EWALD ELECTROSTATICS */
1272
1273             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1274             ewrt             = _mm_mul_pd(r10,ewtabscale);
1275             ewitab           = _mm_cvttpd_epi32(ewrt);
1276 #ifdef __XOP__
1277             eweps            = _mm_frcz_pd(ewrt);
1278 #else
1279             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1280 #endif
1281             twoeweps         = _mm_add_pd(eweps,eweps);
1282             ewitab           = _mm_slli_epi32(ewitab,2);
1283             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1284             ewtabD           = _mm_setzero_pd();
1285             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1286             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1287             ewtabFn          = _mm_setzero_pd();
1288             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1289             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1290             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1291             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1292             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1293
1294             d                = _mm_sub_pd(r10,rswitch);
1295             d                = _mm_max_pd(d,_mm_setzero_pd());
1296             d2               = _mm_mul_pd(d,d);
1297             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1298
1299             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1300
1301             /* Evaluate switch function */
1302             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1303             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv10,_mm_mul_pd(velec,dsw)) );
1304             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1305
1306             fscal            = felec;
1307
1308             fscal            = _mm_and_pd(fscal,cutoff_mask);
1309
1310             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1311
1312             /* Update vectorial force */
1313             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1314             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1315             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1316             
1317             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1318             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1319             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1320
1321             }
1322
1323             /**************************
1324              * CALCULATE INTERACTIONS *
1325              **************************/
1326
1327             if (gmx_mm_any_lt(rsq20,rcutoff2))
1328             {
1329
1330             r20              = _mm_mul_pd(rsq20,rinv20);
1331
1332             /* Compute parameters for interactions between i and j atoms */
1333             qq20             = _mm_mul_pd(iq2,jq0);
1334
1335             /* EWALD ELECTROSTATICS */
1336
1337             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1338             ewrt             = _mm_mul_pd(r20,ewtabscale);
1339             ewitab           = _mm_cvttpd_epi32(ewrt);
1340 #ifdef __XOP__
1341             eweps            = _mm_frcz_pd(ewrt);
1342 #else
1343             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1344 #endif
1345             twoeweps         = _mm_add_pd(eweps,eweps);
1346             ewitab           = _mm_slli_epi32(ewitab,2);
1347             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1348             ewtabD           = _mm_setzero_pd();
1349             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1350             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1351             ewtabFn          = _mm_setzero_pd();
1352             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1353             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1354             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1355             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1356             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1357
1358             d                = _mm_sub_pd(r20,rswitch);
1359             d                = _mm_max_pd(d,_mm_setzero_pd());
1360             d2               = _mm_mul_pd(d,d);
1361             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
1362
1363             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
1364
1365             /* Evaluate switch function */
1366             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1367             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv20,_mm_mul_pd(velec,dsw)) );
1368             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1369
1370             fscal            = felec;
1371
1372             fscal            = _mm_and_pd(fscal,cutoff_mask);
1373
1374             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1375
1376             /* Update vectorial force */
1377             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1378             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1379             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1380             
1381             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1382             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1383             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1384
1385             }
1386
1387             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1388
1389             /* Inner loop uses 213 flops */
1390         }
1391
1392         /* End of innermost loop */
1393
1394         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1395                                               f+i_coord_offset,fshift+i_shift_offset);
1396
1397         /* Increment number of inner iterations */
1398         inneriter                  += j_index_end - j_index_start;
1399
1400         /* Outer loop uses 18 flops */
1401     }
1402
1403     /* Increment number of outer iterations */
1404     outeriter        += nri;
1405
1406     /* Update outer/inner flops */
1407
1408     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*213);
1409 }