Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128i          ewitab;
93     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
96     real             rswitch_scalar,d_scalar;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->ic->epsfac);
113     charge           = mdatoms->chargeA;
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
119     ewtab            = fr->ic->tabq_coul_FDV0;
120     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
121     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff_scalar   = fr->ic->rcoulomb;
125     rcutoff          = _mm_set1_pd(rcutoff_scalar);
126     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
127
128     rswitch_scalar   = fr->ic->rcoulomb_switch;
129     rswitch          = _mm_set1_pd(rswitch_scalar);
130     /* Setup switch parameters */
131     d_scalar         = rcutoff_scalar-rswitch_scalar;
132     d                = _mm_set1_pd(d_scalar);
133     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
134     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
135     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
136     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
137     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164
165         fix0             = _mm_setzero_pd();
166         fiy0             = _mm_setzero_pd();
167         fiz0             = _mm_setzero_pd();
168
169         /* Load parameters for i particles */
170         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
171         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_pd();
175         vvdwsum          = _mm_setzero_pd();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm_sub_pd(ix0,jx0);
193             dy00             = _mm_sub_pd(iy0,jy0);
194             dz00             = _mm_sub_pd(iz0,jz0);
195
196             /* Calculate squared distance and things based on it */
197             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
198
199             rinv00           = avx128fma_invsqrt_d(rsq00);
200
201             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
202
203             /* Load parameters for j particles */
204             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
205             vdwjidx0A        = 2*vdwtype[jnrA+0];
206             vdwjidx0B        = 2*vdwtype[jnrB+0];
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             if (gmx_mm_any_lt(rsq00,rcutoff2))
213             {
214
215             r00              = _mm_mul_pd(rsq00,rinv00);
216
217             /* Compute parameters for interactions between i and j atoms */
218             qq00             = _mm_mul_pd(iq0,jq0);
219             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
220                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
221
222             /* EWALD ELECTROSTATICS */
223
224             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
225             ewrt             = _mm_mul_pd(r00,ewtabscale);
226             ewitab           = _mm_cvttpd_epi32(ewrt);
227 #ifdef __XOP__
228             eweps            = _mm_frcz_pd(ewrt);
229 #else
230             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
231 #endif
232             twoeweps         = _mm_add_pd(eweps,eweps);
233             ewitab           = _mm_slli_epi32(ewitab,2);
234             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
235             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
236             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
237             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
238             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
239             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
240             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
241             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
242             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
243             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
244
245             /* LENNARD-JONES DISPERSION/REPULSION */
246
247             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
248             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
249             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
250             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
251             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
252
253             d                = _mm_sub_pd(r00,rswitch);
254             d                = _mm_max_pd(d,_mm_setzero_pd());
255             d2               = _mm_mul_pd(d,d);
256             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
257
258             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
259
260             /* Evaluate switch function */
261             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
262             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
263             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
264             velec            = _mm_mul_pd(velec,sw);
265             vvdw             = _mm_mul_pd(vvdw,sw);
266             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velec            = _mm_and_pd(velec,cutoff_mask);
270             velecsum         = _mm_add_pd(velecsum,velec);
271             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
272             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
273
274             fscal            = _mm_add_pd(felec,fvdw);
275
276             fscal            = _mm_and_pd(fscal,cutoff_mask);
277
278             /* Update vectorial force */
279             fix0             = _mm_macc_pd(dx00,fscal,fix0);
280             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
281             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
282             
283             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
284                                                    _mm_mul_pd(dx00,fscal),
285                                                    _mm_mul_pd(dy00,fscal),
286                                                    _mm_mul_pd(dz00,fscal));
287
288             }
289
290             /* Inner loop uses 86 flops */
291         }
292
293         if(jidx<j_index_end)
294         {
295
296             jnrA             = jjnr[jidx];
297             j_coord_offsetA  = DIM*jnrA;
298
299             /* load j atom coordinates */
300             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
301                                               &jx0,&jy0,&jz0);
302
303             /* Calculate displacement vector */
304             dx00             = _mm_sub_pd(ix0,jx0);
305             dy00             = _mm_sub_pd(iy0,jy0);
306             dz00             = _mm_sub_pd(iz0,jz0);
307
308             /* Calculate squared distance and things based on it */
309             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
310
311             rinv00           = avx128fma_invsqrt_d(rsq00);
312
313             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
314
315             /* Load parameters for j particles */
316             jq0              = _mm_load_sd(charge+jnrA+0);
317             vdwjidx0A        = 2*vdwtype[jnrA+0];
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             if (gmx_mm_any_lt(rsq00,rcutoff2))
324             {
325
326             r00              = _mm_mul_pd(rsq00,rinv00);
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq00             = _mm_mul_pd(iq0,jq0);
330             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
331
332             /* EWALD ELECTROSTATICS */
333
334             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335             ewrt             = _mm_mul_pd(r00,ewtabscale);
336             ewitab           = _mm_cvttpd_epi32(ewrt);
337 #ifdef __XOP__
338             eweps            = _mm_frcz_pd(ewrt);
339 #else
340             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
341 #endif
342             twoeweps         = _mm_add_pd(eweps,eweps);
343             ewitab           = _mm_slli_epi32(ewitab,2);
344             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
345             ewtabD           = _mm_setzero_pd();
346             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
347             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
348             ewtabFn          = _mm_setzero_pd();
349             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
350             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
351             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
352             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
353             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
354
355             /* LENNARD-JONES DISPERSION/REPULSION */
356
357             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
358             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
359             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
360             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
361             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
362
363             d                = _mm_sub_pd(r00,rswitch);
364             d                = _mm_max_pd(d,_mm_setzero_pd());
365             d2               = _mm_mul_pd(d,d);
366             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
367
368             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
369
370             /* Evaluate switch function */
371             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
372             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
373             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
374             velec            = _mm_mul_pd(velec,sw);
375             vvdw             = _mm_mul_pd(vvdw,sw);
376             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
377
378             /* Update potential sum for this i atom from the interaction with this j atom. */
379             velec            = _mm_and_pd(velec,cutoff_mask);
380             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
381             velecsum         = _mm_add_pd(velecsum,velec);
382             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
383             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
384             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
385
386             fscal            = _mm_add_pd(felec,fvdw);
387
388             fscal            = _mm_and_pd(fscal,cutoff_mask);
389
390             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
391
392             /* Update vectorial force */
393             fix0             = _mm_macc_pd(dx00,fscal,fix0);
394             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
395             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
396             
397             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
398                                                    _mm_mul_pd(dx00,fscal),
399                                                    _mm_mul_pd(dy00,fscal),
400                                                    _mm_mul_pd(dz00,fscal));
401
402             }
403
404             /* Inner loop uses 86 flops */
405         }
406
407         /* End of innermost loop */
408
409         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
410                                               f+i_coord_offset,fshift+i_shift_offset);
411
412         ggid                        = gid[iidx];
413         /* Update potential energies */
414         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
415         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
416
417         /* Increment number of inner iterations */
418         inneriter                  += j_index_end - j_index_start;
419
420         /* Outer loop uses 9 flops */
421     }
422
423     /* Increment number of outer iterations */
424     outeriter        += nri;
425
426     /* Update outer/inner flops */
427
428     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*86);
429 }
430 /*
431  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_double
432  * Electrostatics interaction: Ewald
433  * VdW interaction:            LennardJones
434  * Geometry:                   Particle-Particle
435  * Calculate force/pot:        Force
436  */
437 void
438 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_double
439                     (t_nblist                    * gmx_restrict       nlist,
440                      rvec                        * gmx_restrict          xx,
441                      rvec                        * gmx_restrict          ff,
442                      struct t_forcerec           * gmx_restrict          fr,
443                      t_mdatoms                   * gmx_restrict     mdatoms,
444                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
445                      t_nrnb                      * gmx_restrict        nrnb)
446 {
447     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
448      * just 0 for non-waters.
449      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
450      * jnr indices corresponding to data put in the four positions in the SIMD register.
451      */
452     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
453     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
454     int              jnrA,jnrB;
455     int              j_coord_offsetA,j_coord_offsetB;
456     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
457     real             rcutoff_scalar;
458     real             *shiftvec,*fshift,*x,*f;
459     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
460     int              vdwioffset0;
461     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
462     int              vdwjidx0A,vdwjidx0B;
463     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
464     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
465     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
466     real             *charge;
467     int              nvdwtype;
468     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
469     int              *vdwtype;
470     real             *vdwparam;
471     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
472     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
473     __m128i          ewitab;
474     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
475     real             *ewtab;
476     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
477     real             rswitch_scalar,d_scalar;
478     __m128d          dummy_mask,cutoff_mask;
479     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
480     __m128d          one     = _mm_set1_pd(1.0);
481     __m128d          two     = _mm_set1_pd(2.0);
482     x                = xx[0];
483     f                = ff[0];
484
485     nri              = nlist->nri;
486     iinr             = nlist->iinr;
487     jindex           = nlist->jindex;
488     jjnr             = nlist->jjnr;
489     shiftidx         = nlist->shift;
490     gid              = nlist->gid;
491     shiftvec         = fr->shift_vec[0];
492     fshift           = fr->fshift[0];
493     facel            = _mm_set1_pd(fr->ic->epsfac);
494     charge           = mdatoms->chargeA;
495     nvdwtype         = fr->ntype;
496     vdwparam         = fr->nbfp;
497     vdwtype          = mdatoms->typeA;
498
499     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
500     ewtab            = fr->ic->tabq_coul_FDV0;
501     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
502     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
503
504     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
505     rcutoff_scalar   = fr->ic->rcoulomb;
506     rcutoff          = _mm_set1_pd(rcutoff_scalar);
507     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
508
509     rswitch_scalar   = fr->ic->rcoulomb_switch;
510     rswitch          = _mm_set1_pd(rswitch_scalar);
511     /* Setup switch parameters */
512     d_scalar         = rcutoff_scalar-rswitch_scalar;
513     d                = _mm_set1_pd(d_scalar);
514     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
515     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
516     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
517     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
518     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
519     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
520
521     /* Avoid stupid compiler warnings */
522     jnrA = jnrB = 0;
523     j_coord_offsetA = 0;
524     j_coord_offsetB = 0;
525
526     outeriter        = 0;
527     inneriter        = 0;
528
529     /* Start outer loop over neighborlists */
530     for(iidx=0; iidx<nri; iidx++)
531     {
532         /* Load shift vector for this list */
533         i_shift_offset   = DIM*shiftidx[iidx];
534
535         /* Load limits for loop over neighbors */
536         j_index_start    = jindex[iidx];
537         j_index_end      = jindex[iidx+1];
538
539         /* Get outer coordinate index */
540         inr              = iinr[iidx];
541         i_coord_offset   = DIM*inr;
542
543         /* Load i particle coords and add shift vector */
544         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
545
546         fix0             = _mm_setzero_pd();
547         fiy0             = _mm_setzero_pd();
548         fiz0             = _mm_setzero_pd();
549
550         /* Load parameters for i particles */
551         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
552         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
553
554         /* Start inner kernel loop */
555         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
556         {
557
558             /* Get j neighbor index, and coordinate index */
559             jnrA             = jjnr[jidx];
560             jnrB             = jjnr[jidx+1];
561             j_coord_offsetA  = DIM*jnrA;
562             j_coord_offsetB  = DIM*jnrB;
563
564             /* load j atom coordinates */
565             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
566                                               &jx0,&jy0,&jz0);
567
568             /* Calculate displacement vector */
569             dx00             = _mm_sub_pd(ix0,jx0);
570             dy00             = _mm_sub_pd(iy0,jy0);
571             dz00             = _mm_sub_pd(iz0,jz0);
572
573             /* Calculate squared distance and things based on it */
574             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
575
576             rinv00           = avx128fma_invsqrt_d(rsq00);
577
578             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
579
580             /* Load parameters for j particles */
581             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
582             vdwjidx0A        = 2*vdwtype[jnrA+0];
583             vdwjidx0B        = 2*vdwtype[jnrB+0];
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             if (gmx_mm_any_lt(rsq00,rcutoff2))
590             {
591
592             r00              = _mm_mul_pd(rsq00,rinv00);
593
594             /* Compute parameters for interactions between i and j atoms */
595             qq00             = _mm_mul_pd(iq0,jq0);
596             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
597                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
598
599             /* EWALD ELECTROSTATICS */
600
601             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
602             ewrt             = _mm_mul_pd(r00,ewtabscale);
603             ewitab           = _mm_cvttpd_epi32(ewrt);
604 #ifdef __XOP__
605             eweps            = _mm_frcz_pd(ewrt);
606 #else
607             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
608 #endif
609             twoeweps         = _mm_add_pd(eweps,eweps);
610             ewitab           = _mm_slli_epi32(ewitab,2);
611             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
612             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
613             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
614             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
615             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
616             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
617             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
618             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
619             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
620             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
621
622             /* LENNARD-JONES DISPERSION/REPULSION */
623
624             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
625             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
626             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
627             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
628             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
629
630             d                = _mm_sub_pd(r00,rswitch);
631             d                = _mm_max_pd(d,_mm_setzero_pd());
632             d2               = _mm_mul_pd(d,d);
633             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
634
635             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
636
637             /* Evaluate switch function */
638             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
639             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
640             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
641             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
642
643             fscal            = _mm_add_pd(felec,fvdw);
644
645             fscal            = _mm_and_pd(fscal,cutoff_mask);
646
647             /* Update vectorial force */
648             fix0             = _mm_macc_pd(dx00,fscal,fix0);
649             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
650             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
651             
652             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
653                                                    _mm_mul_pd(dx00,fscal),
654                                                    _mm_mul_pd(dy00,fscal),
655                                                    _mm_mul_pd(dz00,fscal));
656
657             }
658
659             /* Inner loop uses 80 flops */
660         }
661
662         if(jidx<j_index_end)
663         {
664
665             jnrA             = jjnr[jidx];
666             j_coord_offsetA  = DIM*jnrA;
667
668             /* load j atom coordinates */
669             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
670                                               &jx0,&jy0,&jz0);
671
672             /* Calculate displacement vector */
673             dx00             = _mm_sub_pd(ix0,jx0);
674             dy00             = _mm_sub_pd(iy0,jy0);
675             dz00             = _mm_sub_pd(iz0,jz0);
676
677             /* Calculate squared distance and things based on it */
678             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
679
680             rinv00           = avx128fma_invsqrt_d(rsq00);
681
682             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
683
684             /* Load parameters for j particles */
685             jq0              = _mm_load_sd(charge+jnrA+0);
686             vdwjidx0A        = 2*vdwtype[jnrA+0];
687
688             /**************************
689              * CALCULATE INTERACTIONS *
690              **************************/
691
692             if (gmx_mm_any_lt(rsq00,rcutoff2))
693             {
694
695             r00              = _mm_mul_pd(rsq00,rinv00);
696
697             /* Compute parameters for interactions between i and j atoms */
698             qq00             = _mm_mul_pd(iq0,jq0);
699             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
700
701             /* EWALD ELECTROSTATICS */
702
703             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
704             ewrt             = _mm_mul_pd(r00,ewtabscale);
705             ewitab           = _mm_cvttpd_epi32(ewrt);
706 #ifdef __XOP__
707             eweps            = _mm_frcz_pd(ewrt);
708 #else
709             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
710 #endif
711             twoeweps         = _mm_add_pd(eweps,eweps);
712             ewitab           = _mm_slli_epi32(ewitab,2);
713             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
714             ewtabD           = _mm_setzero_pd();
715             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
716             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
717             ewtabFn          = _mm_setzero_pd();
718             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
719             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
720             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
721             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
722             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
723
724             /* LENNARD-JONES DISPERSION/REPULSION */
725
726             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
727             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
728             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
729             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
730             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
731
732             d                = _mm_sub_pd(r00,rswitch);
733             d                = _mm_max_pd(d,_mm_setzero_pd());
734             d2               = _mm_mul_pd(d,d);
735             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
736
737             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
738
739             /* Evaluate switch function */
740             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
741             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
742             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
743             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
744
745             fscal            = _mm_add_pd(felec,fvdw);
746
747             fscal            = _mm_and_pd(fscal,cutoff_mask);
748
749             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
750
751             /* Update vectorial force */
752             fix0             = _mm_macc_pd(dx00,fscal,fix0);
753             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
754             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
755             
756             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
757                                                    _mm_mul_pd(dx00,fscal),
758                                                    _mm_mul_pd(dy00,fscal),
759                                                    _mm_mul_pd(dz00,fscal));
760
761             }
762
763             /* Inner loop uses 80 flops */
764         }
765
766         /* End of innermost loop */
767
768         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
769                                               f+i_coord_offset,fshift+i_shift_offset);
770
771         /* Increment number of inner iterations */
772         inneriter                  += j_index_end - j_index_start;
773
774         /* Outer loop uses 7 flops */
775     }
776
777     /* Increment number of outer iterations */
778     outeriter        += nri;
779
780     /* Update outer/inner flops */
781
782     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*80);
783 }