Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          ewitab;
96     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99     real             rswitch_scalar,d_scalar;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
122     ewtab            = fr->ic->tabq_coul_FDV0;
123     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
124     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm_set1_pd(rcutoff_scalar);
129     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
130
131     rswitch_scalar   = fr->rcoulomb_switch;
132     rswitch          = _mm_set1_pd(rswitch_scalar);
133     /* Setup switch parameters */
134     d_scalar         = rcutoff_scalar-rswitch_scalar;
135     d                = _mm_set1_pd(d_scalar);
136     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
137     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
140     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167
168         fix0             = _mm_setzero_pd();
169         fiy0             = _mm_setzero_pd();
170         fiz0             = _mm_setzero_pd();
171
172         /* Load parameters for i particles */
173         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
174         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_pd();
178         vvdwsum          = _mm_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_pd(ix0,jx0);
196             dy00             = _mm_sub_pd(iy0,jy0);
197             dz00             = _mm_sub_pd(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
201
202             rinv00           = gmx_mm_invsqrt_pd(rsq00);
203
204             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             if (gmx_mm_any_lt(rsq00,rcutoff2))
216             {
217
218             r00              = _mm_mul_pd(rsq00,rinv00);
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _mm_mul_pd(iq0,jq0);
222             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
223                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
224
225             /* EWALD ELECTROSTATICS */
226
227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
228             ewrt             = _mm_mul_pd(r00,ewtabscale);
229             ewitab           = _mm_cvttpd_epi32(ewrt);
230 #ifdef __XOP__
231             eweps            = _mm_frcz_pd(ewrt);
232 #else
233             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
234 #endif
235             twoeweps         = _mm_add_pd(eweps,eweps);
236             ewitab           = _mm_slli_epi32(ewitab,2);
237             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
238             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
239             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
240             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
241             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
242             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
243             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
244             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
245             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
246             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
247
248             /* LENNARD-JONES DISPERSION/REPULSION */
249
250             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
251             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
252             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
253             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
254             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
255
256             d                = _mm_sub_pd(r00,rswitch);
257             d                = _mm_max_pd(d,_mm_setzero_pd());
258             d2               = _mm_mul_pd(d,d);
259             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
260
261             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
262
263             /* Evaluate switch function */
264             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
265             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
266             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
267             velec            = _mm_mul_pd(velec,sw);
268             vvdw             = _mm_mul_pd(vvdw,sw);
269             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
270
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             velec            = _mm_and_pd(velec,cutoff_mask);
273             velecsum         = _mm_add_pd(velecsum,velec);
274             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
275             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
276
277             fscal            = _mm_add_pd(felec,fvdw);
278
279             fscal            = _mm_and_pd(fscal,cutoff_mask);
280
281             /* Update vectorial force */
282             fix0             = _mm_macc_pd(dx00,fscal,fix0);
283             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
284             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
285             
286             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
287                                                    _mm_mul_pd(dx00,fscal),
288                                                    _mm_mul_pd(dy00,fscal),
289                                                    _mm_mul_pd(dz00,fscal));
290
291             }
292
293             /* Inner loop uses 86 flops */
294         }
295
296         if(jidx<j_index_end)
297         {
298
299             jnrA             = jjnr[jidx];
300             j_coord_offsetA  = DIM*jnrA;
301
302             /* load j atom coordinates */
303             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
304                                               &jx0,&jy0,&jz0);
305
306             /* Calculate displacement vector */
307             dx00             = _mm_sub_pd(ix0,jx0);
308             dy00             = _mm_sub_pd(iy0,jy0);
309             dz00             = _mm_sub_pd(iz0,jz0);
310
311             /* Calculate squared distance and things based on it */
312             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
313
314             rinv00           = gmx_mm_invsqrt_pd(rsq00);
315
316             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
317
318             /* Load parameters for j particles */
319             jq0              = _mm_load_sd(charge+jnrA+0);
320             vdwjidx0A        = 2*vdwtype[jnrA+0];
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             if (gmx_mm_any_lt(rsq00,rcutoff2))
327             {
328
329             r00              = _mm_mul_pd(rsq00,rinv00);
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq00             = _mm_mul_pd(iq0,jq0);
333             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
334
335             /* EWALD ELECTROSTATICS */
336
337             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
338             ewrt             = _mm_mul_pd(r00,ewtabscale);
339             ewitab           = _mm_cvttpd_epi32(ewrt);
340 #ifdef __XOP__
341             eweps            = _mm_frcz_pd(ewrt);
342 #else
343             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
344 #endif
345             twoeweps         = _mm_add_pd(eweps,eweps);
346             ewitab           = _mm_slli_epi32(ewitab,2);
347             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
348             ewtabD           = _mm_setzero_pd();
349             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
350             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
351             ewtabFn          = _mm_setzero_pd();
352             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
353             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
354             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
355             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
356             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
357
358             /* LENNARD-JONES DISPERSION/REPULSION */
359
360             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
361             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
362             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
363             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
364             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
365
366             d                = _mm_sub_pd(r00,rswitch);
367             d                = _mm_max_pd(d,_mm_setzero_pd());
368             d2               = _mm_mul_pd(d,d);
369             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
370
371             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
372
373             /* Evaluate switch function */
374             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
375             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
376             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
377             velec            = _mm_mul_pd(velec,sw);
378             vvdw             = _mm_mul_pd(vvdw,sw);
379             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velec            = _mm_and_pd(velec,cutoff_mask);
383             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
384             velecsum         = _mm_add_pd(velecsum,velec);
385             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
386             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
387             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
388
389             fscal            = _mm_add_pd(felec,fvdw);
390
391             fscal            = _mm_and_pd(fscal,cutoff_mask);
392
393             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
394
395             /* Update vectorial force */
396             fix0             = _mm_macc_pd(dx00,fscal,fix0);
397             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
398             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
399             
400             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
401                                                    _mm_mul_pd(dx00,fscal),
402                                                    _mm_mul_pd(dy00,fscal),
403                                                    _mm_mul_pd(dz00,fscal));
404
405             }
406
407             /* Inner loop uses 86 flops */
408         }
409
410         /* End of innermost loop */
411
412         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
413                                               f+i_coord_offset,fshift+i_shift_offset);
414
415         ggid                        = gid[iidx];
416         /* Update potential energies */
417         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
418         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
419
420         /* Increment number of inner iterations */
421         inneriter                  += j_index_end - j_index_start;
422
423         /* Outer loop uses 9 flops */
424     }
425
426     /* Increment number of outer iterations */
427     outeriter        += nri;
428
429     /* Update outer/inner flops */
430
431     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*86);
432 }
433 /*
434  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_double
435  * Electrostatics interaction: Ewald
436  * VdW interaction:            LennardJones
437  * Geometry:                   Particle-Particle
438  * Calculate force/pot:        Force
439  */
440 void
441 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_double
442                     (t_nblist                    * gmx_restrict       nlist,
443                      rvec                        * gmx_restrict          xx,
444                      rvec                        * gmx_restrict          ff,
445                      t_forcerec                  * gmx_restrict          fr,
446                      t_mdatoms                   * gmx_restrict     mdatoms,
447                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
448                      t_nrnb                      * gmx_restrict        nrnb)
449 {
450     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
451      * just 0 for non-waters.
452      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
453      * jnr indices corresponding to data put in the four positions in the SIMD register.
454      */
455     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
456     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
457     int              jnrA,jnrB;
458     int              j_coord_offsetA,j_coord_offsetB;
459     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
460     real             rcutoff_scalar;
461     real             *shiftvec,*fshift,*x,*f;
462     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
463     int              vdwioffset0;
464     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
465     int              vdwjidx0A,vdwjidx0B;
466     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
467     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
468     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
469     real             *charge;
470     int              nvdwtype;
471     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
472     int              *vdwtype;
473     real             *vdwparam;
474     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
475     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
476     __m128i          ewitab;
477     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
478     real             *ewtab;
479     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
480     real             rswitch_scalar,d_scalar;
481     __m128d          dummy_mask,cutoff_mask;
482     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
483     __m128d          one     = _mm_set1_pd(1.0);
484     __m128d          two     = _mm_set1_pd(2.0);
485     x                = xx[0];
486     f                = ff[0];
487
488     nri              = nlist->nri;
489     iinr             = nlist->iinr;
490     jindex           = nlist->jindex;
491     jjnr             = nlist->jjnr;
492     shiftidx         = nlist->shift;
493     gid              = nlist->gid;
494     shiftvec         = fr->shift_vec[0];
495     fshift           = fr->fshift[0];
496     facel            = _mm_set1_pd(fr->epsfac);
497     charge           = mdatoms->chargeA;
498     nvdwtype         = fr->ntype;
499     vdwparam         = fr->nbfp;
500     vdwtype          = mdatoms->typeA;
501
502     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
503     ewtab            = fr->ic->tabq_coul_FDV0;
504     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
505     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
506
507     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
508     rcutoff_scalar   = fr->rcoulomb;
509     rcutoff          = _mm_set1_pd(rcutoff_scalar);
510     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
511
512     rswitch_scalar   = fr->rcoulomb_switch;
513     rswitch          = _mm_set1_pd(rswitch_scalar);
514     /* Setup switch parameters */
515     d_scalar         = rcutoff_scalar-rswitch_scalar;
516     d                = _mm_set1_pd(d_scalar);
517     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
518     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
519     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
520     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
521     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
522     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
523
524     /* Avoid stupid compiler warnings */
525     jnrA = jnrB = 0;
526     j_coord_offsetA = 0;
527     j_coord_offsetB = 0;
528
529     outeriter        = 0;
530     inneriter        = 0;
531
532     /* Start outer loop over neighborlists */
533     for(iidx=0; iidx<nri; iidx++)
534     {
535         /* Load shift vector for this list */
536         i_shift_offset   = DIM*shiftidx[iidx];
537
538         /* Load limits for loop over neighbors */
539         j_index_start    = jindex[iidx];
540         j_index_end      = jindex[iidx+1];
541
542         /* Get outer coordinate index */
543         inr              = iinr[iidx];
544         i_coord_offset   = DIM*inr;
545
546         /* Load i particle coords and add shift vector */
547         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
548
549         fix0             = _mm_setzero_pd();
550         fiy0             = _mm_setzero_pd();
551         fiz0             = _mm_setzero_pd();
552
553         /* Load parameters for i particles */
554         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
555         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
556
557         /* Start inner kernel loop */
558         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
559         {
560
561             /* Get j neighbor index, and coordinate index */
562             jnrA             = jjnr[jidx];
563             jnrB             = jjnr[jidx+1];
564             j_coord_offsetA  = DIM*jnrA;
565             j_coord_offsetB  = DIM*jnrB;
566
567             /* load j atom coordinates */
568             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
569                                               &jx0,&jy0,&jz0);
570
571             /* Calculate displacement vector */
572             dx00             = _mm_sub_pd(ix0,jx0);
573             dy00             = _mm_sub_pd(iy0,jy0);
574             dz00             = _mm_sub_pd(iz0,jz0);
575
576             /* Calculate squared distance and things based on it */
577             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
578
579             rinv00           = gmx_mm_invsqrt_pd(rsq00);
580
581             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
582
583             /* Load parameters for j particles */
584             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
585             vdwjidx0A        = 2*vdwtype[jnrA+0];
586             vdwjidx0B        = 2*vdwtype[jnrB+0];
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             if (gmx_mm_any_lt(rsq00,rcutoff2))
593             {
594
595             r00              = _mm_mul_pd(rsq00,rinv00);
596
597             /* Compute parameters for interactions between i and j atoms */
598             qq00             = _mm_mul_pd(iq0,jq0);
599             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
600                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
601
602             /* EWALD ELECTROSTATICS */
603
604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605             ewrt             = _mm_mul_pd(r00,ewtabscale);
606             ewitab           = _mm_cvttpd_epi32(ewrt);
607 #ifdef __XOP__
608             eweps            = _mm_frcz_pd(ewrt);
609 #else
610             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
611 #endif
612             twoeweps         = _mm_add_pd(eweps,eweps);
613             ewitab           = _mm_slli_epi32(ewitab,2);
614             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
615             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
616             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
617             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
618             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
619             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
620             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
621             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
622             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
623             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
624
625             /* LENNARD-JONES DISPERSION/REPULSION */
626
627             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
628             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
629             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
630             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
631             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
632
633             d                = _mm_sub_pd(r00,rswitch);
634             d                = _mm_max_pd(d,_mm_setzero_pd());
635             d2               = _mm_mul_pd(d,d);
636             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
637
638             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
639
640             /* Evaluate switch function */
641             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
642             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
643             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
644             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
645
646             fscal            = _mm_add_pd(felec,fvdw);
647
648             fscal            = _mm_and_pd(fscal,cutoff_mask);
649
650             /* Update vectorial force */
651             fix0             = _mm_macc_pd(dx00,fscal,fix0);
652             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
653             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
654             
655             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
656                                                    _mm_mul_pd(dx00,fscal),
657                                                    _mm_mul_pd(dy00,fscal),
658                                                    _mm_mul_pd(dz00,fscal));
659
660             }
661
662             /* Inner loop uses 80 flops */
663         }
664
665         if(jidx<j_index_end)
666         {
667
668             jnrA             = jjnr[jidx];
669             j_coord_offsetA  = DIM*jnrA;
670
671             /* load j atom coordinates */
672             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
673                                               &jx0,&jy0,&jz0);
674
675             /* Calculate displacement vector */
676             dx00             = _mm_sub_pd(ix0,jx0);
677             dy00             = _mm_sub_pd(iy0,jy0);
678             dz00             = _mm_sub_pd(iz0,jz0);
679
680             /* Calculate squared distance and things based on it */
681             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
682
683             rinv00           = gmx_mm_invsqrt_pd(rsq00);
684
685             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
686
687             /* Load parameters for j particles */
688             jq0              = _mm_load_sd(charge+jnrA+0);
689             vdwjidx0A        = 2*vdwtype[jnrA+0];
690
691             /**************************
692              * CALCULATE INTERACTIONS *
693              **************************/
694
695             if (gmx_mm_any_lt(rsq00,rcutoff2))
696             {
697
698             r00              = _mm_mul_pd(rsq00,rinv00);
699
700             /* Compute parameters for interactions between i and j atoms */
701             qq00             = _mm_mul_pd(iq0,jq0);
702             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
703
704             /* EWALD ELECTROSTATICS */
705
706             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
707             ewrt             = _mm_mul_pd(r00,ewtabscale);
708             ewitab           = _mm_cvttpd_epi32(ewrt);
709 #ifdef __XOP__
710             eweps            = _mm_frcz_pd(ewrt);
711 #else
712             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
713 #endif
714             twoeweps         = _mm_add_pd(eweps,eweps);
715             ewitab           = _mm_slli_epi32(ewitab,2);
716             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
717             ewtabD           = _mm_setzero_pd();
718             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
719             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
720             ewtabFn          = _mm_setzero_pd();
721             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
722             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
723             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
724             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
725             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
726
727             /* LENNARD-JONES DISPERSION/REPULSION */
728
729             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
730             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
731             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
732             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
733             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
734
735             d                = _mm_sub_pd(r00,rswitch);
736             d                = _mm_max_pd(d,_mm_setzero_pd());
737             d2               = _mm_mul_pd(d,d);
738             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
739
740             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
741
742             /* Evaluate switch function */
743             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
744             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
745             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
746             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
747
748             fscal            = _mm_add_pd(felec,fvdw);
749
750             fscal            = _mm_and_pd(fscal,cutoff_mask);
751
752             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
753
754             /* Update vectorial force */
755             fix0             = _mm_macc_pd(dx00,fscal,fix0);
756             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
757             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
758             
759             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
760                                                    _mm_mul_pd(dx00,fscal),
761                                                    _mm_mul_pd(dy00,fscal),
762                                                    _mm_mul_pd(dz00,fscal));
763
764             }
765
766             /* Inner loop uses 80 flops */
767         }
768
769         /* End of innermost loop */
770
771         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
772                                               f+i_coord_offset,fshift+i_shift_offset);
773
774         /* Increment number of inner iterations */
775         inneriter                  += j_index_end - j_index_start;
776
777         /* Outer loop uses 7 flops */
778     }
779
780     /* Increment number of outer iterations */
781     outeriter        += nri;
782
783     /* Update outer/inner flops */
784
785     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*80);
786 }