Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          ewitab;
94     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     real             *ewtab;
96     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97     real             rswitch_scalar,d_scalar;
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_pd(rcutoff_scalar);
127     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
128
129     rswitch_scalar   = fr->rcoulomb_switch;
130     rswitch          = _mm_set1_pd(rswitch_scalar);
131     /* Setup switch parameters */
132     d_scalar         = rcutoff_scalar-rswitch_scalar;
133     d                = _mm_set1_pd(d_scalar);
134     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
135     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
138     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_pd();
176         vvdwsum          = _mm_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_pd(ix0,jx0);
194             dy00             = _mm_sub_pd(iy0,jy0);
195             dz00             = _mm_sub_pd(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
199
200             rinv00           = gmx_mm_invsqrt_pd(rsq00);
201
202             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             if (gmx_mm_any_lt(rsq00,rcutoff2))
214             {
215
216             r00              = _mm_mul_pd(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm_mul_pd(iq0,jq0);
220             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
222
223             /* EWALD ELECTROSTATICS */
224
225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
226             ewrt             = _mm_mul_pd(r00,ewtabscale);
227             ewitab           = _mm_cvttpd_epi32(ewrt);
228 #ifdef __XOP__
229             eweps            = _mm_frcz_pd(ewrt);
230 #else
231             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
232 #endif
233             twoeweps         = _mm_add_pd(eweps,eweps);
234             ewitab           = _mm_slli_epi32(ewitab,2);
235             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
236             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
237             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
238             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
239             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
240             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
241             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
242             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
243             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
244             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
245
246             /* LENNARD-JONES DISPERSION/REPULSION */
247
248             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
249             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
250             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
251             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
252             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
253
254             d                = _mm_sub_pd(r00,rswitch);
255             d                = _mm_max_pd(d,_mm_setzero_pd());
256             d2               = _mm_mul_pd(d,d);
257             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
258
259             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
260
261             /* Evaluate switch function */
262             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
263             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
264             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
265             velec            = _mm_mul_pd(velec,sw);
266             vvdw             = _mm_mul_pd(vvdw,sw);
267             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
268
269             /* Update potential sum for this i atom from the interaction with this j atom. */
270             velec            = _mm_and_pd(velec,cutoff_mask);
271             velecsum         = _mm_add_pd(velecsum,velec);
272             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
273             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
274
275             fscal            = _mm_add_pd(felec,fvdw);
276
277             fscal            = _mm_and_pd(fscal,cutoff_mask);
278
279             /* Update vectorial force */
280             fix0             = _mm_macc_pd(dx00,fscal,fix0);
281             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
282             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
283             
284             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
285                                                    _mm_mul_pd(dx00,fscal),
286                                                    _mm_mul_pd(dy00,fscal),
287                                                    _mm_mul_pd(dz00,fscal));
288
289             }
290
291             /* Inner loop uses 86 flops */
292         }
293
294         if(jidx<j_index_end)
295         {
296
297             jnrA             = jjnr[jidx];
298             j_coord_offsetA  = DIM*jnrA;
299
300             /* load j atom coordinates */
301             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
302                                               &jx0,&jy0,&jz0);
303
304             /* Calculate displacement vector */
305             dx00             = _mm_sub_pd(ix0,jx0);
306             dy00             = _mm_sub_pd(iy0,jy0);
307             dz00             = _mm_sub_pd(iz0,jz0);
308
309             /* Calculate squared distance and things based on it */
310             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
311
312             rinv00           = gmx_mm_invsqrt_pd(rsq00);
313
314             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
315
316             /* Load parameters for j particles */
317             jq0              = _mm_load_sd(charge+jnrA+0);
318             vdwjidx0A        = 2*vdwtype[jnrA+0];
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             if (gmx_mm_any_lt(rsq00,rcutoff2))
325             {
326
327             r00              = _mm_mul_pd(rsq00,rinv00);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq00             = _mm_mul_pd(iq0,jq0);
331             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = _mm_mul_pd(r00,ewtabscale);
337             ewitab           = _mm_cvttpd_epi32(ewrt);
338 #ifdef __XOP__
339             eweps            = _mm_frcz_pd(ewrt);
340 #else
341             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
342 #endif
343             twoeweps         = _mm_add_pd(eweps,eweps);
344             ewitab           = _mm_slli_epi32(ewitab,2);
345             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
346             ewtabD           = _mm_setzero_pd();
347             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
348             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
349             ewtabFn          = _mm_setzero_pd();
350             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
351             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
352             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
353             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
354             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
355
356             /* LENNARD-JONES DISPERSION/REPULSION */
357
358             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
359             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
360             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
361             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
362             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
363
364             d                = _mm_sub_pd(r00,rswitch);
365             d                = _mm_max_pd(d,_mm_setzero_pd());
366             d2               = _mm_mul_pd(d,d);
367             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
368
369             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
370
371             /* Evaluate switch function */
372             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
373             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
374             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
375             velec            = _mm_mul_pd(velec,sw);
376             vvdw             = _mm_mul_pd(vvdw,sw);
377             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velec            = _mm_and_pd(velec,cutoff_mask);
381             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
382             velecsum         = _mm_add_pd(velecsum,velec);
383             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
384             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
385             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
386
387             fscal            = _mm_add_pd(felec,fvdw);
388
389             fscal            = _mm_and_pd(fscal,cutoff_mask);
390
391             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
392
393             /* Update vectorial force */
394             fix0             = _mm_macc_pd(dx00,fscal,fix0);
395             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
396             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
397             
398             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
399                                                    _mm_mul_pd(dx00,fscal),
400                                                    _mm_mul_pd(dy00,fscal),
401                                                    _mm_mul_pd(dz00,fscal));
402
403             }
404
405             /* Inner loop uses 86 flops */
406         }
407
408         /* End of innermost loop */
409
410         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
411                                               f+i_coord_offset,fshift+i_shift_offset);
412
413         ggid                        = gid[iidx];
414         /* Update potential energies */
415         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
416         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
417
418         /* Increment number of inner iterations */
419         inneriter                  += j_index_end - j_index_start;
420
421         /* Outer loop uses 9 flops */
422     }
423
424     /* Increment number of outer iterations */
425     outeriter        += nri;
426
427     /* Update outer/inner flops */
428
429     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*86);
430 }
431 /*
432  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_double
433  * Electrostatics interaction: Ewald
434  * VdW interaction:            LennardJones
435  * Geometry:                   Particle-Particle
436  * Calculate force/pot:        Force
437  */
438 void
439 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_128_fma_double
440                     (t_nblist                    * gmx_restrict       nlist,
441                      rvec                        * gmx_restrict          xx,
442                      rvec                        * gmx_restrict          ff,
443                      t_forcerec                  * gmx_restrict          fr,
444                      t_mdatoms                   * gmx_restrict     mdatoms,
445                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
446                      t_nrnb                      * gmx_restrict        nrnb)
447 {
448     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
449      * just 0 for non-waters.
450      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
451      * jnr indices corresponding to data put in the four positions in the SIMD register.
452      */
453     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
454     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
455     int              jnrA,jnrB;
456     int              j_coord_offsetA,j_coord_offsetB;
457     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
458     real             rcutoff_scalar;
459     real             *shiftvec,*fshift,*x,*f;
460     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
461     int              vdwioffset0;
462     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
463     int              vdwjidx0A,vdwjidx0B;
464     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
465     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
466     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
467     real             *charge;
468     int              nvdwtype;
469     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
470     int              *vdwtype;
471     real             *vdwparam;
472     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
473     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
474     __m128i          ewitab;
475     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
476     real             *ewtab;
477     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
478     real             rswitch_scalar,d_scalar;
479     __m128d          dummy_mask,cutoff_mask;
480     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
481     __m128d          one     = _mm_set1_pd(1.0);
482     __m128d          two     = _mm_set1_pd(2.0);
483     x                = xx[0];
484     f                = ff[0];
485
486     nri              = nlist->nri;
487     iinr             = nlist->iinr;
488     jindex           = nlist->jindex;
489     jjnr             = nlist->jjnr;
490     shiftidx         = nlist->shift;
491     gid              = nlist->gid;
492     shiftvec         = fr->shift_vec[0];
493     fshift           = fr->fshift[0];
494     facel            = _mm_set1_pd(fr->epsfac);
495     charge           = mdatoms->chargeA;
496     nvdwtype         = fr->ntype;
497     vdwparam         = fr->nbfp;
498     vdwtype          = mdatoms->typeA;
499
500     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
501     ewtab            = fr->ic->tabq_coul_FDV0;
502     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
503     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
504
505     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
506     rcutoff_scalar   = fr->rcoulomb;
507     rcutoff          = _mm_set1_pd(rcutoff_scalar);
508     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
509
510     rswitch_scalar   = fr->rcoulomb_switch;
511     rswitch          = _mm_set1_pd(rswitch_scalar);
512     /* Setup switch parameters */
513     d_scalar         = rcutoff_scalar-rswitch_scalar;
514     d                = _mm_set1_pd(d_scalar);
515     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
516     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
517     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
518     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
519     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
520     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
521
522     /* Avoid stupid compiler warnings */
523     jnrA = jnrB = 0;
524     j_coord_offsetA = 0;
525     j_coord_offsetB = 0;
526
527     outeriter        = 0;
528     inneriter        = 0;
529
530     /* Start outer loop over neighborlists */
531     for(iidx=0; iidx<nri; iidx++)
532     {
533         /* Load shift vector for this list */
534         i_shift_offset   = DIM*shiftidx[iidx];
535
536         /* Load limits for loop over neighbors */
537         j_index_start    = jindex[iidx];
538         j_index_end      = jindex[iidx+1];
539
540         /* Get outer coordinate index */
541         inr              = iinr[iidx];
542         i_coord_offset   = DIM*inr;
543
544         /* Load i particle coords and add shift vector */
545         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
546
547         fix0             = _mm_setzero_pd();
548         fiy0             = _mm_setzero_pd();
549         fiz0             = _mm_setzero_pd();
550
551         /* Load parameters for i particles */
552         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
553         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
554
555         /* Start inner kernel loop */
556         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
557         {
558
559             /* Get j neighbor index, and coordinate index */
560             jnrA             = jjnr[jidx];
561             jnrB             = jjnr[jidx+1];
562             j_coord_offsetA  = DIM*jnrA;
563             j_coord_offsetB  = DIM*jnrB;
564
565             /* load j atom coordinates */
566             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
567                                               &jx0,&jy0,&jz0);
568
569             /* Calculate displacement vector */
570             dx00             = _mm_sub_pd(ix0,jx0);
571             dy00             = _mm_sub_pd(iy0,jy0);
572             dz00             = _mm_sub_pd(iz0,jz0);
573
574             /* Calculate squared distance and things based on it */
575             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
576
577             rinv00           = gmx_mm_invsqrt_pd(rsq00);
578
579             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
580
581             /* Load parameters for j particles */
582             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
583             vdwjidx0A        = 2*vdwtype[jnrA+0];
584             vdwjidx0B        = 2*vdwtype[jnrB+0];
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             if (gmx_mm_any_lt(rsq00,rcutoff2))
591             {
592
593             r00              = _mm_mul_pd(rsq00,rinv00);
594
595             /* Compute parameters for interactions between i and j atoms */
596             qq00             = _mm_mul_pd(iq0,jq0);
597             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
598                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
599
600             /* EWALD ELECTROSTATICS */
601
602             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
603             ewrt             = _mm_mul_pd(r00,ewtabscale);
604             ewitab           = _mm_cvttpd_epi32(ewrt);
605 #ifdef __XOP__
606             eweps            = _mm_frcz_pd(ewrt);
607 #else
608             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
609 #endif
610             twoeweps         = _mm_add_pd(eweps,eweps);
611             ewitab           = _mm_slli_epi32(ewitab,2);
612             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
613             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
614             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
615             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
616             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
617             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
618             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
619             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
620             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
621             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
622
623             /* LENNARD-JONES DISPERSION/REPULSION */
624
625             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
626             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
627             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
628             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
629             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
630
631             d                = _mm_sub_pd(r00,rswitch);
632             d                = _mm_max_pd(d,_mm_setzero_pd());
633             d2               = _mm_mul_pd(d,d);
634             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
635
636             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
637
638             /* Evaluate switch function */
639             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
640             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
641             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
642             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
643
644             fscal            = _mm_add_pd(felec,fvdw);
645
646             fscal            = _mm_and_pd(fscal,cutoff_mask);
647
648             /* Update vectorial force */
649             fix0             = _mm_macc_pd(dx00,fscal,fix0);
650             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
651             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
652             
653             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
654                                                    _mm_mul_pd(dx00,fscal),
655                                                    _mm_mul_pd(dy00,fscal),
656                                                    _mm_mul_pd(dz00,fscal));
657
658             }
659
660             /* Inner loop uses 80 flops */
661         }
662
663         if(jidx<j_index_end)
664         {
665
666             jnrA             = jjnr[jidx];
667             j_coord_offsetA  = DIM*jnrA;
668
669             /* load j atom coordinates */
670             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
671                                               &jx0,&jy0,&jz0);
672
673             /* Calculate displacement vector */
674             dx00             = _mm_sub_pd(ix0,jx0);
675             dy00             = _mm_sub_pd(iy0,jy0);
676             dz00             = _mm_sub_pd(iz0,jz0);
677
678             /* Calculate squared distance and things based on it */
679             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
680
681             rinv00           = gmx_mm_invsqrt_pd(rsq00);
682
683             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
684
685             /* Load parameters for j particles */
686             jq0              = _mm_load_sd(charge+jnrA+0);
687             vdwjidx0A        = 2*vdwtype[jnrA+0];
688
689             /**************************
690              * CALCULATE INTERACTIONS *
691              **************************/
692
693             if (gmx_mm_any_lt(rsq00,rcutoff2))
694             {
695
696             r00              = _mm_mul_pd(rsq00,rinv00);
697
698             /* Compute parameters for interactions between i and j atoms */
699             qq00             = _mm_mul_pd(iq0,jq0);
700             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
701
702             /* EWALD ELECTROSTATICS */
703
704             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
705             ewrt             = _mm_mul_pd(r00,ewtabscale);
706             ewitab           = _mm_cvttpd_epi32(ewrt);
707 #ifdef __XOP__
708             eweps            = _mm_frcz_pd(ewrt);
709 #else
710             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
711 #endif
712             twoeweps         = _mm_add_pd(eweps,eweps);
713             ewitab           = _mm_slli_epi32(ewitab,2);
714             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
715             ewtabD           = _mm_setzero_pd();
716             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
717             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
718             ewtabFn          = _mm_setzero_pd();
719             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
720             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
721             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
722             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
723             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
724
725             /* LENNARD-JONES DISPERSION/REPULSION */
726
727             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
728             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
729             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
730             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
731             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
732
733             d                = _mm_sub_pd(r00,rswitch);
734             d                = _mm_max_pd(d,_mm_setzero_pd());
735             d2               = _mm_mul_pd(d,d);
736             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_macc_pd(d,_mm_macc_pd(d,swV5,swV4),swV3))));
737
738             dsw              = _mm_mul_pd(d2,_mm_macc_pd(d,_mm_macc_pd(d,swF4,swF3),swF2));
739
740             /* Evaluate switch function */
741             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
742             felec            = _mm_msub_pd( felec,sw , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
743             fvdw             = _mm_msub_pd( fvdw,sw , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
744             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
745
746             fscal            = _mm_add_pd(felec,fvdw);
747
748             fscal            = _mm_and_pd(fscal,cutoff_mask);
749
750             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
751
752             /* Update vectorial force */
753             fix0             = _mm_macc_pd(dx00,fscal,fix0);
754             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
755             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
756             
757             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
758                                                    _mm_mul_pd(dx00,fscal),
759                                                    _mm_mul_pd(dy00,fscal),
760                                                    _mm_mul_pd(dz00,fscal));
761
762             }
763
764             /* Inner loop uses 80 flops */
765         }
766
767         /* End of innermost loop */
768
769         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
770                                               f+i_coord_offset,fshift+i_shift_offset);
771
772         /* Increment number of inner iterations */
773         inneriter                  += j_index_end - j_index_start;
774
775         /* Outer loop uses 7 flops */
776     }
777
778     /* Increment number of outer iterations */
779     outeriter        += nri;
780
781     /* Update outer/inner flops */
782
783     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*80);
784 }