b640a855af889c1e1460ce5251d7c207b3245b8a
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwNone_GeomW3W3_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3W3_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water3-Water3
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwNone_GeomW3W3_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     int              vdwjidx1A,vdwjidx1B;
89     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
90     int              vdwjidx2A,vdwjidx2B;
91     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
94     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
95     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
97     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
98     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
100     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
101     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
102     real             *charge;
103     __m128i          ewitab;
104     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     real             *ewtab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123
124     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134
135     jq0              = _mm_set1_pd(charge[inr+0]);
136     jq1              = _mm_set1_pd(charge[inr+1]);
137     jq2              = _mm_set1_pd(charge[inr+2]);
138     qq00             = _mm_mul_pd(iq0,jq0);
139     qq01             = _mm_mul_pd(iq0,jq1);
140     qq02             = _mm_mul_pd(iq0,jq2);
141     qq10             = _mm_mul_pd(iq1,jq0);
142     qq11             = _mm_mul_pd(iq1,jq1);
143     qq12             = _mm_mul_pd(iq1,jq2);
144     qq20             = _mm_mul_pd(iq2,jq0);
145     qq21             = _mm_mul_pd(iq2,jq1);
146     qq22             = _mm_mul_pd(iq2,jq2);
147
148     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
149     rcutoff_scalar   = fr->rcoulomb;
150     rcutoff          = _mm_set1_pd(rcutoff_scalar);
151     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
152
153     /* Avoid stupid compiler warnings */
154     jnrA = jnrB = 0;
155     j_coord_offsetA = 0;
156     j_coord_offsetB = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
178
179         fix0             = _mm_setzero_pd();
180         fiy0             = _mm_setzero_pd();
181         fiz0             = _mm_setzero_pd();
182         fix1             = _mm_setzero_pd();
183         fiy1             = _mm_setzero_pd();
184         fiz1             = _mm_setzero_pd();
185         fix2             = _mm_setzero_pd();
186         fiy2             = _mm_setzero_pd();
187         fiz2             = _mm_setzero_pd();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_pd();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201
202             /* load j atom coordinates */
203             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
204                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
205
206             /* Calculate displacement vector */
207             dx00             = _mm_sub_pd(ix0,jx0);
208             dy00             = _mm_sub_pd(iy0,jy0);
209             dz00             = _mm_sub_pd(iz0,jz0);
210             dx01             = _mm_sub_pd(ix0,jx1);
211             dy01             = _mm_sub_pd(iy0,jy1);
212             dz01             = _mm_sub_pd(iz0,jz1);
213             dx02             = _mm_sub_pd(ix0,jx2);
214             dy02             = _mm_sub_pd(iy0,jy2);
215             dz02             = _mm_sub_pd(iz0,jz2);
216             dx10             = _mm_sub_pd(ix1,jx0);
217             dy10             = _mm_sub_pd(iy1,jy0);
218             dz10             = _mm_sub_pd(iz1,jz0);
219             dx11             = _mm_sub_pd(ix1,jx1);
220             dy11             = _mm_sub_pd(iy1,jy1);
221             dz11             = _mm_sub_pd(iz1,jz1);
222             dx12             = _mm_sub_pd(ix1,jx2);
223             dy12             = _mm_sub_pd(iy1,jy2);
224             dz12             = _mm_sub_pd(iz1,jz2);
225             dx20             = _mm_sub_pd(ix2,jx0);
226             dy20             = _mm_sub_pd(iy2,jy0);
227             dz20             = _mm_sub_pd(iz2,jz0);
228             dx21             = _mm_sub_pd(ix2,jx1);
229             dy21             = _mm_sub_pd(iy2,jy1);
230             dz21             = _mm_sub_pd(iz2,jz1);
231             dx22             = _mm_sub_pd(ix2,jx2);
232             dy22             = _mm_sub_pd(iy2,jy2);
233             dz22             = _mm_sub_pd(iz2,jz2);
234
235             /* Calculate squared distance and things based on it */
236             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
237             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
238             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
239             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
240             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
241             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
242             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
243             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
244             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
245
246             rinv00           = gmx_mm_invsqrt_pd(rsq00);
247             rinv01           = gmx_mm_invsqrt_pd(rsq01);
248             rinv02           = gmx_mm_invsqrt_pd(rsq02);
249             rinv10           = gmx_mm_invsqrt_pd(rsq10);
250             rinv11           = gmx_mm_invsqrt_pd(rsq11);
251             rinv12           = gmx_mm_invsqrt_pd(rsq12);
252             rinv20           = gmx_mm_invsqrt_pd(rsq20);
253             rinv21           = gmx_mm_invsqrt_pd(rsq21);
254             rinv22           = gmx_mm_invsqrt_pd(rsq22);
255
256             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
257             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
258             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
259             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
260             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
261             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
262             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
263             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
264             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
265
266             fjx0             = _mm_setzero_pd();
267             fjy0             = _mm_setzero_pd();
268             fjz0             = _mm_setzero_pd();
269             fjx1             = _mm_setzero_pd();
270             fjy1             = _mm_setzero_pd();
271             fjz1             = _mm_setzero_pd();
272             fjx2             = _mm_setzero_pd();
273             fjy2             = _mm_setzero_pd();
274             fjz2             = _mm_setzero_pd();
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             if (gmx_mm_any_lt(rsq00,rcutoff2))
281             {
282
283             r00              = _mm_mul_pd(rsq00,rinv00);
284
285             /* EWALD ELECTROSTATICS */
286
287             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
288             ewrt             = _mm_mul_pd(r00,ewtabscale);
289             ewitab           = _mm_cvttpd_epi32(ewrt);
290 #ifdef __XOP__
291             eweps            = _mm_frcz_pd(ewrt);
292 #else
293             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
294 #endif
295             twoeweps         = _mm_add_pd(eweps,eweps);
296             ewitab           = _mm_slli_epi32(ewitab,2);
297             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
298             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
299             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
300             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
301             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
302             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
303             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
304             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
305             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
306             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
307
308             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velec            = _mm_and_pd(velec,cutoff_mask);
312             velecsum         = _mm_add_pd(velecsum,velec);
313
314             fscal            = felec;
315
316             fscal            = _mm_and_pd(fscal,cutoff_mask);
317
318             /* Update vectorial force */
319             fix0             = _mm_macc_pd(dx00,fscal,fix0);
320             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
321             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
322             
323             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
324             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
325             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
326
327             }
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             if (gmx_mm_any_lt(rsq01,rcutoff2))
334             {
335
336             r01              = _mm_mul_pd(rsq01,rinv01);
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
341             ewrt             = _mm_mul_pd(r01,ewtabscale);
342             ewitab           = _mm_cvttpd_epi32(ewrt);
343 #ifdef __XOP__
344             eweps            = _mm_frcz_pd(ewrt);
345 #else
346             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
347 #endif
348             twoeweps         = _mm_add_pd(eweps,eweps);
349             ewitab           = _mm_slli_epi32(ewitab,2);
350             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
351             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
352             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
353             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
354             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
355             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
356             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
357             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
358             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
359             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
360
361             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velec            = _mm_and_pd(velec,cutoff_mask);
365             velecsum         = _mm_add_pd(velecsum,velec);
366
367             fscal            = felec;
368
369             fscal            = _mm_and_pd(fscal,cutoff_mask);
370
371             /* Update vectorial force */
372             fix0             = _mm_macc_pd(dx01,fscal,fix0);
373             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
374             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
375             
376             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
377             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
378             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
379
380             }
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             if (gmx_mm_any_lt(rsq02,rcutoff2))
387             {
388
389             r02              = _mm_mul_pd(rsq02,rinv02);
390
391             /* EWALD ELECTROSTATICS */
392
393             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
394             ewrt             = _mm_mul_pd(r02,ewtabscale);
395             ewitab           = _mm_cvttpd_epi32(ewrt);
396 #ifdef __XOP__
397             eweps            = _mm_frcz_pd(ewrt);
398 #else
399             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
400 #endif
401             twoeweps         = _mm_add_pd(eweps,eweps);
402             ewitab           = _mm_slli_epi32(ewitab,2);
403             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
404             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
405             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
406             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
407             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
408             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
409             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
410             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
411             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
412             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
413
414             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
415
416             /* Update potential sum for this i atom from the interaction with this j atom. */
417             velec            = _mm_and_pd(velec,cutoff_mask);
418             velecsum         = _mm_add_pd(velecsum,velec);
419
420             fscal            = felec;
421
422             fscal            = _mm_and_pd(fscal,cutoff_mask);
423
424             /* Update vectorial force */
425             fix0             = _mm_macc_pd(dx02,fscal,fix0);
426             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
427             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
428             
429             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
430             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
431             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
432
433             }
434
435             /**************************
436              * CALCULATE INTERACTIONS *
437              **************************/
438
439             if (gmx_mm_any_lt(rsq10,rcutoff2))
440             {
441
442             r10              = _mm_mul_pd(rsq10,rinv10);
443
444             /* EWALD ELECTROSTATICS */
445
446             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
447             ewrt             = _mm_mul_pd(r10,ewtabscale);
448             ewitab           = _mm_cvttpd_epi32(ewrt);
449 #ifdef __XOP__
450             eweps            = _mm_frcz_pd(ewrt);
451 #else
452             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
453 #endif
454             twoeweps         = _mm_add_pd(eweps,eweps);
455             ewitab           = _mm_slli_epi32(ewitab,2);
456             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
457             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
458             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
459             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
460             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
461             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
462             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
463             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
464             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
465             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
466
467             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
468
469             /* Update potential sum for this i atom from the interaction with this j atom. */
470             velec            = _mm_and_pd(velec,cutoff_mask);
471             velecsum         = _mm_add_pd(velecsum,velec);
472
473             fscal            = felec;
474
475             fscal            = _mm_and_pd(fscal,cutoff_mask);
476
477             /* Update vectorial force */
478             fix1             = _mm_macc_pd(dx10,fscal,fix1);
479             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
480             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
481             
482             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
483             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
484             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
485
486             }
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             if (gmx_mm_any_lt(rsq11,rcutoff2))
493             {
494
495             r11              = _mm_mul_pd(rsq11,rinv11);
496
497             /* EWALD ELECTROSTATICS */
498
499             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
500             ewrt             = _mm_mul_pd(r11,ewtabscale);
501             ewitab           = _mm_cvttpd_epi32(ewrt);
502 #ifdef __XOP__
503             eweps            = _mm_frcz_pd(ewrt);
504 #else
505             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
506 #endif
507             twoeweps         = _mm_add_pd(eweps,eweps);
508             ewitab           = _mm_slli_epi32(ewitab,2);
509             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
510             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
511             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
512             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
513             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
514             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
515             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
516             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
517             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
518             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
519
520             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             velec            = _mm_and_pd(velec,cutoff_mask);
524             velecsum         = _mm_add_pd(velecsum,velec);
525
526             fscal            = felec;
527
528             fscal            = _mm_and_pd(fscal,cutoff_mask);
529
530             /* Update vectorial force */
531             fix1             = _mm_macc_pd(dx11,fscal,fix1);
532             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
533             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
534             
535             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
536             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
537             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
538
539             }
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             if (gmx_mm_any_lt(rsq12,rcutoff2))
546             {
547
548             r12              = _mm_mul_pd(rsq12,rinv12);
549
550             /* EWALD ELECTROSTATICS */
551
552             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
553             ewrt             = _mm_mul_pd(r12,ewtabscale);
554             ewitab           = _mm_cvttpd_epi32(ewrt);
555 #ifdef __XOP__
556             eweps            = _mm_frcz_pd(ewrt);
557 #else
558             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
559 #endif
560             twoeweps         = _mm_add_pd(eweps,eweps);
561             ewitab           = _mm_slli_epi32(ewitab,2);
562             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
563             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
564             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
565             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
566             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
567             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
568             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
569             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
570             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
571             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
572
573             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
574
575             /* Update potential sum for this i atom from the interaction with this j atom. */
576             velec            = _mm_and_pd(velec,cutoff_mask);
577             velecsum         = _mm_add_pd(velecsum,velec);
578
579             fscal            = felec;
580
581             fscal            = _mm_and_pd(fscal,cutoff_mask);
582
583             /* Update vectorial force */
584             fix1             = _mm_macc_pd(dx12,fscal,fix1);
585             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
586             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
587             
588             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
589             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
590             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
591
592             }
593
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             if (gmx_mm_any_lt(rsq20,rcutoff2))
599             {
600
601             r20              = _mm_mul_pd(rsq20,rinv20);
602
603             /* EWALD ELECTROSTATICS */
604
605             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
606             ewrt             = _mm_mul_pd(r20,ewtabscale);
607             ewitab           = _mm_cvttpd_epi32(ewrt);
608 #ifdef __XOP__
609             eweps            = _mm_frcz_pd(ewrt);
610 #else
611             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
612 #endif
613             twoeweps         = _mm_add_pd(eweps,eweps);
614             ewitab           = _mm_slli_epi32(ewitab,2);
615             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
616             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
617             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
618             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
619             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
620             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
621             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
622             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
623             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
624             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
625
626             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
627
628             /* Update potential sum for this i atom from the interaction with this j atom. */
629             velec            = _mm_and_pd(velec,cutoff_mask);
630             velecsum         = _mm_add_pd(velecsum,velec);
631
632             fscal            = felec;
633
634             fscal            = _mm_and_pd(fscal,cutoff_mask);
635
636             /* Update vectorial force */
637             fix2             = _mm_macc_pd(dx20,fscal,fix2);
638             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
639             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
640             
641             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
642             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
643             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
644
645             }
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             if (gmx_mm_any_lt(rsq21,rcutoff2))
652             {
653
654             r21              = _mm_mul_pd(rsq21,rinv21);
655
656             /* EWALD ELECTROSTATICS */
657
658             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
659             ewrt             = _mm_mul_pd(r21,ewtabscale);
660             ewitab           = _mm_cvttpd_epi32(ewrt);
661 #ifdef __XOP__
662             eweps            = _mm_frcz_pd(ewrt);
663 #else
664             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
665 #endif
666             twoeweps         = _mm_add_pd(eweps,eweps);
667             ewitab           = _mm_slli_epi32(ewitab,2);
668             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
669             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
670             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
671             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
672             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
673             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
674             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
675             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
676             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
677             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
678
679             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
680
681             /* Update potential sum for this i atom from the interaction with this j atom. */
682             velec            = _mm_and_pd(velec,cutoff_mask);
683             velecsum         = _mm_add_pd(velecsum,velec);
684
685             fscal            = felec;
686
687             fscal            = _mm_and_pd(fscal,cutoff_mask);
688
689             /* Update vectorial force */
690             fix2             = _mm_macc_pd(dx21,fscal,fix2);
691             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
692             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
693             
694             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
695             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
696             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
697
698             }
699
700             /**************************
701              * CALCULATE INTERACTIONS *
702              **************************/
703
704             if (gmx_mm_any_lt(rsq22,rcutoff2))
705             {
706
707             r22              = _mm_mul_pd(rsq22,rinv22);
708
709             /* EWALD ELECTROSTATICS */
710
711             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
712             ewrt             = _mm_mul_pd(r22,ewtabscale);
713             ewitab           = _mm_cvttpd_epi32(ewrt);
714 #ifdef __XOP__
715             eweps            = _mm_frcz_pd(ewrt);
716 #else
717             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
718 #endif
719             twoeweps         = _mm_add_pd(eweps,eweps);
720             ewitab           = _mm_slli_epi32(ewitab,2);
721             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
722             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
723             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
724             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
725             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
726             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
727             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
728             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
729             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
730             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
731
732             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
733
734             /* Update potential sum for this i atom from the interaction with this j atom. */
735             velec            = _mm_and_pd(velec,cutoff_mask);
736             velecsum         = _mm_add_pd(velecsum,velec);
737
738             fscal            = felec;
739
740             fscal            = _mm_and_pd(fscal,cutoff_mask);
741
742             /* Update vectorial force */
743             fix2             = _mm_macc_pd(dx22,fscal,fix2);
744             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
745             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
746             
747             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
748             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
749             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
750
751             }
752
753             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
754
755             /* Inner loop uses 441 flops */
756         }
757
758         if(jidx<j_index_end)
759         {
760
761             jnrA             = jjnr[jidx];
762             j_coord_offsetA  = DIM*jnrA;
763
764             /* load j atom coordinates */
765             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
766                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
767
768             /* Calculate displacement vector */
769             dx00             = _mm_sub_pd(ix0,jx0);
770             dy00             = _mm_sub_pd(iy0,jy0);
771             dz00             = _mm_sub_pd(iz0,jz0);
772             dx01             = _mm_sub_pd(ix0,jx1);
773             dy01             = _mm_sub_pd(iy0,jy1);
774             dz01             = _mm_sub_pd(iz0,jz1);
775             dx02             = _mm_sub_pd(ix0,jx2);
776             dy02             = _mm_sub_pd(iy0,jy2);
777             dz02             = _mm_sub_pd(iz0,jz2);
778             dx10             = _mm_sub_pd(ix1,jx0);
779             dy10             = _mm_sub_pd(iy1,jy0);
780             dz10             = _mm_sub_pd(iz1,jz0);
781             dx11             = _mm_sub_pd(ix1,jx1);
782             dy11             = _mm_sub_pd(iy1,jy1);
783             dz11             = _mm_sub_pd(iz1,jz1);
784             dx12             = _mm_sub_pd(ix1,jx2);
785             dy12             = _mm_sub_pd(iy1,jy2);
786             dz12             = _mm_sub_pd(iz1,jz2);
787             dx20             = _mm_sub_pd(ix2,jx0);
788             dy20             = _mm_sub_pd(iy2,jy0);
789             dz20             = _mm_sub_pd(iz2,jz0);
790             dx21             = _mm_sub_pd(ix2,jx1);
791             dy21             = _mm_sub_pd(iy2,jy1);
792             dz21             = _mm_sub_pd(iz2,jz1);
793             dx22             = _mm_sub_pd(ix2,jx2);
794             dy22             = _mm_sub_pd(iy2,jy2);
795             dz22             = _mm_sub_pd(iz2,jz2);
796
797             /* Calculate squared distance and things based on it */
798             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
799             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
800             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
801             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
802             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
803             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
804             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
805             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
806             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
807
808             rinv00           = gmx_mm_invsqrt_pd(rsq00);
809             rinv01           = gmx_mm_invsqrt_pd(rsq01);
810             rinv02           = gmx_mm_invsqrt_pd(rsq02);
811             rinv10           = gmx_mm_invsqrt_pd(rsq10);
812             rinv11           = gmx_mm_invsqrt_pd(rsq11);
813             rinv12           = gmx_mm_invsqrt_pd(rsq12);
814             rinv20           = gmx_mm_invsqrt_pd(rsq20);
815             rinv21           = gmx_mm_invsqrt_pd(rsq21);
816             rinv22           = gmx_mm_invsqrt_pd(rsq22);
817
818             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
819             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
820             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
821             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
822             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
823             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
824             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
825             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
826             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
827
828             fjx0             = _mm_setzero_pd();
829             fjy0             = _mm_setzero_pd();
830             fjz0             = _mm_setzero_pd();
831             fjx1             = _mm_setzero_pd();
832             fjy1             = _mm_setzero_pd();
833             fjz1             = _mm_setzero_pd();
834             fjx2             = _mm_setzero_pd();
835             fjy2             = _mm_setzero_pd();
836             fjz2             = _mm_setzero_pd();
837
838             /**************************
839              * CALCULATE INTERACTIONS *
840              **************************/
841
842             if (gmx_mm_any_lt(rsq00,rcutoff2))
843             {
844
845             r00              = _mm_mul_pd(rsq00,rinv00);
846
847             /* EWALD ELECTROSTATICS */
848
849             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
850             ewrt             = _mm_mul_pd(r00,ewtabscale);
851             ewitab           = _mm_cvttpd_epi32(ewrt);
852 #ifdef __XOP__
853             eweps            = _mm_frcz_pd(ewrt);
854 #else
855             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
856 #endif
857             twoeweps         = _mm_add_pd(eweps,eweps);
858             ewitab           = _mm_slli_epi32(ewitab,2);
859             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
860             ewtabD           = _mm_setzero_pd();
861             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
862             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
863             ewtabFn          = _mm_setzero_pd();
864             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
865             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
866             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
867             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
868             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
869
870             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
871
872             /* Update potential sum for this i atom from the interaction with this j atom. */
873             velec            = _mm_and_pd(velec,cutoff_mask);
874             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
875             velecsum         = _mm_add_pd(velecsum,velec);
876
877             fscal            = felec;
878
879             fscal            = _mm_and_pd(fscal,cutoff_mask);
880
881             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
882
883             /* Update vectorial force */
884             fix0             = _mm_macc_pd(dx00,fscal,fix0);
885             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
886             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
887             
888             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
889             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
890             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
891
892             }
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             if (gmx_mm_any_lt(rsq01,rcutoff2))
899             {
900
901             r01              = _mm_mul_pd(rsq01,rinv01);
902
903             /* EWALD ELECTROSTATICS */
904
905             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
906             ewrt             = _mm_mul_pd(r01,ewtabscale);
907             ewitab           = _mm_cvttpd_epi32(ewrt);
908 #ifdef __XOP__
909             eweps            = _mm_frcz_pd(ewrt);
910 #else
911             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
912 #endif
913             twoeweps         = _mm_add_pd(eweps,eweps);
914             ewitab           = _mm_slli_epi32(ewitab,2);
915             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
916             ewtabD           = _mm_setzero_pd();
917             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
918             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
919             ewtabFn          = _mm_setzero_pd();
920             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
921             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
922             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
923             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
924             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
925
926             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
927
928             /* Update potential sum for this i atom from the interaction with this j atom. */
929             velec            = _mm_and_pd(velec,cutoff_mask);
930             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
931             velecsum         = _mm_add_pd(velecsum,velec);
932
933             fscal            = felec;
934
935             fscal            = _mm_and_pd(fscal,cutoff_mask);
936
937             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
938
939             /* Update vectorial force */
940             fix0             = _mm_macc_pd(dx01,fscal,fix0);
941             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
942             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
943             
944             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
945             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
946             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
947
948             }
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             if (gmx_mm_any_lt(rsq02,rcutoff2))
955             {
956
957             r02              = _mm_mul_pd(rsq02,rinv02);
958
959             /* EWALD ELECTROSTATICS */
960
961             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
962             ewrt             = _mm_mul_pd(r02,ewtabscale);
963             ewitab           = _mm_cvttpd_epi32(ewrt);
964 #ifdef __XOP__
965             eweps            = _mm_frcz_pd(ewrt);
966 #else
967             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
968 #endif
969             twoeweps         = _mm_add_pd(eweps,eweps);
970             ewitab           = _mm_slli_epi32(ewitab,2);
971             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
972             ewtabD           = _mm_setzero_pd();
973             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
974             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
975             ewtabFn          = _mm_setzero_pd();
976             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
977             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
978             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
979             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
980             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
981
982             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
983
984             /* Update potential sum for this i atom from the interaction with this j atom. */
985             velec            = _mm_and_pd(velec,cutoff_mask);
986             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
987             velecsum         = _mm_add_pd(velecsum,velec);
988
989             fscal            = felec;
990
991             fscal            = _mm_and_pd(fscal,cutoff_mask);
992
993             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
994
995             /* Update vectorial force */
996             fix0             = _mm_macc_pd(dx02,fscal,fix0);
997             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
998             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
999             
1000             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
1001             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
1002             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
1003
1004             }
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             if (gmx_mm_any_lt(rsq10,rcutoff2))
1011             {
1012
1013             r10              = _mm_mul_pd(rsq10,rinv10);
1014
1015             /* EWALD ELECTROSTATICS */
1016
1017             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1018             ewrt             = _mm_mul_pd(r10,ewtabscale);
1019             ewitab           = _mm_cvttpd_epi32(ewrt);
1020 #ifdef __XOP__
1021             eweps            = _mm_frcz_pd(ewrt);
1022 #else
1023             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1024 #endif
1025             twoeweps         = _mm_add_pd(eweps,eweps);
1026             ewitab           = _mm_slli_epi32(ewitab,2);
1027             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1028             ewtabD           = _mm_setzero_pd();
1029             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1030             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1031             ewtabFn          = _mm_setzero_pd();
1032             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1033             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1034             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1035             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
1036             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1037
1038             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1039
1040             /* Update potential sum for this i atom from the interaction with this j atom. */
1041             velec            = _mm_and_pd(velec,cutoff_mask);
1042             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1043             velecsum         = _mm_add_pd(velecsum,velec);
1044
1045             fscal            = felec;
1046
1047             fscal            = _mm_and_pd(fscal,cutoff_mask);
1048
1049             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1050
1051             /* Update vectorial force */
1052             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1053             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1054             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1055             
1056             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1057             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1058             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1059
1060             }
1061
1062             /**************************
1063              * CALCULATE INTERACTIONS *
1064              **************************/
1065
1066             if (gmx_mm_any_lt(rsq11,rcutoff2))
1067             {
1068
1069             r11              = _mm_mul_pd(rsq11,rinv11);
1070
1071             /* EWALD ELECTROSTATICS */
1072
1073             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1074             ewrt             = _mm_mul_pd(r11,ewtabscale);
1075             ewitab           = _mm_cvttpd_epi32(ewrt);
1076 #ifdef __XOP__
1077             eweps            = _mm_frcz_pd(ewrt);
1078 #else
1079             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1080 #endif
1081             twoeweps         = _mm_add_pd(eweps,eweps);
1082             ewitab           = _mm_slli_epi32(ewitab,2);
1083             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1084             ewtabD           = _mm_setzero_pd();
1085             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1086             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1087             ewtabFn          = _mm_setzero_pd();
1088             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1089             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1090             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1091             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
1092             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1093
1094             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1095
1096             /* Update potential sum for this i atom from the interaction with this j atom. */
1097             velec            = _mm_and_pd(velec,cutoff_mask);
1098             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1099             velecsum         = _mm_add_pd(velecsum,velec);
1100
1101             fscal            = felec;
1102
1103             fscal            = _mm_and_pd(fscal,cutoff_mask);
1104
1105             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1106
1107             /* Update vectorial force */
1108             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1109             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1110             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1111             
1112             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1113             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1114             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1115
1116             }
1117
1118             /**************************
1119              * CALCULATE INTERACTIONS *
1120              **************************/
1121
1122             if (gmx_mm_any_lt(rsq12,rcutoff2))
1123             {
1124
1125             r12              = _mm_mul_pd(rsq12,rinv12);
1126
1127             /* EWALD ELECTROSTATICS */
1128
1129             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1130             ewrt             = _mm_mul_pd(r12,ewtabscale);
1131             ewitab           = _mm_cvttpd_epi32(ewrt);
1132 #ifdef __XOP__
1133             eweps            = _mm_frcz_pd(ewrt);
1134 #else
1135             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1136 #endif
1137             twoeweps         = _mm_add_pd(eweps,eweps);
1138             ewitab           = _mm_slli_epi32(ewitab,2);
1139             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1140             ewtabD           = _mm_setzero_pd();
1141             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1142             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1143             ewtabFn          = _mm_setzero_pd();
1144             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1145             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1146             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1147             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
1148             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1149
1150             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1151
1152             /* Update potential sum for this i atom from the interaction with this j atom. */
1153             velec            = _mm_and_pd(velec,cutoff_mask);
1154             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1155             velecsum         = _mm_add_pd(velecsum,velec);
1156
1157             fscal            = felec;
1158
1159             fscal            = _mm_and_pd(fscal,cutoff_mask);
1160
1161             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1162
1163             /* Update vectorial force */
1164             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1165             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1166             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1167             
1168             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1169             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1170             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1171
1172             }
1173
1174             /**************************
1175              * CALCULATE INTERACTIONS *
1176              **************************/
1177
1178             if (gmx_mm_any_lt(rsq20,rcutoff2))
1179             {
1180
1181             r20              = _mm_mul_pd(rsq20,rinv20);
1182
1183             /* EWALD ELECTROSTATICS */
1184
1185             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1186             ewrt             = _mm_mul_pd(r20,ewtabscale);
1187             ewitab           = _mm_cvttpd_epi32(ewrt);
1188 #ifdef __XOP__
1189             eweps            = _mm_frcz_pd(ewrt);
1190 #else
1191             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1192 #endif
1193             twoeweps         = _mm_add_pd(eweps,eweps);
1194             ewitab           = _mm_slli_epi32(ewitab,2);
1195             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1196             ewtabD           = _mm_setzero_pd();
1197             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1198             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1199             ewtabFn          = _mm_setzero_pd();
1200             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1201             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1202             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1203             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
1204             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1205
1206             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1207
1208             /* Update potential sum for this i atom from the interaction with this j atom. */
1209             velec            = _mm_and_pd(velec,cutoff_mask);
1210             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1211             velecsum         = _mm_add_pd(velecsum,velec);
1212
1213             fscal            = felec;
1214
1215             fscal            = _mm_and_pd(fscal,cutoff_mask);
1216
1217             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1218
1219             /* Update vectorial force */
1220             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1221             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1222             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1223             
1224             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1225             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1226             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1227
1228             }
1229
1230             /**************************
1231              * CALCULATE INTERACTIONS *
1232              **************************/
1233
1234             if (gmx_mm_any_lt(rsq21,rcutoff2))
1235             {
1236
1237             r21              = _mm_mul_pd(rsq21,rinv21);
1238
1239             /* EWALD ELECTROSTATICS */
1240
1241             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1242             ewrt             = _mm_mul_pd(r21,ewtabscale);
1243             ewitab           = _mm_cvttpd_epi32(ewrt);
1244 #ifdef __XOP__
1245             eweps            = _mm_frcz_pd(ewrt);
1246 #else
1247             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1248 #endif
1249             twoeweps         = _mm_add_pd(eweps,eweps);
1250             ewitab           = _mm_slli_epi32(ewitab,2);
1251             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1252             ewtabD           = _mm_setzero_pd();
1253             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1254             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1255             ewtabFn          = _mm_setzero_pd();
1256             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1257             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1258             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1259             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
1260             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1261
1262             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1263
1264             /* Update potential sum for this i atom from the interaction with this j atom. */
1265             velec            = _mm_and_pd(velec,cutoff_mask);
1266             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1267             velecsum         = _mm_add_pd(velecsum,velec);
1268
1269             fscal            = felec;
1270
1271             fscal            = _mm_and_pd(fscal,cutoff_mask);
1272
1273             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1274
1275             /* Update vectorial force */
1276             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1277             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1278             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1279             
1280             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1281             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1282             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1283
1284             }
1285
1286             /**************************
1287              * CALCULATE INTERACTIONS *
1288              **************************/
1289
1290             if (gmx_mm_any_lt(rsq22,rcutoff2))
1291             {
1292
1293             r22              = _mm_mul_pd(rsq22,rinv22);
1294
1295             /* EWALD ELECTROSTATICS */
1296
1297             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1298             ewrt             = _mm_mul_pd(r22,ewtabscale);
1299             ewitab           = _mm_cvttpd_epi32(ewrt);
1300 #ifdef __XOP__
1301             eweps            = _mm_frcz_pd(ewrt);
1302 #else
1303             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1304 #endif
1305             twoeweps         = _mm_add_pd(eweps,eweps);
1306             ewitab           = _mm_slli_epi32(ewitab,2);
1307             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1308             ewtabD           = _mm_setzero_pd();
1309             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1310             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1311             ewtabFn          = _mm_setzero_pd();
1312             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1313             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1314             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1315             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
1316             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1317
1318             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1319
1320             /* Update potential sum for this i atom from the interaction with this j atom. */
1321             velec            = _mm_and_pd(velec,cutoff_mask);
1322             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1323             velecsum         = _mm_add_pd(velecsum,velec);
1324
1325             fscal            = felec;
1326
1327             fscal            = _mm_and_pd(fscal,cutoff_mask);
1328
1329             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1330
1331             /* Update vectorial force */
1332             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1333             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1334             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1335             
1336             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1337             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1338             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1339
1340             }
1341
1342             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1343
1344             /* Inner loop uses 441 flops */
1345         }
1346
1347         /* End of innermost loop */
1348
1349         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1350                                               f+i_coord_offset,fshift+i_shift_offset);
1351
1352         ggid                        = gid[iidx];
1353         /* Update potential energies */
1354         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1355
1356         /* Increment number of inner iterations */
1357         inneriter                  += j_index_end - j_index_start;
1358
1359         /* Outer loop uses 19 flops */
1360     }
1361
1362     /* Increment number of outer iterations */
1363     outeriter        += nri;
1364
1365     /* Update outer/inner flops */
1366
1367     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*19 + inneriter*441);
1368 }
1369 /*
1370  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3W3_F_avx_128_fma_double
1371  * Electrostatics interaction: Ewald
1372  * VdW interaction:            None
1373  * Geometry:                   Water3-Water3
1374  * Calculate force/pot:        Force
1375  */
1376 void
1377 nb_kernel_ElecEwSh_VdwNone_GeomW3W3_F_avx_128_fma_double
1378                     (t_nblist                    * gmx_restrict       nlist,
1379                      rvec                        * gmx_restrict          xx,
1380                      rvec                        * gmx_restrict          ff,
1381                      t_forcerec                  * gmx_restrict          fr,
1382                      t_mdatoms                   * gmx_restrict     mdatoms,
1383                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1384                      t_nrnb                      * gmx_restrict        nrnb)
1385 {
1386     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1387      * just 0 for non-waters.
1388      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1389      * jnr indices corresponding to data put in the four positions in the SIMD register.
1390      */
1391     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1392     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1393     int              jnrA,jnrB;
1394     int              j_coord_offsetA,j_coord_offsetB;
1395     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1396     real             rcutoff_scalar;
1397     real             *shiftvec,*fshift,*x,*f;
1398     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1399     int              vdwioffset0;
1400     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1401     int              vdwioffset1;
1402     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1403     int              vdwioffset2;
1404     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1405     int              vdwjidx0A,vdwjidx0B;
1406     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1407     int              vdwjidx1A,vdwjidx1B;
1408     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1409     int              vdwjidx2A,vdwjidx2B;
1410     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1411     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1412     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1413     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1414     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1415     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1416     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1417     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1418     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1419     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1420     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1421     real             *charge;
1422     __m128i          ewitab;
1423     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1424     real             *ewtab;
1425     __m128d          dummy_mask,cutoff_mask;
1426     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1427     __m128d          one     = _mm_set1_pd(1.0);
1428     __m128d          two     = _mm_set1_pd(2.0);
1429     x                = xx[0];
1430     f                = ff[0];
1431
1432     nri              = nlist->nri;
1433     iinr             = nlist->iinr;
1434     jindex           = nlist->jindex;
1435     jjnr             = nlist->jjnr;
1436     shiftidx         = nlist->shift;
1437     gid              = nlist->gid;
1438     shiftvec         = fr->shift_vec[0];
1439     fshift           = fr->fshift[0];
1440     facel            = _mm_set1_pd(fr->epsfac);
1441     charge           = mdatoms->chargeA;
1442
1443     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1444     ewtab            = fr->ic->tabq_coul_F;
1445     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1446     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1447
1448     /* Setup water-specific parameters */
1449     inr              = nlist->iinr[0];
1450     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1451     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1452     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1453
1454     jq0              = _mm_set1_pd(charge[inr+0]);
1455     jq1              = _mm_set1_pd(charge[inr+1]);
1456     jq2              = _mm_set1_pd(charge[inr+2]);
1457     qq00             = _mm_mul_pd(iq0,jq0);
1458     qq01             = _mm_mul_pd(iq0,jq1);
1459     qq02             = _mm_mul_pd(iq0,jq2);
1460     qq10             = _mm_mul_pd(iq1,jq0);
1461     qq11             = _mm_mul_pd(iq1,jq1);
1462     qq12             = _mm_mul_pd(iq1,jq2);
1463     qq20             = _mm_mul_pd(iq2,jq0);
1464     qq21             = _mm_mul_pd(iq2,jq1);
1465     qq22             = _mm_mul_pd(iq2,jq2);
1466
1467     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1468     rcutoff_scalar   = fr->rcoulomb;
1469     rcutoff          = _mm_set1_pd(rcutoff_scalar);
1470     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
1471
1472     /* Avoid stupid compiler warnings */
1473     jnrA = jnrB = 0;
1474     j_coord_offsetA = 0;
1475     j_coord_offsetB = 0;
1476
1477     outeriter        = 0;
1478     inneriter        = 0;
1479
1480     /* Start outer loop over neighborlists */
1481     for(iidx=0; iidx<nri; iidx++)
1482     {
1483         /* Load shift vector for this list */
1484         i_shift_offset   = DIM*shiftidx[iidx];
1485
1486         /* Load limits for loop over neighbors */
1487         j_index_start    = jindex[iidx];
1488         j_index_end      = jindex[iidx+1];
1489
1490         /* Get outer coordinate index */
1491         inr              = iinr[iidx];
1492         i_coord_offset   = DIM*inr;
1493
1494         /* Load i particle coords and add shift vector */
1495         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1496                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1497
1498         fix0             = _mm_setzero_pd();
1499         fiy0             = _mm_setzero_pd();
1500         fiz0             = _mm_setzero_pd();
1501         fix1             = _mm_setzero_pd();
1502         fiy1             = _mm_setzero_pd();
1503         fiz1             = _mm_setzero_pd();
1504         fix2             = _mm_setzero_pd();
1505         fiy2             = _mm_setzero_pd();
1506         fiz2             = _mm_setzero_pd();
1507
1508         /* Start inner kernel loop */
1509         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1510         {
1511
1512             /* Get j neighbor index, and coordinate index */
1513             jnrA             = jjnr[jidx];
1514             jnrB             = jjnr[jidx+1];
1515             j_coord_offsetA  = DIM*jnrA;
1516             j_coord_offsetB  = DIM*jnrB;
1517
1518             /* load j atom coordinates */
1519             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1520                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1521
1522             /* Calculate displacement vector */
1523             dx00             = _mm_sub_pd(ix0,jx0);
1524             dy00             = _mm_sub_pd(iy0,jy0);
1525             dz00             = _mm_sub_pd(iz0,jz0);
1526             dx01             = _mm_sub_pd(ix0,jx1);
1527             dy01             = _mm_sub_pd(iy0,jy1);
1528             dz01             = _mm_sub_pd(iz0,jz1);
1529             dx02             = _mm_sub_pd(ix0,jx2);
1530             dy02             = _mm_sub_pd(iy0,jy2);
1531             dz02             = _mm_sub_pd(iz0,jz2);
1532             dx10             = _mm_sub_pd(ix1,jx0);
1533             dy10             = _mm_sub_pd(iy1,jy0);
1534             dz10             = _mm_sub_pd(iz1,jz0);
1535             dx11             = _mm_sub_pd(ix1,jx1);
1536             dy11             = _mm_sub_pd(iy1,jy1);
1537             dz11             = _mm_sub_pd(iz1,jz1);
1538             dx12             = _mm_sub_pd(ix1,jx2);
1539             dy12             = _mm_sub_pd(iy1,jy2);
1540             dz12             = _mm_sub_pd(iz1,jz2);
1541             dx20             = _mm_sub_pd(ix2,jx0);
1542             dy20             = _mm_sub_pd(iy2,jy0);
1543             dz20             = _mm_sub_pd(iz2,jz0);
1544             dx21             = _mm_sub_pd(ix2,jx1);
1545             dy21             = _mm_sub_pd(iy2,jy1);
1546             dz21             = _mm_sub_pd(iz2,jz1);
1547             dx22             = _mm_sub_pd(ix2,jx2);
1548             dy22             = _mm_sub_pd(iy2,jy2);
1549             dz22             = _mm_sub_pd(iz2,jz2);
1550
1551             /* Calculate squared distance and things based on it */
1552             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1553             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1554             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1555             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1556             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1557             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1558             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1559             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1560             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1561
1562             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1563             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1564             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1565             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1566             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1567             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1568             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1569             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1570             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1571
1572             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1573             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1574             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1575             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1576             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1577             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1578             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1579             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1580             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1581
1582             fjx0             = _mm_setzero_pd();
1583             fjy0             = _mm_setzero_pd();
1584             fjz0             = _mm_setzero_pd();
1585             fjx1             = _mm_setzero_pd();
1586             fjy1             = _mm_setzero_pd();
1587             fjz1             = _mm_setzero_pd();
1588             fjx2             = _mm_setzero_pd();
1589             fjy2             = _mm_setzero_pd();
1590             fjz2             = _mm_setzero_pd();
1591
1592             /**************************
1593              * CALCULATE INTERACTIONS *
1594              **************************/
1595
1596             if (gmx_mm_any_lt(rsq00,rcutoff2))
1597             {
1598
1599             r00              = _mm_mul_pd(rsq00,rinv00);
1600
1601             /* EWALD ELECTROSTATICS */
1602
1603             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1604             ewrt             = _mm_mul_pd(r00,ewtabscale);
1605             ewitab           = _mm_cvttpd_epi32(ewrt);
1606 #ifdef __XOP__
1607             eweps            = _mm_frcz_pd(ewrt);
1608 #else
1609             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1610 #endif
1611             twoeweps         = _mm_add_pd(eweps,eweps);
1612             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1613                                          &ewtabF,&ewtabFn);
1614             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1615             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1616
1617             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1618
1619             fscal            = felec;
1620
1621             fscal            = _mm_and_pd(fscal,cutoff_mask);
1622
1623             /* Update vectorial force */
1624             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1625             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1626             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1627             
1628             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1629             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1630             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1631
1632             }
1633
1634             /**************************
1635              * CALCULATE INTERACTIONS *
1636              **************************/
1637
1638             if (gmx_mm_any_lt(rsq01,rcutoff2))
1639             {
1640
1641             r01              = _mm_mul_pd(rsq01,rinv01);
1642
1643             /* EWALD ELECTROSTATICS */
1644
1645             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1646             ewrt             = _mm_mul_pd(r01,ewtabscale);
1647             ewitab           = _mm_cvttpd_epi32(ewrt);
1648 #ifdef __XOP__
1649             eweps            = _mm_frcz_pd(ewrt);
1650 #else
1651             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1652 #endif
1653             twoeweps         = _mm_add_pd(eweps,eweps);
1654             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1655                                          &ewtabF,&ewtabFn);
1656             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1657             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1658
1659             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
1660
1661             fscal            = felec;
1662
1663             fscal            = _mm_and_pd(fscal,cutoff_mask);
1664
1665             /* Update vectorial force */
1666             fix0             = _mm_macc_pd(dx01,fscal,fix0);
1667             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
1668             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
1669             
1670             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
1671             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
1672             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
1673
1674             }
1675
1676             /**************************
1677              * CALCULATE INTERACTIONS *
1678              **************************/
1679
1680             if (gmx_mm_any_lt(rsq02,rcutoff2))
1681             {
1682
1683             r02              = _mm_mul_pd(rsq02,rinv02);
1684
1685             /* EWALD ELECTROSTATICS */
1686
1687             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1688             ewrt             = _mm_mul_pd(r02,ewtabscale);
1689             ewitab           = _mm_cvttpd_epi32(ewrt);
1690 #ifdef __XOP__
1691             eweps            = _mm_frcz_pd(ewrt);
1692 #else
1693             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1694 #endif
1695             twoeweps         = _mm_add_pd(eweps,eweps);
1696             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1697                                          &ewtabF,&ewtabFn);
1698             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1699             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1700
1701             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1702
1703             fscal            = felec;
1704
1705             fscal            = _mm_and_pd(fscal,cutoff_mask);
1706
1707             /* Update vectorial force */
1708             fix0             = _mm_macc_pd(dx02,fscal,fix0);
1709             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
1710             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
1711             
1712             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
1713             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
1714             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
1715
1716             }
1717
1718             /**************************
1719              * CALCULATE INTERACTIONS *
1720              **************************/
1721
1722             if (gmx_mm_any_lt(rsq10,rcutoff2))
1723             {
1724
1725             r10              = _mm_mul_pd(rsq10,rinv10);
1726
1727             /* EWALD ELECTROSTATICS */
1728
1729             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1730             ewrt             = _mm_mul_pd(r10,ewtabscale);
1731             ewitab           = _mm_cvttpd_epi32(ewrt);
1732 #ifdef __XOP__
1733             eweps            = _mm_frcz_pd(ewrt);
1734 #else
1735             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1736 #endif
1737             twoeweps         = _mm_add_pd(eweps,eweps);
1738             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1739                                          &ewtabF,&ewtabFn);
1740             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1741             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1742
1743             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1744
1745             fscal            = felec;
1746
1747             fscal            = _mm_and_pd(fscal,cutoff_mask);
1748
1749             /* Update vectorial force */
1750             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1751             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1752             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1753             
1754             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1755             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1756             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1757
1758             }
1759
1760             /**************************
1761              * CALCULATE INTERACTIONS *
1762              **************************/
1763
1764             if (gmx_mm_any_lt(rsq11,rcutoff2))
1765             {
1766
1767             r11              = _mm_mul_pd(rsq11,rinv11);
1768
1769             /* EWALD ELECTROSTATICS */
1770
1771             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1772             ewrt             = _mm_mul_pd(r11,ewtabscale);
1773             ewitab           = _mm_cvttpd_epi32(ewrt);
1774 #ifdef __XOP__
1775             eweps            = _mm_frcz_pd(ewrt);
1776 #else
1777             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1778 #endif
1779             twoeweps         = _mm_add_pd(eweps,eweps);
1780             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1781                                          &ewtabF,&ewtabFn);
1782             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1783             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1784
1785             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1786
1787             fscal            = felec;
1788
1789             fscal            = _mm_and_pd(fscal,cutoff_mask);
1790
1791             /* Update vectorial force */
1792             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1793             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1794             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1795             
1796             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1797             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1798             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1799
1800             }
1801
1802             /**************************
1803              * CALCULATE INTERACTIONS *
1804              **************************/
1805
1806             if (gmx_mm_any_lt(rsq12,rcutoff2))
1807             {
1808
1809             r12              = _mm_mul_pd(rsq12,rinv12);
1810
1811             /* EWALD ELECTROSTATICS */
1812
1813             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1814             ewrt             = _mm_mul_pd(r12,ewtabscale);
1815             ewitab           = _mm_cvttpd_epi32(ewrt);
1816 #ifdef __XOP__
1817             eweps            = _mm_frcz_pd(ewrt);
1818 #else
1819             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1820 #endif
1821             twoeweps         = _mm_add_pd(eweps,eweps);
1822             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1823                                          &ewtabF,&ewtabFn);
1824             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1825             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1826
1827             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1828
1829             fscal            = felec;
1830
1831             fscal            = _mm_and_pd(fscal,cutoff_mask);
1832
1833             /* Update vectorial force */
1834             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1835             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1836             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1837             
1838             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1839             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1840             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1841
1842             }
1843
1844             /**************************
1845              * CALCULATE INTERACTIONS *
1846              **************************/
1847
1848             if (gmx_mm_any_lt(rsq20,rcutoff2))
1849             {
1850
1851             r20              = _mm_mul_pd(rsq20,rinv20);
1852
1853             /* EWALD ELECTROSTATICS */
1854
1855             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1856             ewrt             = _mm_mul_pd(r20,ewtabscale);
1857             ewitab           = _mm_cvttpd_epi32(ewrt);
1858 #ifdef __XOP__
1859             eweps            = _mm_frcz_pd(ewrt);
1860 #else
1861             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1862 #endif
1863             twoeweps         = _mm_add_pd(eweps,eweps);
1864             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1865                                          &ewtabF,&ewtabFn);
1866             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1867             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1868
1869             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1870
1871             fscal            = felec;
1872
1873             fscal            = _mm_and_pd(fscal,cutoff_mask);
1874
1875             /* Update vectorial force */
1876             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1877             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1878             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1879             
1880             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1881             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1882             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1883
1884             }
1885
1886             /**************************
1887              * CALCULATE INTERACTIONS *
1888              **************************/
1889
1890             if (gmx_mm_any_lt(rsq21,rcutoff2))
1891             {
1892
1893             r21              = _mm_mul_pd(rsq21,rinv21);
1894
1895             /* EWALD ELECTROSTATICS */
1896
1897             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1898             ewrt             = _mm_mul_pd(r21,ewtabscale);
1899             ewitab           = _mm_cvttpd_epi32(ewrt);
1900 #ifdef __XOP__
1901             eweps            = _mm_frcz_pd(ewrt);
1902 #else
1903             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1904 #endif
1905             twoeweps         = _mm_add_pd(eweps,eweps);
1906             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1907                                          &ewtabF,&ewtabFn);
1908             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1909             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1910
1911             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1912
1913             fscal            = felec;
1914
1915             fscal            = _mm_and_pd(fscal,cutoff_mask);
1916
1917             /* Update vectorial force */
1918             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1919             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1920             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1921             
1922             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1923             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1924             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1925
1926             }
1927
1928             /**************************
1929              * CALCULATE INTERACTIONS *
1930              **************************/
1931
1932             if (gmx_mm_any_lt(rsq22,rcutoff2))
1933             {
1934
1935             r22              = _mm_mul_pd(rsq22,rinv22);
1936
1937             /* EWALD ELECTROSTATICS */
1938
1939             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1940             ewrt             = _mm_mul_pd(r22,ewtabscale);
1941             ewitab           = _mm_cvttpd_epi32(ewrt);
1942 #ifdef __XOP__
1943             eweps            = _mm_frcz_pd(ewrt);
1944 #else
1945             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1946 #endif
1947             twoeweps         = _mm_add_pd(eweps,eweps);
1948             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1949                                          &ewtabF,&ewtabFn);
1950             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1951             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1952
1953             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1954
1955             fscal            = felec;
1956
1957             fscal            = _mm_and_pd(fscal,cutoff_mask);
1958
1959             /* Update vectorial force */
1960             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1961             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1962             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1963             
1964             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1965             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1966             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1967
1968             }
1969
1970             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1971
1972             /* Inner loop uses 378 flops */
1973         }
1974
1975         if(jidx<j_index_end)
1976         {
1977
1978             jnrA             = jjnr[jidx];
1979             j_coord_offsetA  = DIM*jnrA;
1980
1981             /* load j atom coordinates */
1982             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1983                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1984
1985             /* Calculate displacement vector */
1986             dx00             = _mm_sub_pd(ix0,jx0);
1987             dy00             = _mm_sub_pd(iy0,jy0);
1988             dz00             = _mm_sub_pd(iz0,jz0);
1989             dx01             = _mm_sub_pd(ix0,jx1);
1990             dy01             = _mm_sub_pd(iy0,jy1);
1991             dz01             = _mm_sub_pd(iz0,jz1);
1992             dx02             = _mm_sub_pd(ix0,jx2);
1993             dy02             = _mm_sub_pd(iy0,jy2);
1994             dz02             = _mm_sub_pd(iz0,jz2);
1995             dx10             = _mm_sub_pd(ix1,jx0);
1996             dy10             = _mm_sub_pd(iy1,jy0);
1997             dz10             = _mm_sub_pd(iz1,jz0);
1998             dx11             = _mm_sub_pd(ix1,jx1);
1999             dy11             = _mm_sub_pd(iy1,jy1);
2000             dz11             = _mm_sub_pd(iz1,jz1);
2001             dx12             = _mm_sub_pd(ix1,jx2);
2002             dy12             = _mm_sub_pd(iy1,jy2);
2003             dz12             = _mm_sub_pd(iz1,jz2);
2004             dx20             = _mm_sub_pd(ix2,jx0);
2005             dy20             = _mm_sub_pd(iy2,jy0);
2006             dz20             = _mm_sub_pd(iz2,jz0);
2007             dx21             = _mm_sub_pd(ix2,jx1);
2008             dy21             = _mm_sub_pd(iy2,jy1);
2009             dz21             = _mm_sub_pd(iz2,jz1);
2010             dx22             = _mm_sub_pd(ix2,jx2);
2011             dy22             = _mm_sub_pd(iy2,jy2);
2012             dz22             = _mm_sub_pd(iz2,jz2);
2013
2014             /* Calculate squared distance and things based on it */
2015             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2016             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
2017             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
2018             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
2019             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2020             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2021             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
2022             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2023             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2024
2025             rinv00           = gmx_mm_invsqrt_pd(rsq00);
2026             rinv01           = gmx_mm_invsqrt_pd(rsq01);
2027             rinv02           = gmx_mm_invsqrt_pd(rsq02);
2028             rinv10           = gmx_mm_invsqrt_pd(rsq10);
2029             rinv11           = gmx_mm_invsqrt_pd(rsq11);
2030             rinv12           = gmx_mm_invsqrt_pd(rsq12);
2031             rinv20           = gmx_mm_invsqrt_pd(rsq20);
2032             rinv21           = gmx_mm_invsqrt_pd(rsq21);
2033             rinv22           = gmx_mm_invsqrt_pd(rsq22);
2034
2035             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
2036             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
2037             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
2038             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
2039             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2040             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2041             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
2042             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2043             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2044
2045             fjx0             = _mm_setzero_pd();
2046             fjy0             = _mm_setzero_pd();
2047             fjz0             = _mm_setzero_pd();
2048             fjx1             = _mm_setzero_pd();
2049             fjy1             = _mm_setzero_pd();
2050             fjz1             = _mm_setzero_pd();
2051             fjx2             = _mm_setzero_pd();
2052             fjy2             = _mm_setzero_pd();
2053             fjz2             = _mm_setzero_pd();
2054
2055             /**************************
2056              * CALCULATE INTERACTIONS *
2057              **************************/
2058
2059             if (gmx_mm_any_lt(rsq00,rcutoff2))
2060             {
2061
2062             r00              = _mm_mul_pd(rsq00,rinv00);
2063
2064             /* EWALD ELECTROSTATICS */
2065
2066             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2067             ewrt             = _mm_mul_pd(r00,ewtabscale);
2068             ewitab           = _mm_cvttpd_epi32(ewrt);
2069 #ifdef __XOP__
2070             eweps            = _mm_frcz_pd(ewrt);
2071 #else
2072             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2073 #endif
2074             twoeweps         = _mm_add_pd(eweps,eweps);
2075             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2076             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2077             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
2078
2079             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
2080
2081             fscal            = felec;
2082
2083             fscal            = _mm_and_pd(fscal,cutoff_mask);
2084
2085             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2086
2087             /* Update vectorial force */
2088             fix0             = _mm_macc_pd(dx00,fscal,fix0);
2089             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
2090             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
2091             
2092             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
2093             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
2094             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
2095
2096             }
2097
2098             /**************************
2099              * CALCULATE INTERACTIONS *
2100              **************************/
2101
2102             if (gmx_mm_any_lt(rsq01,rcutoff2))
2103             {
2104
2105             r01              = _mm_mul_pd(rsq01,rinv01);
2106
2107             /* EWALD ELECTROSTATICS */
2108
2109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2110             ewrt             = _mm_mul_pd(r01,ewtabscale);
2111             ewitab           = _mm_cvttpd_epi32(ewrt);
2112 #ifdef __XOP__
2113             eweps            = _mm_frcz_pd(ewrt);
2114 #else
2115             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2116 #endif
2117             twoeweps         = _mm_add_pd(eweps,eweps);
2118             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2119             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2120             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2121
2122             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
2123
2124             fscal            = felec;
2125
2126             fscal            = _mm_and_pd(fscal,cutoff_mask);
2127
2128             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2129
2130             /* Update vectorial force */
2131             fix0             = _mm_macc_pd(dx01,fscal,fix0);
2132             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
2133             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
2134             
2135             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
2136             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
2137             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
2138
2139             }
2140
2141             /**************************
2142              * CALCULATE INTERACTIONS *
2143              **************************/
2144
2145             if (gmx_mm_any_lt(rsq02,rcutoff2))
2146             {
2147
2148             r02              = _mm_mul_pd(rsq02,rinv02);
2149
2150             /* EWALD ELECTROSTATICS */
2151
2152             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2153             ewrt             = _mm_mul_pd(r02,ewtabscale);
2154             ewitab           = _mm_cvttpd_epi32(ewrt);
2155 #ifdef __XOP__
2156             eweps            = _mm_frcz_pd(ewrt);
2157 #else
2158             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2159 #endif
2160             twoeweps         = _mm_add_pd(eweps,eweps);
2161             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2162             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2163             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2164
2165             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
2166
2167             fscal            = felec;
2168
2169             fscal            = _mm_and_pd(fscal,cutoff_mask);
2170
2171             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2172
2173             /* Update vectorial force */
2174             fix0             = _mm_macc_pd(dx02,fscal,fix0);
2175             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
2176             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
2177             
2178             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
2179             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
2180             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
2181
2182             }
2183
2184             /**************************
2185              * CALCULATE INTERACTIONS *
2186              **************************/
2187
2188             if (gmx_mm_any_lt(rsq10,rcutoff2))
2189             {
2190
2191             r10              = _mm_mul_pd(rsq10,rinv10);
2192
2193             /* EWALD ELECTROSTATICS */
2194
2195             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2196             ewrt             = _mm_mul_pd(r10,ewtabscale);
2197             ewitab           = _mm_cvttpd_epi32(ewrt);
2198 #ifdef __XOP__
2199             eweps            = _mm_frcz_pd(ewrt);
2200 #else
2201             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2202 #endif
2203             twoeweps         = _mm_add_pd(eweps,eweps);
2204             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2205             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2206             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2207
2208             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
2209
2210             fscal            = felec;
2211
2212             fscal            = _mm_and_pd(fscal,cutoff_mask);
2213
2214             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2215
2216             /* Update vectorial force */
2217             fix1             = _mm_macc_pd(dx10,fscal,fix1);
2218             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
2219             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
2220             
2221             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
2222             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
2223             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
2224
2225             }
2226
2227             /**************************
2228              * CALCULATE INTERACTIONS *
2229              **************************/
2230
2231             if (gmx_mm_any_lt(rsq11,rcutoff2))
2232             {
2233
2234             r11              = _mm_mul_pd(rsq11,rinv11);
2235
2236             /* EWALD ELECTROSTATICS */
2237
2238             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2239             ewrt             = _mm_mul_pd(r11,ewtabscale);
2240             ewitab           = _mm_cvttpd_epi32(ewrt);
2241 #ifdef __XOP__
2242             eweps            = _mm_frcz_pd(ewrt);
2243 #else
2244             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2245 #endif
2246             twoeweps         = _mm_add_pd(eweps,eweps);
2247             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2248             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2249             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2250
2251             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2252
2253             fscal            = felec;
2254
2255             fscal            = _mm_and_pd(fscal,cutoff_mask);
2256
2257             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2258
2259             /* Update vectorial force */
2260             fix1             = _mm_macc_pd(dx11,fscal,fix1);
2261             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
2262             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
2263             
2264             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
2265             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
2266             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
2267
2268             }
2269
2270             /**************************
2271              * CALCULATE INTERACTIONS *
2272              **************************/
2273
2274             if (gmx_mm_any_lt(rsq12,rcutoff2))
2275             {
2276
2277             r12              = _mm_mul_pd(rsq12,rinv12);
2278
2279             /* EWALD ELECTROSTATICS */
2280
2281             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2282             ewrt             = _mm_mul_pd(r12,ewtabscale);
2283             ewitab           = _mm_cvttpd_epi32(ewrt);
2284 #ifdef __XOP__
2285             eweps            = _mm_frcz_pd(ewrt);
2286 #else
2287             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2288 #endif
2289             twoeweps         = _mm_add_pd(eweps,eweps);
2290             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2291             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2292             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2293
2294             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2295
2296             fscal            = felec;
2297
2298             fscal            = _mm_and_pd(fscal,cutoff_mask);
2299
2300             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2301
2302             /* Update vectorial force */
2303             fix1             = _mm_macc_pd(dx12,fscal,fix1);
2304             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
2305             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
2306             
2307             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
2308             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
2309             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
2310
2311             }
2312
2313             /**************************
2314              * CALCULATE INTERACTIONS *
2315              **************************/
2316
2317             if (gmx_mm_any_lt(rsq20,rcutoff2))
2318             {
2319
2320             r20              = _mm_mul_pd(rsq20,rinv20);
2321
2322             /* EWALD ELECTROSTATICS */
2323
2324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2325             ewrt             = _mm_mul_pd(r20,ewtabscale);
2326             ewitab           = _mm_cvttpd_epi32(ewrt);
2327 #ifdef __XOP__
2328             eweps            = _mm_frcz_pd(ewrt);
2329 #else
2330             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2331 #endif
2332             twoeweps         = _mm_add_pd(eweps,eweps);
2333             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2334             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2335             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2336
2337             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
2338
2339             fscal            = felec;
2340
2341             fscal            = _mm_and_pd(fscal,cutoff_mask);
2342
2343             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2344
2345             /* Update vectorial force */
2346             fix2             = _mm_macc_pd(dx20,fscal,fix2);
2347             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
2348             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
2349             
2350             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
2351             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
2352             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
2353
2354             }
2355
2356             /**************************
2357              * CALCULATE INTERACTIONS *
2358              **************************/
2359
2360             if (gmx_mm_any_lt(rsq21,rcutoff2))
2361             {
2362
2363             r21              = _mm_mul_pd(rsq21,rinv21);
2364
2365             /* EWALD ELECTROSTATICS */
2366
2367             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2368             ewrt             = _mm_mul_pd(r21,ewtabscale);
2369             ewitab           = _mm_cvttpd_epi32(ewrt);
2370 #ifdef __XOP__
2371             eweps            = _mm_frcz_pd(ewrt);
2372 #else
2373             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2374 #endif
2375             twoeweps         = _mm_add_pd(eweps,eweps);
2376             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2377             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2378             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2379
2380             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2381
2382             fscal            = felec;
2383
2384             fscal            = _mm_and_pd(fscal,cutoff_mask);
2385
2386             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2387
2388             /* Update vectorial force */
2389             fix2             = _mm_macc_pd(dx21,fscal,fix2);
2390             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
2391             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
2392             
2393             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
2394             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
2395             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
2396
2397             }
2398
2399             /**************************
2400              * CALCULATE INTERACTIONS *
2401              **************************/
2402
2403             if (gmx_mm_any_lt(rsq22,rcutoff2))
2404             {
2405
2406             r22              = _mm_mul_pd(rsq22,rinv22);
2407
2408             /* EWALD ELECTROSTATICS */
2409
2410             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2411             ewrt             = _mm_mul_pd(r22,ewtabscale);
2412             ewitab           = _mm_cvttpd_epi32(ewrt);
2413 #ifdef __XOP__
2414             eweps            = _mm_frcz_pd(ewrt);
2415 #else
2416             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2417 #endif
2418             twoeweps         = _mm_add_pd(eweps,eweps);
2419             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2420             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2421             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2422
2423             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2424
2425             fscal            = felec;
2426
2427             fscal            = _mm_and_pd(fscal,cutoff_mask);
2428
2429             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2430
2431             /* Update vectorial force */
2432             fix2             = _mm_macc_pd(dx22,fscal,fix2);
2433             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
2434             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
2435             
2436             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
2437             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
2438             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
2439
2440             }
2441
2442             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2443
2444             /* Inner loop uses 378 flops */
2445         }
2446
2447         /* End of innermost loop */
2448
2449         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2450                                               f+i_coord_offset,fshift+i_shift_offset);
2451
2452         /* Increment number of inner iterations */
2453         inneriter                  += j_index_end - j_index_start;
2454
2455         /* Outer loop uses 18 flops */
2456     }
2457
2458     /* Increment number of outer iterations */
2459     outeriter        += nri;
2460
2461     /* Update outer/inner flops */
2462
2463     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*18 + inneriter*378);
2464 }