Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwNone_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128i          ewitab;
96     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
124     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
125     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm_set1_pd(rcutoff_scalar);
130     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
156                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161         fix1             = _mm_setzero_pd();
162         fiy1             = _mm_setzero_pd();
163         fiz1             = _mm_setzero_pd();
164         fix2             = _mm_setzero_pd();
165         fiy2             = _mm_setzero_pd();
166         fiz2             = _mm_setzero_pd();
167
168         /* Reset potential sums */
169         velecsum         = _mm_setzero_pd();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180
181             /* load j atom coordinates */
182             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _mm_sub_pd(ix0,jx0);
187             dy00             = _mm_sub_pd(iy0,jy0);
188             dz00             = _mm_sub_pd(iz0,jz0);
189             dx10             = _mm_sub_pd(ix1,jx0);
190             dy10             = _mm_sub_pd(iy1,jy0);
191             dz10             = _mm_sub_pd(iz1,jz0);
192             dx20             = _mm_sub_pd(ix2,jx0);
193             dy20             = _mm_sub_pd(iy2,jy0);
194             dz20             = _mm_sub_pd(iz2,jz0);
195
196             /* Calculate squared distance and things based on it */
197             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
198             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
199             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
200
201             rinv00           = gmx_mm_invsqrt_pd(rsq00);
202             rinv10           = gmx_mm_invsqrt_pd(rsq10);
203             rinv20           = gmx_mm_invsqrt_pd(rsq20);
204
205             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
206             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
207             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
211
212             fjx0             = _mm_setzero_pd();
213             fjy0             = _mm_setzero_pd();
214             fjz0             = _mm_setzero_pd();
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             if (gmx_mm_any_lt(rsq00,rcutoff2))
221             {
222
223             r00              = _mm_mul_pd(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_pd(iq0,jq0);
227
228             /* EWALD ELECTROSTATICS */
229
230             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
231             ewrt             = _mm_mul_pd(r00,ewtabscale);
232             ewitab           = _mm_cvttpd_epi32(ewrt);
233 #ifdef __XOP__
234             eweps            = _mm_frcz_pd(ewrt);
235 #else
236             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
237 #endif
238             twoeweps         = _mm_add_pd(eweps,eweps);
239             ewitab           = _mm_slli_epi32(ewitab,2);
240             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
241             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
242             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
243             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
244             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
245             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
246             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
247             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
248             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
249             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
250
251             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
252
253             /* Update potential sum for this i atom from the interaction with this j atom. */
254             velec            = _mm_and_pd(velec,cutoff_mask);
255             velecsum         = _mm_add_pd(velecsum,velec);
256
257             fscal            = felec;
258
259             fscal            = _mm_and_pd(fscal,cutoff_mask);
260
261             /* Update vectorial force */
262             fix0             = _mm_macc_pd(dx00,fscal,fix0);
263             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
264             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
265             
266             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
267             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
268             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
269
270             }
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             if (gmx_mm_any_lt(rsq10,rcutoff2))
277             {
278
279             r10              = _mm_mul_pd(rsq10,rinv10);
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq10             = _mm_mul_pd(iq1,jq0);
283
284             /* EWALD ELECTROSTATICS */
285
286             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
287             ewrt             = _mm_mul_pd(r10,ewtabscale);
288             ewitab           = _mm_cvttpd_epi32(ewrt);
289 #ifdef __XOP__
290             eweps            = _mm_frcz_pd(ewrt);
291 #else
292             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
293 #endif
294             twoeweps         = _mm_add_pd(eweps,eweps);
295             ewitab           = _mm_slli_epi32(ewitab,2);
296             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
297             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
298             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
299             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
300             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
301             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
302             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
303             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
304             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
305             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
306
307             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velec            = _mm_and_pd(velec,cutoff_mask);
311             velecsum         = _mm_add_pd(velecsum,velec);
312
313             fscal            = felec;
314
315             fscal            = _mm_and_pd(fscal,cutoff_mask);
316
317             /* Update vectorial force */
318             fix1             = _mm_macc_pd(dx10,fscal,fix1);
319             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
320             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
321             
322             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
323             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
324             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
325
326             }
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             if (gmx_mm_any_lt(rsq20,rcutoff2))
333             {
334
335             r20              = _mm_mul_pd(rsq20,rinv20);
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq20             = _mm_mul_pd(iq2,jq0);
339
340             /* EWALD ELECTROSTATICS */
341
342             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
343             ewrt             = _mm_mul_pd(r20,ewtabscale);
344             ewitab           = _mm_cvttpd_epi32(ewrt);
345 #ifdef __XOP__
346             eweps            = _mm_frcz_pd(ewrt);
347 #else
348             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
349 #endif
350             twoeweps         = _mm_add_pd(eweps,eweps);
351             ewitab           = _mm_slli_epi32(ewitab,2);
352             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
353             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
354             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
355             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
356             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
357             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
358             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
359             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
360             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
361             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
362
363             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velec            = _mm_and_pd(velec,cutoff_mask);
367             velecsum         = _mm_add_pd(velecsum,velec);
368
369             fscal            = felec;
370
371             fscal            = _mm_and_pd(fscal,cutoff_mask);
372
373             /* Update vectorial force */
374             fix2             = _mm_macc_pd(dx20,fscal,fix2);
375             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
376             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
377             
378             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
379             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
380             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
381
382             }
383
384             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
385
386             /* Inner loop uses 150 flops */
387         }
388
389         if(jidx<j_index_end)
390         {
391
392             jnrA             = jjnr[jidx];
393             j_coord_offsetA  = DIM*jnrA;
394
395             /* load j atom coordinates */
396             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
397                                               &jx0,&jy0,&jz0);
398
399             /* Calculate displacement vector */
400             dx00             = _mm_sub_pd(ix0,jx0);
401             dy00             = _mm_sub_pd(iy0,jy0);
402             dz00             = _mm_sub_pd(iz0,jz0);
403             dx10             = _mm_sub_pd(ix1,jx0);
404             dy10             = _mm_sub_pd(iy1,jy0);
405             dz10             = _mm_sub_pd(iz1,jz0);
406             dx20             = _mm_sub_pd(ix2,jx0);
407             dy20             = _mm_sub_pd(iy2,jy0);
408             dz20             = _mm_sub_pd(iz2,jz0);
409
410             /* Calculate squared distance and things based on it */
411             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
412             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
413             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
414
415             rinv00           = gmx_mm_invsqrt_pd(rsq00);
416             rinv10           = gmx_mm_invsqrt_pd(rsq10);
417             rinv20           = gmx_mm_invsqrt_pd(rsq20);
418
419             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
420             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
421             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
422
423             /* Load parameters for j particles */
424             jq0              = _mm_load_sd(charge+jnrA+0);
425
426             fjx0             = _mm_setzero_pd();
427             fjy0             = _mm_setzero_pd();
428             fjz0             = _mm_setzero_pd();
429
430             /**************************
431              * CALCULATE INTERACTIONS *
432              **************************/
433
434             if (gmx_mm_any_lt(rsq00,rcutoff2))
435             {
436
437             r00              = _mm_mul_pd(rsq00,rinv00);
438
439             /* Compute parameters for interactions between i and j atoms */
440             qq00             = _mm_mul_pd(iq0,jq0);
441
442             /* EWALD ELECTROSTATICS */
443
444             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
445             ewrt             = _mm_mul_pd(r00,ewtabscale);
446             ewitab           = _mm_cvttpd_epi32(ewrt);
447 #ifdef __XOP__
448             eweps            = _mm_frcz_pd(ewrt);
449 #else
450             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
451 #endif
452             twoeweps         = _mm_add_pd(eweps,eweps);
453             ewitab           = _mm_slli_epi32(ewitab,2);
454             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
455             ewtabD           = _mm_setzero_pd();
456             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
457             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
458             ewtabFn          = _mm_setzero_pd();
459             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
460             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
461             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
462             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
463             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
464
465             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
466
467             /* Update potential sum for this i atom from the interaction with this j atom. */
468             velec            = _mm_and_pd(velec,cutoff_mask);
469             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
470             velecsum         = _mm_add_pd(velecsum,velec);
471
472             fscal            = felec;
473
474             fscal            = _mm_and_pd(fscal,cutoff_mask);
475
476             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
477
478             /* Update vectorial force */
479             fix0             = _mm_macc_pd(dx00,fscal,fix0);
480             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
481             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
482             
483             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
484             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
485             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
486
487             }
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             if (gmx_mm_any_lt(rsq10,rcutoff2))
494             {
495
496             r10              = _mm_mul_pd(rsq10,rinv10);
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq10             = _mm_mul_pd(iq1,jq0);
500
501             /* EWALD ELECTROSTATICS */
502
503             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
504             ewrt             = _mm_mul_pd(r10,ewtabscale);
505             ewitab           = _mm_cvttpd_epi32(ewrt);
506 #ifdef __XOP__
507             eweps            = _mm_frcz_pd(ewrt);
508 #else
509             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
510 #endif
511             twoeweps         = _mm_add_pd(eweps,eweps);
512             ewitab           = _mm_slli_epi32(ewitab,2);
513             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
514             ewtabD           = _mm_setzero_pd();
515             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
516             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
517             ewtabFn          = _mm_setzero_pd();
518             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
519             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
520             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
521             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
522             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
523
524             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
525
526             /* Update potential sum for this i atom from the interaction with this j atom. */
527             velec            = _mm_and_pd(velec,cutoff_mask);
528             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
529             velecsum         = _mm_add_pd(velecsum,velec);
530
531             fscal            = felec;
532
533             fscal            = _mm_and_pd(fscal,cutoff_mask);
534
535             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
536
537             /* Update vectorial force */
538             fix1             = _mm_macc_pd(dx10,fscal,fix1);
539             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
540             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
541             
542             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
543             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
544             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
545
546             }
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             if (gmx_mm_any_lt(rsq20,rcutoff2))
553             {
554
555             r20              = _mm_mul_pd(rsq20,rinv20);
556
557             /* Compute parameters for interactions between i and j atoms */
558             qq20             = _mm_mul_pd(iq2,jq0);
559
560             /* EWALD ELECTROSTATICS */
561
562             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
563             ewrt             = _mm_mul_pd(r20,ewtabscale);
564             ewitab           = _mm_cvttpd_epi32(ewrt);
565 #ifdef __XOP__
566             eweps            = _mm_frcz_pd(ewrt);
567 #else
568             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
569 #endif
570             twoeweps         = _mm_add_pd(eweps,eweps);
571             ewitab           = _mm_slli_epi32(ewitab,2);
572             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
573             ewtabD           = _mm_setzero_pd();
574             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
575             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
576             ewtabFn          = _mm_setzero_pd();
577             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
578             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
579             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
580             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
581             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
582
583             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
584
585             /* Update potential sum for this i atom from the interaction with this j atom. */
586             velec            = _mm_and_pd(velec,cutoff_mask);
587             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
588             velecsum         = _mm_add_pd(velecsum,velec);
589
590             fscal            = felec;
591
592             fscal            = _mm_and_pd(fscal,cutoff_mask);
593
594             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
595
596             /* Update vectorial force */
597             fix2             = _mm_macc_pd(dx20,fscal,fix2);
598             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
599             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
600             
601             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
602             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
603             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
604
605             }
606
607             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
608
609             /* Inner loop uses 150 flops */
610         }
611
612         /* End of innermost loop */
613
614         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
615                                               f+i_coord_offset,fshift+i_shift_offset);
616
617         ggid                        = gid[iidx];
618         /* Update potential energies */
619         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
620
621         /* Increment number of inner iterations */
622         inneriter                  += j_index_end - j_index_start;
623
624         /* Outer loop uses 19 flops */
625     }
626
627     /* Increment number of outer iterations */
628     outeriter        += nri;
629
630     /* Update outer/inner flops */
631
632     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*150);
633 }
634 /*
635  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_avx_128_fma_double
636  * Electrostatics interaction: Ewald
637  * VdW interaction:            None
638  * Geometry:                   Water3-Particle
639  * Calculate force/pot:        Force
640  */
641 void
642 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_avx_128_fma_double
643                     (t_nblist                    * gmx_restrict       nlist,
644                      rvec                        * gmx_restrict          xx,
645                      rvec                        * gmx_restrict          ff,
646                      t_forcerec                  * gmx_restrict          fr,
647                      t_mdatoms                   * gmx_restrict     mdatoms,
648                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
649                      t_nrnb                      * gmx_restrict        nrnb)
650 {
651     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
652      * just 0 for non-waters.
653      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
654      * jnr indices corresponding to data put in the four positions in the SIMD register.
655      */
656     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
657     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
658     int              jnrA,jnrB;
659     int              j_coord_offsetA,j_coord_offsetB;
660     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
661     real             rcutoff_scalar;
662     real             *shiftvec,*fshift,*x,*f;
663     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
664     int              vdwioffset0;
665     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
666     int              vdwioffset1;
667     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
668     int              vdwioffset2;
669     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
670     int              vdwjidx0A,vdwjidx0B;
671     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
672     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
673     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
674     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
675     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
676     real             *charge;
677     __m128i          ewitab;
678     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
679     real             *ewtab;
680     __m128d          dummy_mask,cutoff_mask;
681     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
682     __m128d          one     = _mm_set1_pd(1.0);
683     __m128d          two     = _mm_set1_pd(2.0);
684     x                = xx[0];
685     f                = ff[0];
686
687     nri              = nlist->nri;
688     iinr             = nlist->iinr;
689     jindex           = nlist->jindex;
690     jjnr             = nlist->jjnr;
691     shiftidx         = nlist->shift;
692     gid              = nlist->gid;
693     shiftvec         = fr->shift_vec[0];
694     fshift           = fr->fshift[0];
695     facel            = _mm_set1_pd(fr->epsfac);
696     charge           = mdatoms->chargeA;
697
698     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
699     ewtab            = fr->ic->tabq_coul_F;
700     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
701     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
702
703     /* Setup water-specific parameters */
704     inr              = nlist->iinr[0];
705     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
706     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
707     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
708
709     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
710     rcutoff_scalar   = fr->rcoulomb;
711     rcutoff          = _mm_set1_pd(rcutoff_scalar);
712     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
713
714     /* Avoid stupid compiler warnings */
715     jnrA = jnrB = 0;
716     j_coord_offsetA = 0;
717     j_coord_offsetB = 0;
718
719     outeriter        = 0;
720     inneriter        = 0;
721
722     /* Start outer loop over neighborlists */
723     for(iidx=0; iidx<nri; iidx++)
724     {
725         /* Load shift vector for this list */
726         i_shift_offset   = DIM*shiftidx[iidx];
727
728         /* Load limits for loop over neighbors */
729         j_index_start    = jindex[iidx];
730         j_index_end      = jindex[iidx+1];
731
732         /* Get outer coordinate index */
733         inr              = iinr[iidx];
734         i_coord_offset   = DIM*inr;
735
736         /* Load i particle coords and add shift vector */
737         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
738                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
739
740         fix0             = _mm_setzero_pd();
741         fiy0             = _mm_setzero_pd();
742         fiz0             = _mm_setzero_pd();
743         fix1             = _mm_setzero_pd();
744         fiy1             = _mm_setzero_pd();
745         fiz1             = _mm_setzero_pd();
746         fix2             = _mm_setzero_pd();
747         fiy2             = _mm_setzero_pd();
748         fiz2             = _mm_setzero_pd();
749
750         /* Start inner kernel loop */
751         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
752         {
753
754             /* Get j neighbor index, and coordinate index */
755             jnrA             = jjnr[jidx];
756             jnrB             = jjnr[jidx+1];
757             j_coord_offsetA  = DIM*jnrA;
758             j_coord_offsetB  = DIM*jnrB;
759
760             /* load j atom coordinates */
761             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
762                                               &jx0,&jy0,&jz0);
763
764             /* Calculate displacement vector */
765             dx00             = _mm_sub_pd(ix0,jx0);
766             dy00             = _mm_sub_pd(iy0,jy0);
767             dz00             = _mm_sub_pd(iz0,jz0);
768             dx10             = _mm_sub_pd(ix1,jx0);
769             dy10             = _mm_sub_pd(iy1,jy0);
770             dz10             = _mm_sub_pd(iz1,jz0);
771             dx20             = _mm_sub_pd(ix2,jx0);
772             dy20             = _mm_sub_pd(iy2,jy0);
773             dz20             = _mm_sub_pd(iz2,jz0);
774
775             /* Calculate squared distance and things based on it */
776             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
777             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
778             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
779
780             rinv00           = gmx_mm_invsqrt_pd(rsq00);
781             rinv10           = gmx_mm_invsqrt_pd(rsq10);
782             rinv20           = gmx_mm_invsqrt_pd(rsq20);
783
784             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
785             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
786             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
787
788             /* Load parameters for j particles */
789             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
790
791             fjx0             = _mm_setzero_pd();
792             fjy0             = _mm_setzero_pd();
793             fjz0             = _mm_setzero_pd();
794
795             /**************************
796              * CALCULATE INTERACTIONS *
797              **************************/
798
799             if (gmx_mm_any_lt(rsq00,rcutoff2))
800             {
801
802             r00              = _mm_mul_pd(rsq00,rinv00);
803
804             /* Compute parameters for interactions between i and j atoms */
805             qq00             = _mm_mul_pd(iq0,jq0);
806
807             /* EWALD ELECTROSTATICS */
808
809             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
810             ewrt             = _mm_mul_pd(r00,ewtabscale);
811             ewitab           = _mm_cvttpd_epi32(ewrt);
812 #ifdef __XOP__
813             eweps            = _mm_frcz_pd(ewrt);
814 #else
815             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
816 #endif
817             twoeweps         = _mm_add_pd(eweps,eweps);
818             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
819                                          &ewtabF,&ewtabFn);
820             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
821             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
822
823             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
824
825             fscal            = felec;
826
827             fscal            = _mm_and_pd(fscal,cutoff_mask);
828
829             /* Update vectorial force */
830             fix0             = _mm_macc_pd(dx00,fscal,fix0);
831             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
832             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
833             
834             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
835             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
836             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
837
838             }
839
840             /**************************
841              * CALCULATE INTERACTIONS *
842              **************************/
843
844             if (gmx_mm_any_lt(rsq10,rcutoff2))
845             {
846
847             r10              = _mm_mul_pd(rsq10,rinv10);
848
849             /* Compute parameters for interactions between i and j atoms */
850             qq10             = _mm_mul_pd(iq1,jq0);
851
852             /* EWALD ELECTROSTATICS */
853
854             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
855             ewrt             = _mm_mul_pd(r10,ewtabscale);
856             ewitab           = _mm_cvttpd_epi32(ewrt);
857 #ifdef __XOP__
858             eweps            = _mm_frcz_pd(ewrt);
859 #else
860             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
861 #endif
862             twoeweps         = _mm_add_pd(eweps,eweps);
863             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
864                                          &ewtabF,&ewtabFn);
865             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
866             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
867
868             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
869
870             fscal            = felec;
871
872             fscal            = _mm_and_pd(fscal,cutoff_mask);
873
874             /* Update vectorial force */
875             fix1             = _mm_macc_pd(dx10,fscal,fix1);
876             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
877             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
878             
879             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
880             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
881             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
882
883             }
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             if (gmx_mm_any_lt(rsq20,rcutoff2))
890             {
891
892             r20              = _mm_mul_pd(rsq20,rinv20);
893
894             /* Compute parameters for interactions between i and j atoms */
895             qq20             = _mm_mul_pd(iq2,jq0);
896
897             /* EWALD ELECTROSTATICS */
898
899             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
900             ewrt             = _mm_mul_pd(r20,ewtabscale);
901             ewitab           = _mm_cvttpd_epi32(ewrt);
902 #ifdef __XOP__
903             eweps            = _mm_frcz_pd(ewrt);
904 #else
905             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
906 #endif
907             twoeweps         = _mm_add_pd(eweps,eweps);
908             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
909                                          &ewtabF,&ewtabFn);
910             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
911             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
912
913             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
914
915             fscal            = felec;
916
917             fscal            = _mm_and_pd(fscal,cutoff_mask);
918
919             /* Update vectorial force */
920             fix2             = _mm_macc_pd(dx20,fscal,fix2);
921             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
922             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
923             
924             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
925             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
926             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
927
928             }
929
930             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
931
932             /* Inner loop uses 129 flops */
933         }
934
935         if(jidx<j_index_end)
936         {
937
938             jnrA             = jjnr[jidx];
939             j_coord_offsetA  = DIM*jnrA;
940
941             /* load j atom coordinates */
942             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
943                                               &jx0,&jy0,&jz0);
944
945             /* Calculate displacement vector */
946             dx00             = _mm_sub_pd(ix0,jx0);
947             dy00             = _mm_sub_pd(iy0,jy0);
948             dz00             = _mm_sub_pd(iz0,jz0);
949             dx10             = _mm_sub_pd(ix1,jx0);
950             dy10             = _mm_sub_pd(iy1,jy0);
951             dz10             = _mm_sub_pd(iz1,jz0);
952             dx20             = _mm_sub_pd(ix2,jx0);
953             dy20             = _mm_sub_pd(iy2,jy0);
954             dz20             = _mm_sub_pd(iz2,jz0);
955
956             /* Calculate squared distance and things based on it */
957             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
958             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
959             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
960
961             rinv00           = gmx_mm_invsqrt_pd(rsq00);
962             rinv10           = gmx_mm_invsqrt_pd(rsq10);
963             rinv20           = gmx_mm_invsqrt_pd(rsq20);
964
965             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
966             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
967             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
968
969             /* Load parameters for j particles */
970             jq0              = _mm_load_sd(charge+jnrA+0);
971
972             fjx0             = _mm_setzero_pd();
973             fjy0             = _mm_setzero_pd();
974             fjz0             = _mm_setzero_pd();
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             if (gmx_mm_any_lt(rsq00,rcutoff2))
981             {
982
983             r00              = _mm_mul_pd(rsq00,rinv00);
984
985             /* Compute parameters for interactions between i and j atoms */
986             qq00             = _mm_mul_pd(iq0,jq0);
987
988             /* EWALD ELECTROSTATICS */
989
990             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
991             ewrt             = _mm_mul_pd(r00,ewtabscale);
992             ewitab           = _mm_cvttpd_epi32(ewrt);
993 #ifdef __XOP__
994             eweps            = _mm_frcz_pd(ewrt);
995 #else
996             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
997 #endif
998             twoeweps         = _mm_add_pd(eweps,eweps);
999             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1000             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1001             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1002
1003             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1004
1005             fscal            = felec;
1006
1007             fscal            = _mm_and_pd(fscal,cutoff_mask);
1008
1009             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1010
1011             /* Update vectorial force */
1012             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1013             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1014             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1015             
1016             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1017             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1018             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1019
1020             }
1021
1022             /**************************
1023              * CALCULATE INTERACTIONS *
1024              **************************/
1025
1026             if (gmx_mm_any_lt(rsq10,rcutoff2))
1027             {
1028
1029             r10              = _mm_mul_pd(rsq10,rinv10);
1030
1031             /* Compute parameters for interactions between i and j atoms */
1032             qq10             = _mm_mul_pd(iq1,jq0);
1033
1034             /* EWALD ELECTROSTATICS */
1035
1036             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1037             ewrt             = _mm_mul_pd(r10,ewtabscale);
1038             ewitab           = _mm_cvttpd_epi32(ewrt);
1039 #ifdef __XOP__
1040             eweps            = _mm_frcz_pd(ewrt);
1041 #else
1042             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1043 #endif
1044             twoeweps         = _mm_add_pd(eweps,eweps);
1045             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1046             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1047             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1048
1049             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1050
1051             fscal            = felec;
1052
1053             fscal            = _mm_and_pd(fscal,cutoff_mask);
1054
1055             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1056
1057             /* Update vectorial force */
1058             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1059             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1060             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1061             
1062             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1063             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1064             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1065
1066             }
1067
1068             /**************************
1069              * CALCULATE INTERACTIONS *
1070              **************************/
1071
1072             if (gmx_mm_any_lt(rsq20,rcutoff2))
1073             {
1074
1075             r20              = _mm_mul_pd(rsq20,rinv20);
1076
1077             /* Compute parameters for interactions between i and j atoms */
1078             qq20             = _mm_mul_pd(iq2,jq0);
1079
1080             /* EWALD ELECTROSTATICS */
1081
1082             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1083             ewrt             = _mm_mul_pd(r20,ewtabscale);
1084             ewitab           = _mm_cvttpd_epi32(ewrt);
1085 #ifdef __XOP__
1086             eweps            = _mm_frcz_pd(ewrt);
1087 #else
1088             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1089 #endif
1090             twoeweps         = _mm_add_pd(eweps,eweps);
1091             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1092             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1093             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1094
1095             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1096
1097             fscal            = felec;
1098
1099             fscal            = _mm_and_pd(fscal,cutoff_mask);
1100
1101             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1102
1103             /* Update vectorial force */
1104             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1105             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1106             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1107             
1108             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1109             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1110             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1111
1112             }
1113
1114             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1115
1116             /* Inner loop uses 129 flops */
1117         }
1118
1119         /* End of innermost loop */
1120
1121         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1122                                               f+i_coord_offset,fshift+i_shift_offset);
1123
1124         /* Increment number of inner iterations */
1125         inneriter                  += j_index_end - j_index_start;
1126
1127         /* Outer loop uses 18 flops */
1128     }
1129
1130     /* Increment number of outer iterations */
1131     outeriter        += nri;
1132
1133     /* Update outer/inner flops */
1134
1135     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*129);
1136 }