Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Water4
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     int              vdwjidx1A,vdwjidx1B;
90     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
91     int              vdwjidx2A,vdwjidx2B;
92     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
93     int              vdwjidx3A,vdwjidx3B;
94     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
95     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
97     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
98     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
99     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
100     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
101     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
102     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
103     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
104     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
105     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
106     real             *charge;
107     int              nvdwtype;
108     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
109     int              *vdwtype;
110     real             *vdwparam;
111     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
112     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
113     __m128i          ewitab;
114     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
115     real             *ewtab;
116     __m128d          dummy_mask,cutoff_mask;
117     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
118     __m128d          one     = _mm_set1_pd(1.0);
119     __m128d          two     = _mm_set1_pd(2.0);
120     x                = xx[0];
121     f                = ff[0];
122
123     nri              = nlist->nri;
124     iinr             = nlist->iinr;
125     jindex           = nlist->jindex;
126     jjnr             = nlist->jjnr;
127     shiftidx         = nlist->shift;
128     gid              = nlist->gid;
129     shiftvec         = fr->shift_vec[0];
130     fshift           = fr->fshift[0];
131     facel            = _mm_set1_pd(fr->ic->epsfac);
132     charge           = mdatoms->chargeA;
133     nvdwtype         = fr->ntype;
134     vdwparam         = fr->nbfp;
135     vdwtype          = mdatoms->typeA;
136
137     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
147     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149     jq1              = _mm_set1_pd(charge[inr+1]);
150     jq2              = _mm_set1_pd(charge[inr+2]);
151     jq3              = _mm_set1_pd(charge[inr+3]);
152     vdwjidx0A        = 2*vdwtype[inr+0];
153     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
154     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
155     qq11             = _mm_mul_pd(iq1,jq1);
156     qq12             = _mm_mul_pd(iq1,jq2);
157     qq13             = _mm_mul_pd(iq1,jq3);
158     qq21             = _mm_mul_pd(iq2,jq1);
159     qq22             = _mm_mul_pd(iq2,jq2);
160     qq23             = _mm_mul_pd(iq2,jq3);
161     qq31             = _mm_mul_pd(iq3,jq1);
162     qq32             = _mm_mul_pd(iq3,jq2);
163     qq33             = _mm_mul_pd(iq3,jq3);
164
165     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
166     rcutoff_scalar   = fr->ic->rcoulomb;
167     rcutoff          = _mm_set1_pd(rcutoff_scalar);
168     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
169
170     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
171     rvdw             = _mm_set1_pd(fr->ic->rvdw);
172
173     /* Avoid stupid compiler warnings */
174     jnrA = jnrB = 0;
175     j_coord_offsetA = 0;
176     j_coord_offsetB = 0;
177
178     outeriter        = 0;
179     inneriter        = 0;
180
181     /* Start outer loop over neighborlists */
182     for(iidx=0; iidx<nri; iidx++)
183     {
184         /* Load shift vector for this list */
185         i_shift_offset   = DIM*shiftidx[iidx];
186
187         /* Load limits for loop over neighbors */
188         j_index_start    = jindex[iidx];
189         j_index_end      = jindex[iidx+1];
190
191         /* Get outer coordinate index */
192         inr              = iinr[iidx];
193         i_coord_offset   = DIM*inr;
194
195         /* Load i particle coords and add shift vector */
196         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
197                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
198
199         fix0             = _mm_setzero_pd();
200         fiy0             = _mm_setzero_pd();
201         fiz0             = _mm_setzero_pd();
202         fix1             = _mm_setzero_pd();
203         fiy1             = _mm_setzero_pd();
204         fiz1             = _mm_setzero_pd();
205         fix2             = _mm_setzero_pd();
206         fiy2             = _mm_setzero_pd();
207         fiz2             = _mm_setzero_pd();
208         fix3             = _mm_setzero_pd();
209         fiy3             = _mm_setzero_pd();
210         fiz3             = _mm_setzero_pd();
211
212         /* Reset potential sums */
213         velecsum         = _mm_setzero_pd();
214         vvdwsum          = _mm_setzero_pd();
215
216         /* Start inner kernel loop */
217         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
218         {
219
220             /* Get j neighbor index, and coordinate index */
221             jnrA             = jjnr[jidx];
222             jnrB             = jjnr[jidx+1];
223             j_coord_offsetA  = DIM*jnrA;
224             j_coord_offsetB  = DIM*jnrB;
225
226             /* load j atom coordinates */
227             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
228                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
229                                               &jy2,&jz2,&jx3,&jy3,&jz3);
230
231             /* Calculate displacement vector */
232             dx00             = _mm_sub_pd(ix0,jx0);
233             dy00             = _mm_sub_pd(iy0,jy0);
234             dz00             = _mm_sub_pd(iz0,jz0);
235             dx11             = _mm_sub_pd(ix1,jx1);
236             dy11             = _mm_sub_pd(iy1,jy1);
237             dz11             = _mm_sub_pd(iz1,jz1);
238             dx12             = _mm_sub_pd(ix1,jx2);
239             dy12             = _mm_sub_pd(iy1,jy2);
240             dz12             = _mm_sub_pd(iz1,jz2);
241             dx13             = _mm_sub_pd(ix1,jx3);
242             dy13             = _mm_sub_pd(iy1,jy3);
243             dz13             = _mm_sub_pd(iz1,jz3);
244             dx21             = _mm_sub_pd(ix2,jx1);
245             dy21             = _mm_sub_pd(iy2,jy1);
246             dz21             = _mm_sub_pd(iz2,jz1);
247             dx22             = _mm_sub_pd(ix2,jx2);
248             dy22             = _mm_sub_pd(iy2,jy2);
249             dz22             = _mm_sub_pd(iz2,jz2);
250             dx23             = _mm_sub_pd(ix2,jx3);
251             dy23             = _mm_sub_pd(iy2,jy3);
252             dz23             = _mm_sub_pd(iz2,jz3);
253             dx31             = _mm_sub_pd(ix3,jx1);
254             dy31             = _mm_sub_pd(iy3,jy1);
255             dz31             = _mm_sub_pd(iz3,jz1);
256             dx32             = _mm_sub_pd(ix3,jx2);
257             dy32             = _mm_sub_pd(iy3,jy2);
258             dz32             = _mm_sub_pd(iz3,jz2);
259             dx33             = _mm_sub_pd(ix3,jx3);
260             dy33             = _mm_sub_pd(iy3,jy3);
261             dz33             = _mm_sub_pd(iz3,jz3);
262
263             /* Calculate squared distance and things based on it */
264             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
265             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
266             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
267             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
268             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
269             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
270             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
271             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
272             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
273             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
274
275             rinv11           = avx128fma_invsqrt_d(rsq11);
276             rinv12           = avx128fma_invsqrt_d(rsq12);
277             rinv13           = avx128fma_invsqrt_d(rsq13);
278             rinv21           = avx128fma_invsqrt_d(rsq21);
279             rinv22           = avx128fma_invsqrt_d(rsq22);
280             rinv23           = avx128fma_invsqrt_d(rsq23);
281             rinv31           = avx128fma_invsqrt_d(rsq31);
282             rinv32           = avx128fma_invsqrt_d(rsq32);
283             rinv33           = avx128fma_invsqrt_d(rsq33);
284
285             rinvsq00         = avx128fma_inv_d(rsq00);
286             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
287             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
288             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
289             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
290             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
291             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
292             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
293             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
294             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
295
296             fjx0             = _mm_setzero_pd();
297             fjy0             = _mm_setzero_pd();
298             fjz0             = _mm_setzero_pd();
299             fjx1             = _mm_setzero_pd();
300             fjy1             = _mm_setzero_pd();
301             fjz1             = _mm_setzero_pd();
302             fjx2             = _mm_setzero_pd();
303             fjy2             = _mm_setzero_pd();
304             fjz2             = _mm_setzero_pd();
305             fjx3             = _mm_setzero_pd();
306             fjy3             = _mm_setzero_pd();
307             fjz3             = _mm_setzero_pd();
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             if (gmx_mm_any_lt(rsq00,rcutoff2))
314             {
315
316             /* LENNARD-JONES DISPERSION/REPULSION */
317
318             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
319             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
320             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
321             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
322                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
323             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
324
325             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
329             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
330
331             fscal            = fvdw;
332
333             fscal            = _mm_and_pd(fscal,cutoff_mask);
334
335             /* Update vectorial force */
336             fix0             = _mm_macc_pd(dx00,fscal,fix0);
337             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
338             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
339             
340             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
341             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
342             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
343
344             }
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             if (gmx_mm_any_lt(rsq11,rcutoff2))
351             {
352
353             r11              = _mm_mul_pd(rsq11,rinv11);
354
355             /* EWALD ELECTROSTATICS */
356
357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358             ewrt             = _mm_mul_pd(r11,ewtabscale);
359             ewitab           = _mm_cvttpd_epi32(ewrt);
360 #ifdef __XOP__
361             eweps            = _mm_frcz_pd(ewrt);
362 #else
363             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
364 #endif
365             twoeweps         = _mm_add_pd(eweps,eweps);
366             ewitab           = _mm_slli_epi32(ewitab,2);
367             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
368             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
369             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
370             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
371             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
372             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
373             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
374             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
375             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
376             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
377
378             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
379
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velec            = _mm_and_pd(velec,cutoff_mask);
382             velecsum         = _mm_add_pd(velecsum,velec);
383
384             fscal            = felec;
385
386             fscal            = _mm_and_pd(fscal,cutoff_mask);
387
388             /* Update vectorial force */
389             fix1             = _mm_macc_pd(dx11,fscal,fix1);
390             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
391             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
392             
393             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
394             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
395             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
396
397             }
398
399             /**************************
400              * CALCULATE INTERACTIONS *
401              **************************/
402
403             if (gmx_mm_any_lt(rsq12,rcutoff2))
404             {
405
406             r12              = _mm_mul_pd(rsq12,rinv12);
407
408             /* EWALD ELECTROSTATICS */
409
410             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
411             ewrt             = _mm_mul_pd(r12,ewtabscale);
412             ewitab           = _mm_cvttpd_epi32(ewrt);
413 #ifdef __XOP__
414             eweps            = _mm_frcz_pd(ewrt);
415 #else
416             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
417 #endif
418             twoeweps         = _mm_add_pd(eweps,eweps);
419             ewitab           = _mm_slli_epi32(ewitab,2);
420             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
421             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
422             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
423             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
424             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
425             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
426             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
427             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
428             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
429             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
430
431             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
432
433             /* Update potential sum for this i atom from the interaction with this j atom. */
434             velec            = _mm_and_pd(velec,cutoff_mask);
435             velecsum         = _mm_add_pd(velecsum,velec);
436
437             fscal            = felec;
438
439             fscal            = _mm_and_pd(fscal,cutoff_mask);
440
441             /* Update vectorial force */
442             fix1             = _mm_macc_pd(dx12,fscal,fix1);
443             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
444             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
445             
446             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
447             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
448             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
449
450             }
451
452             /**************************
453              * CALCULATE INTERACTIONS *
454              **************************/
455
456             if (gmx_mm_any_lt(rsq13,rcutoff2))
457             {
458
459             r13              = _mm_mul_pd(rsq13,rinv13);
460
461             /* EWALD ELECTROSTATICS */
462
463             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
464             ewrt             = _mm_mul_pd(r13,ewtabscale);
465             ewitab           = _mm_cvttpd_epi32(ewrt);
466 #ifdef __XOP__
467             eweps            = _mm_frcz_pd(ewrt);
468 #else
469             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
470 #endif
471             twoeweps         = _mm_add_pd(eweps,eweps);
472             ewitab           = _mm_slli_epi32(ewitab,2);
473             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
474             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
475             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
476             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
477             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
478             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
479             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
480             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
481             velec            = _mm_mul_pd(qq13,_mm_sub_pd(_mm_sub_pd(rinv13,sh_ewald),velec));
482             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
483
484             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
485
486             /* Update potential sum for this i atom from the interaction with this j atom. */
487             velec            = _mm_and_pd(velec,cutoff_mask);
488             velecsum         = _mm_add_pd(velecsum,velec);
489
490             fscal            = felec;
491
492             fscal            = _mm_and_pd(fscal,cutoff_mask);
493
494             /* Update vectorial force */
495             fix1             = _mm_macc_pd(dx13,fscal,fix1);
496             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
497             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
498             
499             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
500             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
501             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
502
503             }
504
505             /**************************
506              * CALCULATE INTERACTIONS *
507              **************************/
508
509             if (gmx_mm_any_lt(rsq21,rcutoff2))
510             {
511
512             r21              = _mm_mul_pd(rsq21,rinv21);
513
514             /* EWALD ELECTROSTATICS */
515
516             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
517             ewrt             = _mm_mul_pd(r21,ewtabscale);
518             ewitab           = _mm_cvttpd_epi32(ewrt);
519 #ifdef __XOP__
520             eweps            = _mm_frcz_pd(ewrt);
521 #else
522             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
523 #endif
524             twoeweps         = _mm_add_pd(eweps,eweps);
525             ewitab           = _mm_slli_epi32(ewitab,2);
526             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
527             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
528             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
529             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
530             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
531             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
532             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
533             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
534             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
535             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
536
537             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
538
539             /* Update potential sum for this i atom from the interaction with this j atom. */
540             velec            = _mm_and_pd(velec,cutoff_mask);
541             velecsum         = _mm_add_pd(velecsum,velec);
542
543             fscal            = felec;
544
545             fscal            = _mm_and_pd(fscal,cutoff_mask);
546
547             /* Update vectorial force */
548             fix2             = _mm_macc_pd(dx21,fscal,fix2);
549             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
550             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
551             
552             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
553             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
554             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
555
556             }
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             if (gmx_mm_any_lt(rsq22,rcutoff2))
563             {
564
565             r22              = _mm_mul_pd(rsq22,rinv22);
566
567             /* EWALD ELECTROSTATICS */
568
569             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
570             ewrt             = _mm_mul_pd(r22,ewtabscale);
571             ewitab           = _mm_cvttpd_epi32(ewrt);
572 #ifdef __XOP__
573             eweps            = _mm_frcz_pd(ewrt);
574 #else
575             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
576 #endif
577             twoeweps         = _mm_add_pd(eweps,eweps);
578             ewitab           = _mm_slli_epi32(ewitab,2);
579             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
580             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
581             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
582             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
583             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
584             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
585             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
586             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
587             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
588             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
589
590             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
591
592             /* Update potential sum for this i atom from the interaction with this j atom. */
593             velec            = _mm_and_pd(velec,cutoff_mask);
594             velecsum         = _mm_add_pd(velecsum,velec);
595
596             fscal            = felec;
597
598             fscal            = _mm_and_pd(fscal,cutoff_mask);
599
600             /* Update vectorial force */
601             fix2             = _mm_macc_pd(dx22,fscal,fix2);
602             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
603             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
604             
605             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
606             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
607             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
608
609             }
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             if (gmx_mm_any_lt(rsq23,rcutoff2))
616             {
617
618             r23              = _mm_mul_pd(rsq23,rinv23);
619
620             /* EWALD ELECTROSTATICS */
621
622             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
623             ewrt             = _mm_mul_pd(r23,ewtabscale);
624             ewitab           = _mm_cvttpd_epi32(ewrt);
625 #ifdef __XOP__
626             eweps            = _mm_frcz_pd(ewrt);
627 #else
628             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
629 #endif
630             twoeweps         = _mm_add_pd(eweps,eweps);
631             ewitab           = _mm_slli_epi32(ewitab,2);
632             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
633             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
634             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
635             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
636             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
637             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
638             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
639             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
640             velec            = _mm_mul_pd(qq23,_mm_sub_pd(_mm_sub_pd(rinv23,sh_ewald),velec));
641             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
642
643             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
644
645             /* Update potential sum for this i atom from the interaction with this j atom. */
646             velec            = _mm_and_pd(velec,cutoff_mask);
647             velecsum         = _mm_add_pd(velecsum,velec);
648
649             fscal            = felec;
650
651             fscal            = _mm_and_pd(fscal,cutoff_mask);
652
653             /* Update vectorial force */
654             fix2             = _mm_macc_pd(dx23,fscal,fix2);
655             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
656             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
657             
658             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
659             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
660             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
661
662             }
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             if (gmx_mm_any_lt(rsq31,rcutoff2))
669             {
670
671             r31              = _mm_mul_pd(rsq31,rinv31);
672
673             /* EWALD ELECTROSTATICS */
674
675             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
676             ewrt             = _mm_mul_pd(r31,ewtabscale);
677             ewitab           = _mm_cvttpd_epi32(ewrt);
678 #ifdef __XOP__
679             eweps            = _mm_frcz_pd(ewrt);
680 #else
681             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
682 #endif
683             twoeweps         = _mm_add_pd(eweps,eweps);
684             ewitab           = _mm_slli_epi32(ewitab,2);
685             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
686             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
687             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
688             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
689             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
690             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
691             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
692             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
693             velec            = _mm_mul_pd(qq31,_mm_sub_pd(_mm_sub_pd(rinv31,sh_ewald),velec));
694             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
695
696             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
697
698             /* Update potential sum for this i atom from the interaction with this j atom. */
699             velec            = _mm_and_pd(velec,cutoff_mask);
700             velecsum         = _mm_add_pd(velecsum,velec);
701
702             fscal            = felec;
703
704             fscal            = _mm_and_pd(fscal,cutoff_mask);
705
706             /* Update vectorial force */
707             fix3             = _mm_macc_pd(dx31,fscal,fix3);
708             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
709             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
710             
711             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
712             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
713             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
714
715             }
716
717             /**************************
718              * CALCULATE INTERACTIONS *
719              **************************/
720
721             if (gmx_mm_any_lt(rsq32,rcutoff2))
722             {
723
724             r32              = _mm_mul_pd(rsq32,rinv32);
725
726             /* EWALD ELECTROSTATICS */
727
728             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
729             ewrt             = _mm_mul_pd(r32,ewtabscale);
730             ewitab           = _mm_cvttpd_epi32(ewrt);
731 #ifdef __XOP__
732             eweps            = _mm_frcz_pd(ewrt);
733 #else
734             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
735 #endif
736             twoeweps         = _mm_add_pd(eweps,eweps);
737             ewitab           = _mm_slli_epi32(ewitab,2);
738             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
739             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
740             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
741             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
742             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
743             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
744             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
745             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
746             velec            = _mm_mul_pd(qq32,_mm_sub_pd(_mm_sub_pd(rinv32,sh_ewald),velec));
747             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
748
749             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
750
751             /* Update potential sum for this i atom from the interaction with this j atom. */
752             velec            = _mm_and_pd(velec,cutoff_mask);
753             velecsum         = _mm_add_pd(velecsum,velec);
754
755             fscal            = felec;
756
757             fscal            = _mm_and_pd(fscal,cutoff_mask);
758
759             /* Update vectorial force */
760             fix3             = _mm_macc_pd(dx32,fscal,fix3);
761             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
762             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
763             
764             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
765             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
766             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
767
768             }
769
770             /**************************
771              * CALCULATE INTERACTIONS *
772              **************************/
773
774             if (gmx_mm_any_lt(rsq33,rcutoff2))
775             {
776
777             r33              = _mm_mul_pd(rsq33,rinv33);
778
779             /* EWALD ELECTROSTATICS */
780
781             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
782             ewrt             = _mm_mul_pd(r33,ewtabscale);
783             ewitab           = _mm_cvttpd_epi32(ewrt);
784 #ifdef __XOP__
785             eweps            = _mm_frcz_pd(ewrt);
786 #else
787             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
788 #endif
789             twoeweps         = _mm_add_pd(eweps,eweps);
790             ewitab           = _mm_slli_epi32(ewitab,2);
791             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
792             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
793             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
794             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
795             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
796             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
797             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
798             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
799             velec            = _mm_mul_pd(qq33,_mm_sub_pd(_mm_sub_pd(rinv33,sh_ewald),velec));
800             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
801
802             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
803
804             /* Update potential sum for this i atom from the interaction with this j atom. */
805             velec            = _mm_and_pd(velec,cutoff_mask);
806             velecsum         = _mm_add_pd(velecsum,velec);
807
808             fscal            = felec;
809
810             fscal            = _mm_and_pd(fscal,cutoff_mask);
811
812             /* Update vectorial force */
813             fix3             = _mm_macc_pd(dx33,fscal,fix3);
814             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
815             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
816             
817             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
818             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
819             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
820
821             }
822
823             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
824
825             /* Inner loop uses 488 flops */
826         }
827
828         if(jidx<j_index_end)
829         {
830
831             jnrA             = jjnr[jidx];
832             j_coord_offsetA  = DIM*jnrA;
833
834             /* load j atom coordinates */
835             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
836                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
837                                               &jy2,&jz2,&jx3,&jy3,&jz3);
838
839             /* Calculate displacement vector */
840             dx00             = _mm_sub_pd(ix0,jx0);
841             dy00             = _mm_sub_pd(iy0,jy0);
842             dz00             = _mm_sub_pd(iz0,jz0);
843             dx11             = _mm_sub_pd(ix1,jx1);
844             dy11             = _mm_sub_pd(iy1,jy1);
845             dz11             = _mm_sub_pd(iz1,jz1);
846             dx12             = _mm_sub_pd(ix1,jx2);
847             dy12             = _mm_sub_pd(iy1,jy2);
848             dz12             = _mm_sub_pd(iz1,jz2);
849             dx13             = _mm_sub_pd(ix1,jx3);
850             dy13             = _mm_sub_pd(iy1,jy3);
851             dz13             = _mm_sub_pd(iz1,jz3);
852             dx21             = _mm_sub_pd(ix2,jx1);
853             dy21             = _mm_sub_pd(iy2,jy1);
854             dz21             = _mm_sub_pd(iz2,jz1);
855             dx22             = _mm_sub_pd(ix2,jx2);
856             dy22             = _mm_sub_pd(iy2,jy2);
857             dz22             = _mm_sub_pd(iz2,jz2);
858             dx23             = _mm_sub_pd(ix2,jx3);
859             dy23             = _mm_sub_pd(iy2,jy3);
860             dz23             = _mm_sub_pd(iz2,jz3);
861             dx31             = _mm_sub_pd(ix3,jx1);
862             dy31             = _mm_sub_pd(iy3,jy1);
863             dz31             = _mm_sub_pd(iz3,jz1);
864             dx32             = _mm_sub_pd(ix3,jx2);
865             dy32             = _mm_sub_pd(iy3,jy2);
866             dz32             = _mm_sub_pd(iz3,jz2);
867             dx33             = _mm_sub_pd(ix3,jx3);
868             dy33             = _mm_sub_pd(iy3,jy3);
869             dz33             = _mm_sub_pd(iz3,jz3);
870
871             /* Calculate squared distance and things based on it */
872             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
873             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
874             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
875             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
876             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
877             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
878             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
879             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
880             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
881             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
882
883             rinv11           = avx128fma_invsqrt_d(rsq11);
884             rinv12           = avx128fma_invsqrt_d(rsq12);
885             rinv13           = avx128fma_invsqrt_d(rsq13);
886             rinv21           = avx128fma_invsqrt_d(rsq21);
887             rinv22           = avx128fma_invsqrt_d(rsq22);
888             rinv23           = avx128fma_invsqrt_d(rsq23);
889             rinv31           = avx128fma_invsqrt_d(rsq31);
890             rinv32           = avx128fma_invsqrt_d(rsq32);
891             rinv33           = avx128fma_invsqrt_d(rsq33);
892
893             rinvsq00         = avx128fma_inv_d(rsq00);
894             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
895             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
896             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
897             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
898             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
899             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
900             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
901             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
902             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
903
904             fjx0             = _mm_setzero_pd();
905             fjy0             = _mm_setzero_pd();
906             fjz0             = _mm_setzero_pd();
907             fjx1             = _mm_setzero_pd();
908             fjy1             = _mm_setzero_pd();
909             fjz1             = _mm_setzero_pd();
910             fjx2             = _mm_setzero_pd();
911             fjy2             = _mm_setzero_pd();
912             fjz2             = _mm_setzero_pd();
913             fjx3             = _mm_setzero_pd();
914             fjy3             = _mm_setzero_pd();
915             fjz3             = _mm_setzero_pd();
916
917             /**************************
918              * CALCULATE INTERACTIONS *
919              **************************/
920
921             if (gmx_mm_any_lt(rsq00,rcutoff2))
922             {
923
924             /* LENNARD-JONES DISPERSION/REPULSION */
925
926             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
927             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
928             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
929             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
930                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
931             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
932
933             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
934
935             /* Update potential sum for this i atom from the interaction with this j atom. */
936             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
937             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
938             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
939
940             fscal            = fvdw;
941
942             fscal            = _mm_and_pd(fscal,cutoff_mask);
943
944             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
945
946             /* Update vectorial force */
947             fix0             = _mm_macc_pd(dx00,fscal,fix0);
948             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
949             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
950             
951             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
952             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
953             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
954
955             }
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             if (gmx_mm_any_lt(rsq11,rcutoff2))
962             {
963
964             r11              = _mm_mul_pd(rsq11,rinv11);
965
966             /* EWALD ELECTROSTATICS */
967
968             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
969             ewrt             = _mm_mul_pd(r11,ewtabscale);
970             ewitab           = _mm_cvttpd_epi32(ewrt);
971 #ifdef __XOP__
972             eweps            = _mm_frcz_pd(ewrt);
973 #else
974             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
975 #endif
976             twoeweps         = _mm_add_pd(eweps,eweps);
977             ewitab           = _mm_slli_epi32(ewitab,2);
978             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
979             ewtabD           = _mm_setzero_pd();
980             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
981             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
982             ewtabFn          = _mm_setzero_pd();
983             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
984             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
985             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
986             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
987             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
988
989             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
990
991             /* Update potential sum for this i atom from the interaction with this j atom. */
992             velec            = _mm_and_pd(velec,cutoff_mask);
993             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
994             velecsum         = _mm_add_pd(velecsum,velec);
995
996             fscal            = felec;
997
998             fscal            = _mm_and_pd(fscal,cutoff_mask);
999
1000             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1001
1002             /* Update vectorial force */
1003             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1004             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1005             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1006             
1007             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1008             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1009             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1010
1011             }
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             if (gmx_mm_any_lt(rsq12,rcutoff2))
1018             {
1019
1020             r12              = _mm_mul_pd(rsq12,rinv12);
1021
1022             /* EWALD ELECTROSTATICS */
1023
1024             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1025             ewrt             = _mm_mul_pd(r12,ewtabscale);
1026             ewitab           = _mm_cvttpd_epi32(ewrt);
1027 #ifdef __XOP__
1028             eweps            = _mm_frcz_pd(ewrt);
1029 #else
1030             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1031 #endif
1032             twoeweps         = _mm_add_pd(eweps,eweps);
1033             ewitab           = _mm_slli_epi32(ewitab,2);
1034             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1035             ewtabD           = _mm_setzero_pd();
1036             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1037             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1038             ewtabFn          = _mm_setzero_pd();
1039             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1040             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1041             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1042             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
1043             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1044
1045             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1046
1047             /* Update potential sum for this i atom from the interaction with this j atom. */
1048             velec            = _mm_and_pd(velec,cutoff_mask);
1049             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1050             velecsum         = _mm_add_pd(velecsum,velec);
1051
1052             fscal            = felec;
1053
1054             fscal            = _mm_and_pd(fscal,cutoff_mask);
1055
1056             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1057
1058             /* Update vectorial force */
1059             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1060             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1061             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1062             
1063             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1064             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1065             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1066
1067             }
1068
1069             /**************************
1070              * CALCULATE INTERACTIONS *
1071              **************************/
1072
1073             if (gmx_mm_any_lt(rsq13,rcutoff2))
1074             {
1075
1076             r13              = _mm_mul_pd(rsq13,rinv13);
1077
1078             /* EWALD ELECTROSTATICS */
1079
1080             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1081             ewrt             = _mm_mul_pd(r13,ewtabscale);
1082             ewitab           = _mm_cvttpd_epi32(ewrt);
1083 #ifdef __XOP__
1084             eweps            = _mm_frcz_pd(ewrt);
1085 #else
1086             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1087 #endif
1088             twoeweps         = _mm_add_pd(eweps,eweps);
1089             ewitab           = _mm_slli_epi32(ewitab,2);
1090             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1091             ewtabD           = _mm_setzero_pd();
1092             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1093             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1094             ewtabFn          = _mm_setzero_pd();
1095             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1096             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1097             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1098             velec            = _mm_mul_pd(qq13,_mm_sub_pd(_mm_sub_pd(rinv13,sh_ewald),velec));
1099             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1100
1101             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
1102
1103             /* Update potential sum for this i atom from the interaction with this j atom. */
1104             velec            = _mm_and_pd(velec,cutoff_mask);
1105             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1106             velecsum         = _mm_add_pd(velecsum,velec);
1107
1108             fscal            = felec;
1109
1110             fscal            = _mm_and_pd(fscal,cutoff_mask);
1111
1112             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1113
1114             /* Update vectorial force */
1115             fix1             = _mm_macc_pd(dx13,fscal,fix1);
1116             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
1117             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
1118             
1119             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
1120             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
1121             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
1122
1123             }
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             if (gmx_mm_any_lt(rsq21,rcutoff2))
1130             {
1131
1132             r21              = _mm_mul_pd(rsq21,rinv21);
1133
1134             /* EWALD ELECTROSTATICS */
1135
1136             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1137             ewrt             = _mm_mul_pd(r21,ewtabscale);
1138             ewitab           = _mm_cvttpd_epi32(ewrt);
1139 #ifdef __XOP__
1140             eweps            = _mm_frcz_pd(ewrt);
1141 #else
1142             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1143 #endif
1144             twoeweps         = _mm_add_pd(eweps,eweps);
1145             ewitab           = _mm_slli_epi32(ewitab,2);
1146             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1147             ewtabD           = _mm_setzero_pd();
1148             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1149             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1150             ewtabFn          = _mm_setzero_pd();
1151             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1152             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1153             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1154             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
1155             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1156
1157             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1158
1159             /* Update potential sum for this i atom from the interaction with this j atom. */
1160             velec            = _mm_and_pd(velec,cutoff_mask);
1161             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1162             velecsum         = _mm_add_pd(velecsum,velec);
1163
1164             fscal            = felec;
1165
1166             fscal            = _mm_and_pd(fscal,cutoff_mask);
1167
1168             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1169
1170             /* Update vectorial force */
1171             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1172             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1173             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1174             
1175             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1176             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1177             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1178
1179             }
1180
1181             /**************************
1182              * CALCULATE INTERACTIONS *
1183              **************************/
1184
1185             if (gmx_mm_any_lt(rsq22,rcutoff2))
1186             {
1187
1188             r22              = _mm_mul_pd(rsq22,rinv22);
1189
1190             /* EWALD ELECTROSTATICS */
1191
1192             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1193             ewrt             = _mm_mul_pd(r22,ewtabscale);
1194             ewitab           = _mm_cvttpd_epi32(ewrt);
1195 #ifdef __XOP__
1196             eweps            = _mm_frcz_pd(ewrt);
1197 #else
1198             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1199 #endif
1200             twoeweps         = _mm_add_pd(eweps,eweps);
1201             ewitab           = _mm_slli_epi32(ewitab,2);
1202             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1203             ewtabD           = _mm_setzero_pd();
1204             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1205             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1206             ewtabFn          = _mm_setzero_pd();
1207             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1208             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1209             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1210             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
1211             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1212
1213             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1214
1215             /* Update potential sum for this i atom from the interaction with this j atom. */
1216             velec            = _mm_and_pd(velec,cutoff_mask);
1217             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1218             velecsum         = _mm_add_pd(velecsum,velec);
1219
1220             fscal            = felec;
1221
1222             fscal            = _mm_and_pd(fscal,cutoff_mask);
1223
1224             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1225
1226             /* Update vectorial force */
1227             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1228             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1229             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1230             
1231             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1232             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1233             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1234
1235             }
1236
1237             /**************************
1238              * CALCULATE INTERACTIONS *
1239              **************************/
1240
1241             if (gmx_mm_any_lt(rsq23,rcutoff2))
1242             {
1243
1244             r23              = _mm_mul_pd(rsq23,rinv23);
1245
1246             /* EWALD ELECTROSTATICS */
1247
1248             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1249             ewrt             = _mm_mul_pd(r23,ewtabscale);
1250             ewitab           = _mm_cvttpd_epi32(ewrt);
1251 #ifdef __XOP__
1252             eweps            = _mm_frcz_pd(ewrt);
1253 #else
1254             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1255 #endif
1256             twoeweps         = _mm_add_pd(eweps,eweps);
1257             ewitab           = _mm_slli_epi32(ewitab,2);
1258             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1259             ewtabD           = _mm_setzero_pd();
1260             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1261             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1262             ewtabFn          = _mm_setzero_pd();
1263             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1264             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1265             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1266             velec            = _mm_mul_pd(qq23,_mm_sub_pd(_mm_sub_pd(rinv23,sh_ewald),velec));
1267             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1268
1269             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
1270
1271             /* Update potential sum for this i atom from the interaction with this j atom. */
1272             velec            = _mm_and_pd(velec,cutoff_mask);
1273             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1274             velecsum         = _mm_add_pd(velecsum,velec);
1275
1276             fscal            = felec;
1277
1278             fscal            = _mm_and_pd(fscal,cutoff_mask);
1279
1280             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1281
1282             /* Update vectorial force */
1283             fix2             = _mm_macc_pd(dx23,fscal,fix2);
1284             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
1285             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
1286             
1287             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
1288             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
1289             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
1290
1291             }
1292
1293             /**************************
1294              * CALCULATE INTERACTIONS *
1295              **************************/
1296
1297             if (gmx_mm_any_lt(rsq31,rcutoff2))
1298             {
1299
1300             r31              = _mm_mul_pd(rsq31,rinv31);
1301
1302             /* EWALD ELECTROSTATICS */
1303
1304             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1305             ewrt             = _mm_mul_pd(r31,ewtabscale);
1306             ewitab           = _mm_cvttpd_epi32(ewrt);
1307 #ifdef __XOP__
1308             eweps            = _mm_frcz_pd(ewrt);
1309 #else
1310             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1311 #endif
1312             twoeweps         = _mm_add_pd(eweps,eweps);
1313             ewitab           = _mm_slli_epi32(ewitab,2);
1314             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1315             ewtabD           = _mm_setzero_pd();
1316             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1317             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1318             ewtabFn          = _mm_setzero_pd();
1319             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1320             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1321             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1322             velec            = _mm_mul_pd(qq31,_mm_sub_pd(_mm_sub_pd(rinv31,sh_ewald),velec));
1323             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1324
1325             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
1326
1327             /* Update potential sum for this i atom from the interaction with this j atom. */
1328             velec            = _mm_and_pd(velec,cutoff_mask);
1329             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1330             velecsum         = _mm_add_pd(velecsum,velec);
1331
1332             fscal            = felec;
1333
1334             fscal            = _mm_and_pd(fscal,cutoff_mask);
1335
1336             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1337
1338             /* Update vectorial force */
1339             fix3             = _mm_macc_pd(dx31,fscal,fix3);
1340             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
1341             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
1342             
1343             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
1344             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
1345             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
1346
1347             }
1348
1349             /**************************
1350              * CALCULATE INTERACTIONS *
1351              **************************/
1352
1353             if (gmx_mm_any_lt(rsq32,rcutoff2))
1354             {
1355
1356             r32              = _mm_mul_pd(rsq32,rinv32);
1357
1358             /* EWALD ELECTROSTATICS */
1359
1360             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1361             ewrt             = _mm_mul_pd(r32,ewtabscale);
1362             ewitab           = _mm_cvttpd_epi32(ewrt);
1363 #ifdef __XOP__
1364             eweps            = _mm_frcz_pd(ewrt);
1365 #else
1366             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1367 #endif
1368             twoeweps         = _mm_add_pd(eweps,eweps);
1369             ewitab           = _mm_slli_epi32(ewitab,2);
1370             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1371             ewtabD           = _mm_setzero_pd();
1372             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1373             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1374             ewtabFn          = _mm_setzero_pd();
1375             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1376             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1377             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1378             velec            = _mm_mul_pd(qq32,_mm_sub_pd(_mm_sub_pd(rinv32,sh_ewald),velec));
1379             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1380
1381             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
1382
1383             /* Update potential sum for this i atom from the interaction with this j atom. */
1384             velec            = _mm_and_pd(velec,cutoff_mask);
1385             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1386             velecsum         = _mm_add_pd(velecsum,velec);
1387
1388             fscal            = felec;
1389
1390             fscal            = _mm_and_pd(fscal,cutoff_mask);
1391
1392             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1393
1394             /* Update vectorial force */
1395             fix3             = _mm_macc_pd(dx32,fscal,fix3);
1396             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
1397             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
1398             
1399             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
1400             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
1401             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
1402
1403             }
1404
1405             /**************************
1406              * CALCULATE INTERACTIONS *
1407              **************************/
1408
1409             if (gmx_mm_any_lt(rsq33,rcutoff2))
1410             {
1411
1412             r33              = _mm_mul_pd(rsq33,rinv33);
1413
1414             /* EWALD ELECTROSTATICS */
1415
1416             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1417             ewrt             = _mm_mul_pd(r33,ewtabscale);
1418             ewitab           = _mm_cvttpd_epi32(ewrt);
1419 #ifdef __XOP__
1420             eweps            = _mm_frcz_pd(ewrt);
1421 #else
1422             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1423 #endif
1424             twoeweps         = _mm_add_pd(eweps,eweps);
1425             ewitab           = _mm_slli_epi32(ewitab,2);
1426             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1427             ewtabD           = _mm_setzero_pd();
1428             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1429             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1430             ewtabFn          = _mm_setzero_pd();
1431             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1432             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1433             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1434             velec            = _mm_mul_pd(qq33,_mm_sub_pd(_mm_sub_pd(rinv33,sh_ewald),velec));
1435             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1436
1437             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
1438
1439             /* Update potential sum for this i atom from the interaction with this j atom. */
1440             velec            = _mm_and_pd(velec,cutoff_mask);
1441             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1442             velecsum         = _mm_add_pd(velecsum,velec);
1443
1444             fscal            = felec;
1445
1446             fscal            = _mm_and_pd(fscal,cutoff_mask);
1447
1448             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1449
1450             /* Update vectorial force */
1451             fix3             = _mm_macc_pd(dx33,fscal,fix3);
1452             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
1453             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
1454             
1455             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
1456             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
1457             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
1458
1459             }
1460
1461             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1462
1463             /* Inner loop uses 488 flops */
1464         }
1465
1466         /* End of innermost loop */
1467
1468         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1469                                               f+i_coord_offset,fshift+i_shift_offset);
1470
1471         ggid                        = gid[iidx];
1472         /* Update potential energies */
1473         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1474         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1475
1476         /* Increment number of inner iterations */
1477         inneriter                  += j_index_end - j_index_start;
1478
1479         /* Outer loop uses 26 flops */
1480     }
1481
1482     /* Increment number of outer iterations */
1483     outeriter        += nri;
1484
1485     /* Update outer/inner flops */
1486
1487     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*26 + inneriter*488);
1488 }
1489 /*
1490  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_F_avx_128_fma_double
1491  * Electrostatics interaction: Ewald
1492  * VdW interaction:            LennardJones
1493  * Geometry:                   Water4-Water4
1494  * Calculate force/pot:        Force
1495  */
1496 void
1497 nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_F_avx_128_fma_double
1498                     (t_nblist                    * gmx_restrict       nlist,
1499                      rvec                        * gmx_restrict          xx,
1500                      rvec                        * gmx_restrict          ff,
1501                      struct t_forcerec           * gmx_restrict          fr,
1502                      t_mdatoms                   * gmx_restrict     mdatoms,
1503                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1504                      t_nrnb                      * gmx_restrict        nrnb)
1505 {
1506     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1507      * just 0 for non-waters.
1508      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1509      * jnr indices corresponding to data put in the four positions in the SIMD register.
1510      */
1511     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1512     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1513     int              jnrA,jnrB;
1514     int              j_coord_offsetA,j_coord_offsetB;
1515     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1516     real             rcutoff_scalar;
1517     real             *shiftvec,*fshift,*x,*f;
1518     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1519     int              vdwioffset0;
1520     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1521     int              vdwioffset1;
1522     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1523     int              vdwioffset2;
1524     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1525     int              vdwioffset3;
1526     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1527     int              vdwjidx0A,vdwjidx0B;
1528     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1529     int              vdwjidx1A,vdwjidx1B;
1530     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1531     int              vdwjidx2A,vdwjidx2B;
1532     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1533     int              vdwjidx3A,vdwjidx3B;
1534     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1535     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1536     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1537     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1538     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1539     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1540     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1541     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1542     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1543     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1544     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1545     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1546     real             *charge;
1547     int              nvdwtype;
1548     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1549     int              *vdwtype;
1550     real             *vdwparam;
1551     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1552     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1553     __m128i          ewitab;
1554     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1555     real             *ewtab;
1556     __m128d          dummy_mask,cutoff_mask;
1557     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1558     __m128d          one     = _mm_set1_pd(1.0);
1559     __m128d          two     = _mm_set1_pd(2.0);
1560     x                = xx[0];
1561     f                = ff[0];
1562
1563     nri              = nlist->nri;
1564     iinr             = nlist->iinr;
1565     jindex           = nlist->jindex;
1566     jjnr             = nlist->jjnr;
1567     shiftidx         = nlist->shift;
1568     gid              = nlist->gid;
1569     shiftvec         = fr->shift_vec[0];
1570     fshift           = fr->fshift[0];
1571     facel            = _mm_set1_pd(fr->ic->epsfac);
1572     charge           = mdatoms->chargeA;
1573     nvdwtype         = fr->ntype;
1574     vdwparam         = fr->nbfp;
1575     vdwtype          = mdatoms->typeA;
1576
1577     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1578     ewtab            = fr->ic->tabq_coul_F;
1579     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1580     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1581
1582     /* Setup water-specific parameters */
1583     inr              = nlist->iinr[0];
1584     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1585     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1586     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
1587     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1588
1589     jq1              = _mm_set1_pd(charge[inr+1]);
1590     jq2              = _mm_set1_pd(charge[inr+2]);
1591     jq3              = _mm_set1_pd(charge[inr+3]);
1592     vdwjidx0A        = 2*vdwtype[inr+0];
1593     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1594     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1595     qq11             = _mm_mul_pd(iq1,jq1);
1596     qq12             = _mm_mul_pd(iq1,jq2);
1597     qq13             = _mm_mul_pd(iq1,jq3);
1598     qq21             = _mm_mul_pd(iq2,jq1);
1599     qq22             = _mm_mul_pd(iq2,jq2);
1600     qq23             = _mm_mul_pd(iq2,jq3);
1601     qq31             = _mm_mul_pd(iq3,jq1);
1602     qq32             = _mm_mul_pd(iq3,jq2);
1603     qq33             = _mm_mul_pd(iq3,jq3);
1604
1605     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1606     rcutoff_scalar   = fr->ic->rcoulomb;
1607     rcutoff          = _mm_set1_pd(rcutoff_scalar);
1608     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
1609
1610     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
1611     rvdw             = _mm_set1_pd(fr->ic->rvdw);
1612
1613     /* Avoid stupid compiler warnings */
1614     jnrA = jnrB = 0;
1615     j_coord_offsetA = 0;
1616     j_coord_offsetB = 0;
1617
1618     outeriter        = 0;
1619     inneriter        = 0;
1620
1621     /* Start outer loop over neighborlists */
1622     for(iidx=0; iidx<nri; iidx++)
1623     {
1624         /* Load shift vector for this list */
1625         i_shift_offset   = DIM*shiftidx[iidx];
1626
1627         /* Load limits for loop over neighbors */
1628         j_index_start    = jindex[iidx];
1629         j_index_end      = jindex[iidx+1];
1630
1631         /* Get outer coordinate index */
1632         inr              = iinr[iidx];
1633         i_coord_offset   = DIM*inr;
1634
1635         /* Load i particle coords and add shift vector */
1636         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1637                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1638
1639         fix0             = _mm_setzero_pd();
1640         fiy0             = _mm_setzero_pd();
1641         fiz0             = _mm_setzero_pd();
1642         fix1             = _mm_setzero_pd();
1643         fiy1             = _mm_setzero_pd();
1644         fiz1             = _mm_setzero_pd();
1645         fix2             = _mm_setzero_pd();
1646         fiy2             = _mm_setzero_pd();
1647         fiz2             = _mm_setzero_pd();
1648         fix3             = _mm_setzero_pd();
1649         fiy3             = _mm_setzero_pd();
1650         fiz3             = _mm_setzero_pd();
1651
1652         /* Start inner kernel loop */
1653         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1654         {
1655
1656             /* Get j neighbor index, and coordinate index */
1657             jnrA             = jjnr[jidx];
1658             jnrB             = jjnr[jidx+1];
1659             j_coord_offsetA  = DIM*jnrA;
1660             j_coord_offsetB  = DIM*jnrB;
1661
1662             /* load j atom coordinates */
1663             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1664                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1665                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1666
1667             /* Calculate displacement vector */
1668             dx00             = _mm_sub_pd(ix0,jx0);
1669             dy00             = _mm_sub_pd(iy0,jy0);
1670             dz00             = _mm_sub_pd(iz0,jz0);
1671             dx11             = _mm_sub_pd(ix1,jx1);
1672             dy11             = _mm_sub_pd(iy1,jy1);
1673             dz11             = _mm_sub_pd(iz1,jz1);
1674             dx12             = _mm_sub_pd(ix1,jx2);
1675             dy12             = _mm_sub_pd(iy1,jy2);
1676             dz12             = _mm_sub_pd(iz1,jz2);
1677             dx13             = _mm_sub_pd(ix1,jx3);
1678             dy13             = _mm_sub_pd(iy1,jy3);
1679             dz13             = _mm_sub_pd(iz1,jz3);
1680             dx21             = _mm_sub_pd(ix2,jx1);
1681             dy21             = _mm_sub_pd(iy2,jy1);
1682             dz21             = _mm_sub_pd(iz2,jz1);
1683             dx22             = _mm_sub_pd(ix2,jx2);
1684             dy22             = _mm_sub_pd(iy2,jy2);
1685             dz22             = _mm_sub_pd(iz2,jz2);
1686             dx23             = _mm_sub_pd(ix2,jx3);
1687             dy23             = _mm_sub_pd(iy2,jy3);
1688             dz23             = _mm_sub_pd(iz2,jz3);
1689             dx31             = _mm_sub_pd(ix3,jx1);
1690             dy31             = _mm_sub_pd(iy3,jy1);
1691             dz31             = _mm_sub_pd(iz3,jz1);
1692             dx32             = _mm_sub_pd(ix3,jx2);
1693             dy32             = _mm_sub_pd(iy3,jy2);
1694             dz32             = _mm_sub_pd(iz3,jz2);
1695             dx33             = _mm_sub_pd(ix3,jx3);
1696             dy33             = _mm_sub_pd(iy3,jy3);
1697             dz33             = _mm_sub_pd(iz3,jz3);
1698
1699             /* Calculate squared distance and things based on it */
1700             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1701             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1702             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1703             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1704             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1705             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1706             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1707             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1708             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1709             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1710
1711             rinv11           = avx128fma_invsqrt_d(rsq11);
1712             rinv12           = avx128fma_invsqrt_d(rsq12);
1713             rinv13           = avx128fma_invsqrt_d(rsq13);
1714             rinv21           = avx128fma_invsqrt_d(rsq21);
1715             rinv22           = avx128fma_invsqrt_d(rsq22);
1716             rinv23           = avx128fma_invsqrt_d(rsq23);
1717             rinv31           = avx128fma_invsqrt_d(rsq31);
1718             rinv32           = avx128fma_invsqrt_d(rsq32);
1719             rinv33           = avx128fma_invsqrt_d(rsq33);
1720
1721             rinvsq00         = avx128fma_inv_d(rsq00);
1722             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1723             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1724             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1725             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1726             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1727             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1728             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1729             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1730             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1731
1732             fjx0             = _mm_setzero_pd();
1733             fjy0             = _mm_setzero_pd();
1734             fjz0             = _mm_setzero_pd();
1735             fjx1             = _mm_setzero_pd();
1736             fjy1             = _mm_setzero_pd();
1737             fjz1             = _mm_setzero_pd();
1738             fjx2             = _mm_setzero_pd();
1739             fjy2             = _mm_setzero_pd();
1740             fjz2             = _mm_setzero_pd();
1741             fjx3             = _mm_setzero_pd();
1742             fjy3             = _mm_setzero_pd();
1743             fjz3             = _mm_setzero_pd();
1744
1745             /**************************
1746              * CALCULATE INTERACTIONS *
1747              **************************/
1748
1749             if (gmx_mm_any_lt(rsq00,rcutoff2))
1750             {
1751
1752             /* LENNARD-JONES DISPERSION/REPULSION */
1753
1754             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1755             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1756
1757             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1758
1759             fscal            = fvdw;
1760
1761             fscal            = _mm_and_pd(fscal,cutoff_mask);
1762
1763             /* Update vectorial force */
1764             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1765             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1766             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1767             
1768             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1769             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1770             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1771
1772             }
1773
1774             /**************************
1775              * CALCULATE INTERACTIONS *
1776              **************************/
1777
1778             if (gmx_mm_any_lt(rsq11,rcutoff2))
1779             {
1780
1781             r11              = _mm_mul_pd(rsq11,rinv11);
1782
1783             /* EWALD ELECTROSTATICS */
1784
1785             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1786             ewrt             = _mm_mul_pd(r11,ewtabscale);
1787             ewitab           = _mm_cvttpd_epi32(ewrt);
1788 #ifdef __XOP__
1789             eweps            = _mm_frcz_pd(ewrt);
1790 #else
1791             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1792 #endif
1793             twoeweps         = _mm_add_pd(eweps,eweps);
1794             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1795                                          &ewtabF,&ewtabFn);
1796             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1797             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1798
1799             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1800
1801             fscal            = felec;
1802
1803             fscal            = _mm_and_pd(fscal,cutoff_mask);
1804
1805             /* Update vectorial force */
1806             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1807             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1808             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1809             
1810             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1811             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1812             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1813
1814             }
1815
1816             /**************************
1817              * CALCULATE INTERACTIONS *
1818              **************************/
1819
1820             if (gmx_mm_any_lt(rsq12,rcutoff2))
1821             {
1822
1823             r12              = _mm_mul_pd(rsq12,rinv12);
1824
1825             /* EWALD ELECTROSTATICS */
1826
1827             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1828             ewrt             = _mm_mul_pd(r12,ewtabscale);
1829             ewitab           = _mm_cvttpd_epi32(ewrt);
1830 #ifdef __XOP__
1831             eweps            = _mm_frcz_pd(ewrt);
1832 #else
1833             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1834 #endif
1835             twoeweps         = _mm_add_pd(eweps,eweps);
1836             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1837                                          &ewtabF,&ewtabFn);
1838             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1839             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1840
1841             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1842
1843             fscal            = felec;
1844
1845             fscal            = _mm_and_pd(fscal,cutoff_mask);
1846
1847             /* Update vectorial force */
1848             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1849             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1850             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1851             
1852             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1853             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1854             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1855
1856             }
1857
1858             /**************************
1859              * CALCULATE INTERACTIONS *
1860              **************************/
1861
1862             if (gmx_mm_any_lt(rsq13,rcutoff2))
1863             {
1864
1865             r13              = _mm_mul_pd(rsq13,rinv13);
1866
1867             /* EWALD ELECTROSTATICS */
1868
1869             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1870             ewrt             = _mm_mul_pd(r13,ewtabscale);
1871             ewitab           = _mm_cvttpd_epi32(ewrt);
1872 #ifdef __XOP__
1873             eweps            = _mm_frcz_pd(ewrt);
1874 #else
1875             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1876 #endif
1877             twoeweps         = _mm_add_pd(eweps,eweps);
1878             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1879                                          &ewtabF,&ewtabFn);
1880             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1881             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1882
1883             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
1884
1885             fscal            = felec;
1886
1887             fscal            = _mm_and_pd(fscal,cutoff_mask);
1888
1889             /* Update vectorial force */
1890             fix1             = _mm_macc_pd(dx13,fscal,fix1);
1891             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
1892             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
1893             
1894             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
1895             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
1896             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
1897
1898             }
1899
1900             /**************************
1901              * CALCULATE INTERACTIONS *
1902              **************************/
1903
1904             if (gmx_mm_any_lt(rsq21,rcutoff2))
1905             {
1906
1907             r21              = _mm_mul_pd(rsq21,rinv21);
1908
1909             /* EWALD ELECTROSTATICS */
1910
1911             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1912             ewrt             = _mm_mul_pd(r21,ewtabscale);
1913             ewitab           = _mm_cvttpd_epi32(ewrt);
1914 #ifdef __XOP__
1915             eweps            = _mm_frcz_pd(ewrt);
1916 #else
1917             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1918 #endif
1919             twoeweps         = _mm_add_pd(eweps,eweps);
1920             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1921                                          &ewtabF,&ewtabFn);
1922             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1923             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1924
1925             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1926
1927             fscal            = felec;
1928
1929             fscal            = _mm_and_pd(fscal,cutoff_mask);
1930
1931             /* Update vectorial force */
1932             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1933             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1934             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1935             
1936             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1937             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1938             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1939
1940             }
1941
1942             /**************************
1943              * CALCULATE INTERACTIONS *
1944              **************************/
1945
1946             if (gmx_mm_any_lt(rsq22,rcutoff2))
1947             {
1948
1949             r22              = _mm_mul_pd(rsq22,rinv22);
1950
1951             /* EWALD ELECTROSTATICS */
1952
1953             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1954             ewrt             = _mm_mul_pd(r22,ewtabscale);
1955             ewitab           = _mm_cvttpd_epi32(ewrt);
1956 #ifdef __XOP__
1957             eweps            = _mm_frcz_pd(ewrt);
1958 #else
1959             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1960 #endif
1961             twoeweps         = _mm_add_pd(eweps,eweps);
1962             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1963                                          &ewtabF,&ewtabFn);
1964             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1965             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1966
1967             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1968
1969             fscal            = felec;
1970
1971             fscal            = _mm_and_pd(fscal,cutoff_mask);
1972
1973             /* Update vectorial force */
1974             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1975             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1976             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1977             
1978             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1979             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1980             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1981
1982             }
1983
1984             /**************************
1985              * CALCULATE INTERACTIONS *
1986              **************************/
1987
1988             if (gmx_mm_any_lt(rsq23,rcutoff2))
1989             {
1990
1991             r23              = _mm_mul_pd(rsq23,rinv23);
1992
1993             /* EWALD ELECTROSTATICS */
1994
1995             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1996             ewrt             = _mm_mul_pd(r23,ewtabscale);
1997             ewitab           = _mm_cvttpd_epi32(ewrt);
1998 #ifdef __XOP__
1999             eweps            = _mm_frcz_pd(ewrt);
2000 #else
2001             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2002 #endif
2003             twoeweps         = _mm_add_pd(eweps,eweps);
2004             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
2005                                          &ewtabF,&ewtabFn);
2006             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2007             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
2008
2009             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
2010
2011             fscal            = felec;
2012
2013             fscal            = _mm_and_pd(fscal,cutoff_mask);
2014
2015             /* Update vectorial force */
2016             fix2             = _mm_macc_pd(dx23,fscal,fix2);
2017             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
2018             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
2019             
2020             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
2021             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
2022             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
2023
2024             }
2025
2026             /**************************
2027              * CALCULATE INTERACTIONS *
2028              **************************/
2029
2030             if (gmx_mm_any_lt(rsq31,rcutoff2))
2031             {
2032
2033             r31              = _mm_mul_pd(rsq31,rinv31);
2034
2035             /* EWALD ELECTROSTATICS */
2036
2037             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2038             ewrt             = _mm_mul_pd(r31,ewtabscale);
2039             ewitab           = _mm_cvttpd_epi32(ewrt);
2040 #ifdef __XOP__
2041             eweps            = _mm_frcz_pd(ewrt);
2042 #else
2043             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2044 #endif
2045             twoeweps         = _mm_add_pd(eweps,eweps);
2046             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
2047                                          &ewtabF,&ewtabFn);
2048             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2049             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
2050
2051             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
2052
2053             fscal            = felec;
2054
2055             fscal            = _mm_and_pd(fscal,cutoff_mask);
2056
2057             /* Update vectorial force */
2058             fix3             = _mm_macc_pd(dx31,fscal,fix3);
2059             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
2060             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
2061             
2062             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
2063             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
2064             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
2065
2066             }
2067
2068             /**************************
2069              * CALCULATE INTERACTIONS *
2070              **************************/
2071
2072             if (gmx_mm_any_lt(rsq32,rcutoff2))
2073             {
2074
2075             r32              = _mm_mul_pd(rsq32,rinv32);
2076
2077             /* EWALD ELECTROSTATICS */
2078
2079             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2080             ewrt             = _mm_mul_pd(r32,ewtabscale);
2081             ewitab           = _mm_cvttpd_epi32(ewrt);
2082 #ifdef __XOP__
2083             eweps            = _mm_frcz_pd(ewrt);
2084 #else
2085             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2086 #endif
2087             twoeweps         = _mm_add_pd(eweps,eweps);
2088             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
2089                                          &ewtabF,&ewtabFn);
2090             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2091             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
2092
2093             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
2094
2095             fscal            = felec;
2096
2097             fscal            = _mm_and_pd(fscal,cutoff_mask);
2098
2099             /* Update vectorial force */
2100             fix3             = _mm_macc_pd(dx32,fscal,fix3);
2101             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
2102             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
2103             
2104             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
2105             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
2106             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
2107
2108             }
2109
2110             /**************************
2111              * CALCULATE INTERACTIONS *
2112              **************************/
2113
2114             if (gmx_mm_any_lt(rsq33,rcutoff2))
2115             {
2116
2117             r33              = _mm_mul_pd(rsq33,rinv33);
2118
2119             /* EWALD ELECTROSTATICS */
2120
2121             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2122             ewrt             = _mm_mul_pd(r33,ewtabscale);
2123             ewitab           = _mm_cvttpd_epi32(ewrt);
2124 #ifdef __XOP__
2125             eweps            = _mm_frcz_pd(ewrt);
2126 #else
2127             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2128 #endif
2129             twoeweps         = _mm_add_pd(eweps,eweps);
2130             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
2131                                          &ewtabF,&ewtabFn);
2132             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2133             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
2134
2135             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
2136
2137             fscal            = felec;
2138
2139             fscal            = _mm_and_pd(fscal,cutoff_mask);
2140
2141             /* Update vectorial force */
2142             fix3             = _mm_macc_pd(dx33,fscal,fix3);
2143             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
2144             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
2145             
2146             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
2147             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
2148             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
2149
2150             }
2151
2152             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2153
2154             /* Inner loop uses 414 flops */
2155         }
2156
2157         if(jidx<j_index_end)
2158         {
2159
2160             jnrA             = jjnr[jidx];
2161             j_coord_offsetA  = DIM*jnrA;
2162
2163             /* load j atom coordinates */
2164             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
2165                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
2166                                               &jy2,&jz2,&jx3,&jy3,&jz3);
2167
2168             /* Calculate displacement vector */
2169             dx00             = _mm_sub_pd(ix0,jx0);
2170             dy00             = _mm_sub_pd(iy0,jy0);
2171             dz00             = _mm_sub_pd(iz0,jz0);
2172             dx11             = _mm_sub_pd(ix1,jx1);
2173             dy11             = _mm_sub_pd(iy1,jy1);
2174             dz11             = _mm_sub_pd(iz1,jz1);
2175             dx12             = _mm_sub_pd(ix1,jx2);
2176             dy12             = _mm_sub_pd(iy1,jy2);
2177             dz12             = _mm_sub_pd(iz1,jz2);
2178             dx13             = _mm_sub_pd(ix1,jx3);
2179             dy13             = _mm_sub_pd(iy1,jy3);
2180             dz13             = _mm_sub_pd(iz1,jz3);
2181             dx21             = _mm_sub_pd(ix2,jx1);
2182             dy21             = _mm_sub_pd(iy2,jy1);
2183             dz21             = _mm_sub_pd(iz2,jz1);
2184             dx22             = _mm_sub_pd(ix2,jx2);
2185             dy22             = _mm_sub_pd(iy2,jy2);
2186             dz22             = _mm_sub_pd(iz2,jz2);
2187             dx23             = _mm_sub_pd(ix2,jx3);
2188             dy23             = _mm_sub_pd(iy2,jy3);
2189             dz23             = _mm_sub_pd(iz2,jz3);
2190             dx31             = _mm_sub_pd(ix3,jx1);
2191             dy31             = _mm_sub_pd(iy3,jy1);
2192             dz31             = _mm_sub_pd(iz3,jz1);
2193             dx32             = _mm_sub_pd(ix3,jx2);
2194             dy32             = _mm_sub_pd(iy3,jy2);
2195             dz32             = _mm_sub_pd(iz3,jz2);
2196             dx33             = _mm_sub_pd(ix3,jx3);
2197             dy33             = _mm_sub_pd(iy3,jy3);
2198             dz33             = _mm_sub_pd(iz3,jz3);
2199
2200             /* Calculate squared distance and things based on it */
2201             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2202             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2203             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2204             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
2205             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2206             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2207             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
2208             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
2209             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
2210             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
2211
2212             rinv11           = avx128fma_invsqrt_d(rsq11);
2213             rinv12           = avx128fma_invsqrt_d(rsq12);
2214             rinv13           = avx128fma_invsqrt_d(rsq13);
2215             rinv21           = avx128fma_invsqrt_d(rsq21);
2216             rinv22           = avx128fma_invsqrt_d(rsq22);
2217             rinv23           = avx128fma_invsqrt_d(rsq23);
2218             rinv31           = avx128fma_invsqrt_d(rsq31);
2219             rinv32           = avx128fma_invsqrt_d(rsq32);
2220             rinv33           = avx128fma_invsqrt_d(rsq33);
2221
2222             rinvsq00         = avx128fma_inv_d(rsq00);
2223             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2224             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2225             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
2226             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2227             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2228             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
2229             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
2230             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
2231             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
2232
2233             fjx0             = _mm_setzero_pd();
2234             fjy0             = _mm_setzero_pd();
2235             fjz0             = _mm_setzero_pd();
2236             fjx1             = _mm_setzero_pd();
2237             fjy1             = _mm_setzero_pd();
2238             fjz1             = _mm_setzero_pd();
2239             fjx2             = _mm_setzero_pd();
2240             fjy2             = _mm_setzero_pd();
2241             fjz2             = _mm_setzero_pd();
2242             fjx3             = _mm_setzero_pd();
2243             fjy3             = _mm_setzero_pd();
2244             fjz3             = _mm_setzero_pd();
2245
2246             /**************************
2247              * CALCULATE INTERACTIONS *
2248              **************************/
2249
2250             if (gmx_mm_any_lt(rsq00,rcutoff2))
2251             {
2252
2253             /* LENNARD-JONES DISPERSION/REPULSION */
2254
2255             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
2256             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
2257
2258             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
2259
2260             fscal            = fvdw;
2261
2262             fscal            = _mm_and_pd(fscal,cutoff_mask);
2263
2264             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2265
2266             /* Update vectorial force */
2267             fix0             = _mm_macc_pd(dx00,fscal,fix0);
2268             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
2269             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
2270             
2271             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
2272             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
2273             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
2274
2275             }
2276
2277             /**************************
2278              * CALCULATE INTERACTIONS *
2279              **************************/
2280
2281             if (gmx_mm_any_lt(rsq11,rcutoff2))
2282             {
2283
2284             r11              = _mm_mul_pd(rsq11,rinv11);
2285
2286             /* EWALD ELECTROSTATICS */
2287
2288             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2289             ewrt             = _mm_mul_pd(r11,ewtabscale);
2290             ewitab           = _mm_cvttpd_epi32(ewrt);
2291 #ifdef __XOP__
2292             eweps            = _mm_frcz_pd(ewrt);
2293 #else
2294             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2295 #endif
2296             twoeweps         = _mm_add_pd(eweps,eweps);
2297             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2298             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2299             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2300
2301             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2302
2303             fscal            = felec;
2304
2305             fscal            = _mm_and_pd(fscal,cutoff_mask);
2306
2307             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2308
2309             /* Update vectorial force */
2310             fix1             = _mm_macc_pd(dx11,fscal,fix1);
2311             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
2312             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
2313             
2314             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
2315             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
2316             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
2317
2318             }
2319
2320             /**************************
2321              * CALCULATE INTERACTIONS *
2322              **************************/
2323
2324             if (gmx_mm_any_lt(rsq12,rcutoff2))
2325             {
2326
2327             r12              = _mm_mul_pd(rsq12,rinv12);
2328
2329             /* EWALD ELECTROSTATICS */
2330
2331             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2332             ewrt             = _mm_mul_pd(r12,ewtabscale);
2333             ewitab           = _mm_cvttpd_epi32(ewrt);
2334 #ifdef __XOP__
2335             eweps            = _mm_frcz_pd(ewrt);
2336 #else
2337             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2338 #endif
2339             twoeweps         = _mm_add_pd(eweps,eweps);
2340             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2341             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2342             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2343
2344             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2345
2346             fscal            = felec;
2347
2348             fscal            = _mm_and_pd(fscal,cutoff_mask);
2349
2350             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2351
2352             /* Update vectorial force */
2353             fix1             = _mm_macc_pd(dx12,fscal,fix1);
2354             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
2355             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
2356             
2357             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
2358             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
2359             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
2360
2361             }
2362
2363             /**************************
2364              * CALCULATE INTERACTIONS *
2365              **************************/
2366
2367             if (gmx_mm_any_lt(rsq13,rcutoff2))
2368             {
2369
2370             r13              = _mm_mul_pd(rsq13,rinv13);
2371
2372             /* EWALD ELECTROSTATICS */
2373
2374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2375             ewrt             = _mm_mul_pd(r13,ewtabscale);
2376             ewitab           = _mm_cvttpd_epi32(ewrt);
2377 #ifdef __XOP__
2378             eweps            = _mm_frcz_pd(ewrt);
2379 #else
2380             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2381 #endif
2382             twoeweps         = _mm_add_pd(eweps,eweps);
2383             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2384             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2385             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
2386
2387             cutoff_mask      = _mm_cmplt_pd(rsq13,rcutoff2);
2388
2389             fscal            = felec;
2390
2391             fscal            = _mm_and_pd(fscal,cutoff_mask);
2392
2393             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2394
2395             /* Update vectorial force */
2396             fix1             = _mm_macc_pd(dx13,fscal,fix1);
2397             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
2398             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
2399             
2400             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
2401             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
2402             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
2403
2404             }
2405
2406             /**************************
2407              * CALCULATE INTERACTIONS *
2408              **************************/
2409
2410             if (gmx_mm_any_lt(rsq21,rcutoff2))
2411             {
2412
2413             r21              = _mm_mul_pd(rsq21,rinv21);
2414
2415             /* EWALD ELECTROSTATICS */
2416
2417             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2418             ewrt             = _mm_mul_pd(r21,ewtabscale);
2419             ewitab           = _mm_cvttpd_epi32(ewrt);
2420 #ifdef __XOP__
2421             eweps            = _mm_frcz_pd(ewrt);
2422 #else
2423             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2424 #endif
2425             twoeweps         = _mm_add_pd(eweps,eweps);
2426             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2427             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2428             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2429
2430             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2431
2432             fscal            = felec;
2433
2434             fscal            = _mm_and_pd(fscal,cutoff_mask);
2435
2436             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2437
2438             /* Update vectorial force */
2439             fix2             = _mm_macc_pd(dx21,fscal,fix2);
2440             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
2441             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
2442             
2443             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
2444             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
2445             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
2446
2447             }
2448
2449             /**************************
2450              * CALCULATE INTERACTIONS *
2451              **************************/
2452
2453             if (gmx_mm_any_lt(rsq22,rcutoff2))
2454             {
2455
2456             r22              = _mm_mul_pd(rsq22,rinv22);
2457
2458             /* EWALD ELECTROSTATICS */
2459
2460             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2461             ewrt             = _mm_mul_pd(r22,ewtabscale);
2462             ewitab           = _mm_cvttpd_epi32(ewrt);
2463 #ifdef __XOP__
2464             eweps            = _mm_frcz_pd(ewrt);
2465 #else
2466             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2467 #endif
2468             twoeweps         = _mm_add_pd(eweps,eweps);
2469             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2470             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2471             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2472
2473             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2474
2475             fscal            = felec;
2476
2477             fscal            = _mm_and_pd(fscal,cutoff_mask);
2478
2479             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2480
2481             /* Update vectorial force */
2482             fix2             = _mm_macc_pd(dx22,fscal,fix2);
2483             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
2484             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
2485             
2486             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
2487             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
2488             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
2489
2490             }
2491
2492             /**************************
2493              * CALCULATE INTERACTIONS *
2494              **************************/
2495
2496             if (gmx_mm_any_lt(rsq23,rcutoff2))
2497             {
2498
2499             r23              = _mm_mul_pd(rsq23,rinv23);
2500
2501             /* EWALD ELECTROSTATICS */
2502
2503             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2504             ewrt             = _mm_mul_pd(r23,ewtabscale);
2505             ewitab           = _mm_cvttpd_epi32(ewrt);
2506 #ifdef __XOP__
2507             eweps            = _mm_frcz_pd(ewrt);
2508 #else
2509             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2510 #endif
2511             twoeweps         = _mm_add_pd(eweps,eweps);
2512             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2513             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2514             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
2515
2516             cutoff_mask      = _mm_cmplt_pd(rsq23,rcutoff2);
2517
2518             fscal            = felec;
2519
2520             fscal            = _mm_and_pd(fscal,cutoff_mask);
2521
2522             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2523
2524             /* Update vectorial force */
2525             fix2             = _mm_macc_pd(dx23,fscal,fix2);
2526             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
2527             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
2528             
2529             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
2530             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
2531             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
2532
2533             }
2534
2535             /**************************
2536              * CALCULATE INTERACTIONS *
2537              **************************/
2538
2539             if (gmx_mm_any_lt(rsq31,rcutoff2))
2540             {
2541
2542             r31              = _mm_mul_pd(rsq31,rinv31);
2543
2544             /* EWALD ELECTROSTATICS */
2545
2546             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2547             ewrt             = _mm_mul_pd(r31,ewtabscale);
2548             ewitab           = _mm_cvttpd_epi32(ewrt);
2549 #ifdef __XOP__
2550             eweps            = _mm_frcz_pd(ewrt);
2551 #else
2552             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2553 #endif
2554             twoeweps         = _mm_add_pd(eweps,eweps);
2555             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2556             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2557             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
2558
2559             cutoff_mask      = _mm_cmplt_pd(rsq31,rcutoff2);
2560
2561             fscal            = felec;
2562
2563             fscal            = _mm_and_pd(fscal,cutoff_mask);
2564
2565             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2566
2567             /* Update vectorial force */
2568             fix3             = _mm_macc_pd(dx31,fscal,fix3);
2569             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
2570             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
2571             
2572             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
2573             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
2574             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
2575
2576             }
2577
2578             /**************************
2579              * CALCULATE INTERACTIONS *
2580              **************************/
2581
2582             if (gmx_mm_any_lt(rsq32,rcutoff2))
2583             {
2584
2585             r32              = _mm_mul_pd(rsq32,rinv32);
2586
2587             /* EWALD ELECTROSTATICS */
2588
2589             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2590             ewrt             = _mm_mul_pd(r32,ewtabscale);
2591             ewitab           = _mm_cvttpd_epi32(ewrt);
2592 #ifdef __XOP__
2593             eweps            = _mm_frcz_pd(ewrt);
2594 #else
2595             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2596 #endif
2597             twoeweps         = _mm_add_pd(eweps,eweps);
2598             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2599             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2600             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
2601
2602             cutoff_mask      = _mm_cmplt_pd(rsq32,rcutoff2);
2603
2604             fscal            = felec;
2605
2606             fscal            = _mm_and_pd(fscal,cutoff_mask);
2607
2608             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2609
2610             /* Update vectorial force */
2611             fix3             = _mm_macc_pd(dx32,fscal,fix3);
2612             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
2613             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
2614             
2615             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
2616             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
2617             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
2618
2619             }
2620
2621             /**************************
2622              * CALCULATE INTERACTIONS *
2623              **************************/
2624
2625             if (gmx_mm_any_lt(rsq33,rcutoff2))
2626             {
2627
2628             r33              = _mm_mul_pd(rsq33,rinv33);
2629
2630             /* EWALD ELECTROSTATICS */
2631
2632             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2633             ewrt             = _mm_mul_pd(r33,ewtabscale);
2634             ewitab           = _mm_cvttpd_epi32(ewrt);
2635 #ifdef __XOP__
2636             eweps            = _mm_frcz_pd(ewrt);
2637 #else
2638             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2639 #endif
2640             twoeweps         = _mm_add_pd(eweps,eweps);
2641             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2642             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2643             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
2644
2645             cutoff_mask      = _mm_cmplt_pd(rsq33,rcutoff2);
2646
2647             fscal            = felec;
2648
2649             fscal            = _mm_and_pd(fscal,cutoff_mask);
2650
2651             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2652
2653             /* Update vectorial force */
2654             fix3             = _mm_macc_pd(dx33,fscal,fix3);
2655             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
2656             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
2657             
2658             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
2659             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
2660             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
2661
2662             }
2663
2664             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2665
2666             /* Inner loop uses 414 flops */
2667         }
2668
2669         /* End of innermost loop */
2670
2671         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2672                                               f+i_coord_offset,fshift+i_shift_offset);
2673
2674         /* Increment number of inner iterations */
2675         inneriter                  += j_index_end - j_index_start;
2676
2677         /* Outer loop uses 24 flops */
2678     }
2679
2680     /* Increment number of outer iterations */
2681     outeriter        += nri;
2682
2683     /* Update outer/inner flops */
2684
2685     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*24 + inneriter*414);
2686 }