Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          ewitab;
102     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     real             *ewtab;
104     __m128d          dummy_mask,cutoff_mask;
105     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
106     __m128d          one     = _mm_set1_pd(1.0);
107     __m128d          two     = _mm_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_pd(fr->ic->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
128     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->ic->rcoulomb;
139     rcutoff          = _mm_set1_pd(rcutoff_scalar);
140     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
141
142     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
143     rvdw             = _mm_set1_pd(fr->ic->rvdw);
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170
171         fix0             = _mm_setzero_pd();
172         fiy0             = _mm_setzero_pd();
173         fiz0             = _mm_setzero_pd();
174         fix1             = _mm_setzero_pd();
175         fiy1             = _mm_setzero_pd();
176         fiz1             = _mm_setzero_pd();
177         fix2             = _mm_setzero_pd();
178         fiy2             = _mm_setzero_pd();
179         fiz2             = _mm_setzero_pd();
180         fix3             = _mm_setzero_pd();
181         fiy3             = _mm_setzero_pd();
182         fiz3             = _mm_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_pd();
186         vvdwsum          = _mm_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_pd(ix0,jx0);
204             dy00             = _mm_sub_pd(iy0,jy0);
205             dz00             = _mm_sub_pd(iz0,jz0);
206             dx10             = _mm_sub_pd(ix1,jx0);
207             dy10             = _mm_sub_pd(iy1,jy0);
208             dz10             = _mm_sub_pd(iz1,jz0);
209             dx20             = _mm_sub_pd(ix2,jx0);
210             dy20             = _mm_sub_pd(iy2,jy0);
211             dz20             = _mm_sub_pd(iz2,jz0);
212             dx30             = _mm_sub_pd(ix3,jx0);
213             dy30             = _mm_sub_pd(iy3,jy0);
214             dz30             = _mm_sub_pd(iz3,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
220             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
221
222             rinv10           = avx128fma_invsqrt_d(rsq10);
223             rinv20           = avx128fma_invsqrt_d(rsq20);
224             rinv30           = avx128fma_invsqrt_d(rsq30);
225
226             rinvsq00         = avx128fma_inv_d(rsq00);
227             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
228             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
229             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235
236             fjx0             = _mm_setzero_pd();
237             fjy0             = _mm_setzero_pd();
238             fjz0             = _mm_setzero_pd();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             if (gmx_mm_any_lt(rsq00,rcutoff2))
245             {
246
247             /* Compute parameters for interactions between i and j atoms */
248             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
249                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
250
251             /* LENNARD-JONES DISPERSION/REPULSION */
252
253             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
254             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
255             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
256             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
257                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
258             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
259
260             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
264             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
265
266             fscal            = fvdw;
267
268             fscal            = _mm_and_pd(fscal,cutoff_mask);
269
270             /* Update vectorial force */
271             fix0             = _mm_macc_pd(dx00,fscal,fix0);
272             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
273             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
274             
275             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
276             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
277             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
278
279             }
280
281             /**************************
282              * CALCULATE INTERACTIONS *
283              **************************/
284
285             if (gmx_mm_any_lt(rsq10,rcutoff2))
286             {
287
288             r10              = _mm_mul_pd(rsq10,rinv10);
289
290             /* Compute parameters for interactions between i and j atoms */
291             qq10             = _mm_mul_pd(iq1,jq0);
292
293             /* EWALD ELECTROSTATICS */
294
295             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
296             ewrt             = _mm_mul_pd(r10,ewtabscale);
297             ewitab           = _mm_cvttpd_epi32(ewrt);
298 #ifdef __XOP__
299             eweps            = _mm_frcz_pd(ewrt);
300 #else
301             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
302 #endif
303             twoeweps         = _mm_add_pd(eweps,eweps);
304             ewitab           = _mm_slli_epi32(ewitab,2);
305             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
306             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
307             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
308             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
309             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
310             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
311             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
312             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
313             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
314             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
315
316             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velec            = _mm_and_pd(velec,cutoff_mask);
320             velecsum         = _mm_add_pd(velecsum,velec);
321
322             fscal            = felec;
323
324             fscal            = _mm_and_pd(fscal,cutoff_mask);
325
326             /* Update vectorial force */
327             fix1             = _mm_macc_pd(dx10,fscal,fix1);
328             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
329             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
330             
331             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
332             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
333             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
334
335             }
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             if (gmx_mm_any_lt(rsq20,rcutoff2))
342             {
343
344             r20              = _mm_mul_pd(rsq20,rinv20);
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq20             = _mm_mul_pd(iq2,jq0);
348
349             /* EWALD ELECTROSTATICS */
350
351             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
352             ewrt             = _mm_mul_pd(r20,ewtabscale);
353             ewitab           = _mm_cvttpd_epi32(ewrt);
354 #ifdef __XOP__
355             eweps            = _mm_frcz_pd(ewrt);
356 #else
357             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
358 #endif
359             twoeweps         = _mm_add_pd(eweps,eweps);
360             ewitab           = _mm_slli_epi32(ewitab,2);
361             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
362             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
363             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
364             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
365             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
366             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
367             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
368             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
369             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
370             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
371
372             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velec            = _mm_and_pd(velec,cutoff_mask);
376             velecsum         = _mm_add_pd(velecsum,velec);
377
378             fscal            = felec;
379
380             fscal            = _mm_and_pd(fscal,cutoff_mask);
381
382             /* Update vectorial force */
383             fix2             = _mm_macc_pd(dx20,fscal,fix2);
384             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
385             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
386             
387             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
388             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
389             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
390
391             }
392
393             /**************************
394              * CALCULATE INTERACTIONS *
395              **************************/
396
397             if (gmx_mm_any_lt(rsq30,rcutoff2))
398             {
399
400             r30              = _mm_mul_pd(rsq30,rinv30);
401
402             /* Compute parameters for interactions between i and j atoms */
403             qq30             = _mm_mul_pd(iq3,jq0);
404
405             /* EWALD ELECTROSTATICS */
406
407             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
408             ewrt             = _mm_mul_pd(r30,ewtabscale);
409             ewitab           = _mm_cvttpd_epi32(ewrt);
410 #ifdef __XOP__
411             eweps            = _mm_frcz_pd(ewrt);
412 #else
413             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
414 #endif
415             twoeweps         = _mm_add_pd(eweps,eweps);
416             ewitab           = _mm_slli_epi32(ewitab,2);
417             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
418             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
419             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
420             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
421             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
422             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
423             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
424             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
425             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
426             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
427
428             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
429
430             /* Update potential sum for this i atom from the interaction with this j atom. */
431             velec            = _mm_and_pd(velec,cutoff_mask);
432             velecsum         = _mm_add_pd(velecsum,velec);
433
434             fscal            = felec;
435
436             fscal            = _mm_and_pd(fscal,cutoff_mask);
437
438             /* Update vectorial force */
439             fix3             = _mm_macc_pd(dx30,fscal,fix3);
440             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
441             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
442             
443             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
444             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
445             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
446
447             }
448
449             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
450
451             /* Inner loop uses 194 flops */
452         }
453
454         if(jidx<j_index_end)
455         {
456
457             jnrA             = jjnr[jidx];
458             j_coord_offsetA  = DIM*jnrA;
459
460             /* load j atom coordinates */
461             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
462                                               &jx0,&jy0,&jz0);
463
464             /* Calculate displacement vector */
465             dx00             = _mm_sub_pd(ix0,jx0);
466             dy00             = _mm_sub_pd(iy0,jy0);
467             dz00             = _mm_sub_pd(iz0,jz0);
468             dx10             = _mm_sub_pd(ix1,jx0);
469             dy10             = _mm_sub_pd(iy1,jy0);
470             dz10             = _mm_sub_pd(iz1,jz0);
471             dx20             = _mm_sub_pd(ix2,jx0);
472             dy20             = _mm_sub_pd(iy2,jy0);
473             dz20             = _mm_sub_pd(iz2,jz0);
474             dx30             = _mm_sub_pd(ix3,jx0);
475             dy30             = _mm_sub_pd(iy3,jy0);
476             dz30             = _mm_sub_pd(iz3,jz0);
477
478             /* Calculate squared distance and things based on it */
479             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
480             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
481             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
482             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
483
484             rinv10           = avx128fma_invsqrt_d(rsq10);
485             rinv20           = avx128fma_invsqrt_d(rsq20);
486             rinv30           = avx128fma_invsqrt_d(rsq30);
487
488             rinvsq00         = avx128fma_inv_d(rsq00);
489             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
490             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
491             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
492
493             /* Load parameters for j particles */
494             jq0              = _mm_load_sd(charge+jnrA+0);
495             vdwjidx0A        = 2*vdwtype[jnrA+0];
496
497             fjx0             = _mm_setzero_pd();
498             fjy0             = _mm_setzero_pd();
499             fjz0             = _mm_setzero_pd();
500
501             /**************************
502              * CALCULATE INTERACTIONS *
503              **************************/
504
505             if (gmx_mm_any_lt(rsq00,rcutoff2))
506             {
507
508             /* Compute parameters for interactions between i and j atoms */
509             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
510
511             /* LENNARD-JONES DISPERSION/REPULSION */
512
513             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
514             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
515             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
516             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
517                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
518             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
519
520             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
524             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
525             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
526
527             fscal            = fvdw;
528
529             fscal            = _mm_and_pd(fscal,cutoff_mask);
530
531             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
532
533             /* Update vectorial force */
534             fix0             = _mm_macc_pd(dx00,fscal,fix0);
535             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
536             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
537             
538             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
539             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
540             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
541
542             }
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             if (gmx_mm_any_lt(rsq10,rcutoff2))
549             {
550
551             r10              = _mm_mul_pd(rsq10,rinv10);
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq10             = _mm_mul_pd(iq1,jq0);
555
556             /* EWALD ELECTROSTATICS */
557
558             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
559             ewrt             = _mm_mul_pd(r10,ewtabscale);
560             ewitab           = _mm_cvttpd_epi32(ewrt);
561 #ifdef __XOP__
562             eweps            = _mm_frcz_pd(ewrt);
563 #else
564             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
565 #endif
566             twoeweps         = _mm_add_pd(eweps,eweps);
567             ewitab           = _mm_slli_epi32(ewitab,2);
568             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
569             ewtabD           = _mm_setzero_pd();
570             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
571             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
572             ewtabFn          = _mm_setzero_pd();
573             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
574             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
575             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
576             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
577             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
578
579             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm_and_pd(velec,cutoff_mask);
583             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
584             velecsum         = _mm_add_pd(velecsum,velec);
585
586             fscal            = felec;
587
588             fscal            = _mm_and_pd(fscal,cutoff_mask);
589
590             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
591
592             /* Update vectorial force */
593             fix1             = _mm_macc_pd(dx10,fscal,fix1);
594             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
595             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
596             
597             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
598             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
599             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
600
601             }
602
603             /**************************
604              * CALCULATE INTERACTIONS *
605              **************************/
606
607             if (gmx_mm_any_lt(rsq20,rcutoff2))
608             {
609
610             r20              = _mm_mul_pd(rsq20,rinv20);
611
612             /* Compute parameters for interactions between i and j atoms */
613             qq20             = _mm_mul_pd(iq2,jq0);
614
615             /* EWALD ELECTROSTATICS */
616
617             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
618             ewrt             = _mm_mul_pd(r20,ewtabscale);
619             ewitab           = _mm_cvttpd_epi32(ewrt);
620 #ifdef __XOP__
621             eweps            = _mm_frcz_pd(ewrt);
622 #else
623             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
624 #endif
625             twoeweps         = _mm_add_pd(eweps,eweps);
626             ewitab           = _mm_slli_epi32(ewitab,2);
627             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
628             ewtabD           = _mm_setzero_pd();
629             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
630             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
631             ewtabFn          = _mm_setzero_pd();
632             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
633             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
634             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
635             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
636             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
637
638             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
639
640             /* Update potential sum for this i atom from the interaction with this j atom. */
641             velec            = _mm_and_pd(velec,cutoff_mask);
642             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
643             velecsum         = _mm_add_pd(velecsum,velec);
644
645             fscal            = felec;
646
647             fscal            = _mm_and_pd(fscal,cutoff_mask);
648
649             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
650
651             /* Update vectorial force */
652             fix2             = _mm_macc_pd(dx20,fscal,fix2);
653             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
654             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
655             
656             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
657             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
658             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
659
660             }
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             if (gmx_mm_any_lt(rsq30,rcutoff2))
667             {
668
669             r30              = _mm_mul_pd(rsq30,rinv30);
670
671             /* Compute parameters for interactions between i and j atoms */
672             qq30             = _mm_mul_pd(iq3,jq0);
673
674             /* EWALD ELECTROSTATICS */
675
676             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
677             ewrt             = _mm_mul_pd(r30,ewtabscale);
678             ewitab           = _mm_cvttpd_epi32(ewrt);
679 #ifdef __XOP__
680             eweps            = _mm_frcz_pd(ewrt);
681 #else
682             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
683 #endif
684             twoeweps         = _mm_add_pd(eweps,eweps);
685             ewitab           = _mm_slli_epi32(ewitab,2);
686             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
687             ewtabD           = _mm_setzero_pd();
688             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
689             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
690             ewtabFn          = _mm_setzero_pd();
691             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
692             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
693             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
694             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
695             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
696
697             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
698
699             /* Update potential sum for this i atom from the interaction with this j atom. */
700             velec            = _mm_and_pd(velec,cutoff_mask);
701             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
702             velecsum         = _mm_add_pd(velecsum,velec);
703
704             fscal            = felec;
705
706             fscal            = _mm_and_pd(fscal,cutoff_mask);
707
708             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
709
710             /* Update vectorial force */
711             fix3             = _mm_macc_pd(dx30,fscal,fix3);
712             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
713             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
714             
715             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
716             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
717             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
718
719             }
720
721             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
722
723             /* Inner loop uses 194 flops */
724         }
725
726         /* End of innermost loop */
727
728         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
729                                               f+i_coord_offset,fshift+i_shift_offset);
730
731         ggid                        = gid[iidx];
732         /* Update potential energies */
733         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
734         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
735
736         /* Increment number of inner iterations */
737         inneriter                  += j_index_end - j_index_start;
738
739         /* Outer loop uses 26 flops */
740     }
741
742     /* Increment number of outer iterations */
743     outeriter        += nri;
744
745     /* Update outer/inner flops */
746
747     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*194);
748 }
749 /*
750  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_128_fma_double
751  * Electrostatics interaction: Ewald
752  * VdW interaction:            LennardJones
753  * Geometry:                   Water4-Particle
754  * Calculate force/pot:        Force
755  */
756 void
757 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_128_fma_double
758                     (t_nblist                    * gmx_restrict       nlist,
759                      rvec                        * gmx_restrict          xx,
760                      rvec                        * gmx_restrict          ff,
761                      struct t_forcerec           * gmx_restrict          fr,
762                      t_mdatoms                   * gmx_restrict     mdatoms,
763                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
764                      t_nrnb                      * gmx_restrict        nrnb)
765 {
766     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
767      * just 0 for non-waters.
768      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
769      * jnr indices corresponding to data put in the four positions in the SIMD register.
770      */
771     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
772     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
773     int              jnrA,jnrB;
774     int              j_coord_offsetA,j_coord_offsetB;
775     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
776     real             rcutoff_scalar;
777     real             *shiftvec,*fshift,*x,*f;
778     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
779     int              vdwioffset0;
780     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
781     int              vdwioffset1;
782     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
783     int              vdwioffset2;
784     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
785     int              vdwioffset3;
786     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
787     int              vdwjidx0A,vdwjidx0B;
788     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
789     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
790     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
791     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
792     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
793     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
794     real             *charge;
795     int              nvdwtype;
796     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
797     int              *vdwtype;
798     real             *vdwparam;
799     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
800     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
801     __m128i          ewitab;
802     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
803     real             *ewtab;
804     __m128d          dummy_mask,cutoff_mask;
805     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
806     __m128d          one     = _mm_set1_pd(1.0);
807     __m128d          two     = _mm_set1_pd(2.0);
808     x                = xx[0];
809     f                = ff[0];
810
811     nri              = nlist->nri;
812     iinr             = nlist->iinr;
813     jindex           = nlist->jindex;
814     jjnr             = nlist->jjnr;
815     shiftidx         = nlist->shift;
816     gid              = nlist->gid;
817     shiftvec         = fr->shift_vec[0];
818     fshift           = fr->fshift[0];
819     facel            = _mm_set1_pd(fr->ic->epsfac);
820     charge           = mdatoms->chargeA;
821     nvdwtype         = fr->ntype;
822     vdwparam         = fr->nbfp;
823     vdwtype          = mdatoms->typeA;
824
825     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
826     ewtab            = fr->ic->tabq_coul_F;
827     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
828     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
829
830     /* Setup water-specific parameters */
831     inr              = nlist->iinr[0];
832     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
833     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
834     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
835     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
836
837     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
838     rcutoff_scalar   = fr->ic->rcoulomb;
839     rcutoff          = _mm_set1_pd(rcutoff_scalar);
840     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
841
842     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
843     rvdw             = _mm_set1_pd(fr->ic->rvdw);
844
845     /* Avoid stupid compiler warnings */
846     jnrA = jnrB = 0;
847     j_coord_offsetA = 0;
848     j_coord_offsetB = 0;
849
850     outeriter        = 0;
851     inneriter        = 0;
852
853     /* Start outer loop over neighborlists */
854     for(iidx=0; iidx<nri; iidx++)
855     {
856         /* Load shift vector for this list */
857         i_shift_offset   = DIM*shiftidx[iidx];
858
859         /* Load limits for loop over neighbors */
860         j_index_start    = jindex[iidx];
861         j_index_end      = jindex[iidx+1];
862
863         /* Get outer coordinate index */
864         inr              = iinr[iidx];
865         i_coord_offset   = DIM*inr;
866
867         /* Load i particle coords and add shift vector */
868         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
869                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
870
871         fix0             = _mm_setzero_pd();
872         fiy0             = _mm_setzero_pd();
873         fiz0             = _mm_setzero_pd();
874         fix1             = _mm_setzero_pd();
875         fiy1             = _mm_setzero_pd();
876         fiz1             = _mm_setzero_pd();
877         fix2             = _mm_setzero_pd();
878         fiy2             = _mm_setzero_pd();
879         fiz2             = _mm_setzero_pd();
880         fix3             = _mm_setzero_pd();
881         fiy3             = _mm_setzero_pd();
882         fiz3             = _mm_setzero_pd();
883
884         /* Start inner kernel loop */
885         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
886         {
887
888             /* Get j neighbor index, and coordinate index */
889             jnrA             = jjnr[jidx];
890             jnrB             = jjnr[jidx+1];
891             j_coord_offsetA  = DIM*jnrA;
892             j_coord_offsetB  = DIM*jnrB;
893
894             /* load j atom coordinates */
895             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
896                                               &jx0,&jy0,&jz0);
897
898             /* Calculate displacement vector */
899             dx00             = _mm_sub_pd(ix0,jx0);
900             dy00             = _mm_sub_pd(iy0,jy0);
901             dz00             = _mm_sub_pd(iz0,jz0);
902             dx10             = _mm_sub_pd(ix1,jx0);
903             dy10             = _mm_sub_pd(iy1,jy0);
904             dz10             = _mm_sub_pd(iz1,jz0);
905             dx20             = _mm_sub_pd(ix2,jx0);
906             dy20             = _mm_sub_pd(iy2,jy0);
907             dz20             = _mm_sub_pd(iz2,jz0);
908             dx30             = _mm_sub_pd(ix3,jx0);
909             dy30             = _mm_sub_pd(iy3,jy0);
910             dz30             = _mm_sub_pd(iz3,jz0);
911
912             /* Calculate squared distance and things based on it */
913             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
914             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
915             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
916             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
917
918             rinv10           = avx128fma_invsqrt_d(rsq10);
919             rinv20           = avx128fma_invsqrt_d(rsq20);
920             rinv30           = avx128fma_invsqrt_d(rsq30);
921
922             rinvsq00         = avx128fma_inv_d(rsq00);
923             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
924             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
925             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
926
927             /* Load parameters for j particles */
928             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
929             vdwjidx0A        = 2*vdwtype[jnrA+0];
930             vdwjidx0B        = 2*vdwtype[jnrB+0];
931
932             fjx0             = _mm_setzero_pd();
933             fjy0             = _mm_setzero_pd();
934             fjz0             = _mm_setzero_pd();
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             if (gmx_mm_any_lt(rsq00,rcutoff2))
941             {
942
943             /* Compute parameters for interactions between i and j atoms */
944             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
945                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
946
947             /* LENNARD-JONES DISPERSION/REPULSION */
948
949             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
950             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
951
952             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
953
954             fscal            = fvdw;
955
956             fscal            = _mm_and_pd(fscal,cutoff_mask);
957
958             /* Update vectorial force */
959             fix0             = _mm_macc_pd(dx00,fscal,fix0);
960             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
961             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
962             
963             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
964             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
965             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
966
967             }
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             if (gmx_mm_any_lt(rsq10,rcutoff2))
974             {
975
976             r10              = _mm_mul_pd(rsq10,rinv10);
977
978             /* Compute parameters for interactions between i and j atoms */
979             qq10             = _mm_mul_pd(iq1,jq0);
980
981             /* EWALD ELECTROSTATICS */
982
983             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
984             ewrt             = _mm_mul_pd(r10,ewtabscale);
985             ewitab           = _mm_cvttpd_epi32(ewrt);
986 #ifdef __XOP__
987             eweps            = _mm_frcz_pd(ewrt);
988 #else
989             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
990 #endif
991             twoeweps         = _mm_add_pd(eweps,eweps);
992             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
993                                          &ewtabF,&ewtabFn);
994             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
995             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
996
997             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
998
999             fscal            = felec;
1000
1001             fscal            = _mm_and_pd(fscal,cutoff_mask);
1002
1003             /* Update vectorial force */
1004             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1005             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1006             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1007             
1008             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1009             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1010             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1011
1012             }
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             if (gmx_mm_any_lt(rsq20,rcutoff2))
1019             {
1020
1021             r20              = _mm_mul_pd(rsq20,rinv20);
1022
1023             /* Compute parameters for interactions between i and j atoms */
1024             qq20             = _mm_mul_pd(iq2,jq0);
1025
1026             /* EWALD ELECTROSTATICS */
1027
1028             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1029             ewrt             = _mm_mul_pd(r20,ewtabscale);
1030             ewitab           = _mm_cvttpd_epi32(ewrt);
1031 #ifdef __XOP__
1032             eweps            = _mm_frcz_pd(ewrt);
1033 #else
1034             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1035 #endif
1036             twoeweps         = _mm_add_pd(eweps,eweps);
1037             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1038                                          &ewtabF,&ewtabFn);
1039             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1040             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1041
1042             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1043
1044             fscal            = felec;
1045
1046             fscal            = _mm_and_pd(fscal,cutoff_mask);
1047
1048             /* Update vectorial force */
1049             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1050             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1051             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1052             
1053             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1054             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1055             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1056
1057             }
1058
1059             /**************************
1060              * CALCULATE INTERACTIONS *
1061              **************************/
1062
1063             if (gmx_mm_any_lt(rsq30,rcutoff2))
1064             {
1065
1066             r30              = _mm_mul_pd(rsq30,rinv30);
1067
1068             /* Compute parameters for interactions between i and j atoms */
1069             qq30             = _mm_mul_pd(iq3,jq0);
1070
1071             /* EWALD ELECTROSTATICS */
1072
1073             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1074             ewrt             = _mm_mul_pd(r30,ewtabscale);
1075             ewitab           = _mm_cvttpd_epi32(ewrt);
1076 #ifdef __XOP__
1077             eweps            = _mm_frcz_pd(ewrt);
1078 #else
1079             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1080 #endif
1081             twoeweps         = _mm_add_pd(eweps,eweps);
1082             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1083                                          &ewtabF,&ewtabFn);
1084             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1085             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1086
1087             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1088
1089             fscal            = felec;
1090
1091             fscal            = _mm_and_pd(fscal,cutoff_mask);
1092
1093             /* Update vectorial force */
1094             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1095             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1096             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1097             
1098             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1099             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1100             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1101
1102             }
1103
1104             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1105
1106             /* Inner loop uses 162 flops */
1107         }
1108
1109         if(jidx<j_index_end)
1110         {
1111
1112             jnrA             = jjnr[jidx];
1113             j_coord_offsetA  = DIM*jnrA;
1114
1115             /* load j atom coordinates */
1116             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1117                                               &jx0,&jy0,&jz0);
1118
1119             /* Calculate displacement vector */
1120             dx00             = _mm_sub_pd(ix0,jx0);
1121             dy00             = _mm_sub_pd(iy0,jy0);
1122             dz00             = _mm_sub_pd(iz0,jz0);
1123             dx10             = _mm_sub_pd(ix1,jx0);
1124             dy10             = _mm_sub_pd(iy1,jy0);
1125             dz10             = _mm_sub_pd(iz1,jz0);
1126             dx20             = _mm_sub_pd(ix2,jx0);
1127             dy20             = _mm_sub_pd(iy2,jy0);
1128             dz20             = _mm_sub_pd(iz2,jz0);
1129             dx30             = _mm_sub_pd(ix3,jx0);
1130             dy30             = _mm_sub_pd(iy3,jy0);
1131             dz30             = _mm_sub_pd(iz3,jz0);
1132
1133             /* Calculate squared distance and things based on it */
1134             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1135             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1136             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1137             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1138
1139             rinv10           = avx128fma_invsqrt_d(rsq10);
1140             rinv20           = avx128fma_invsqrt_d(rsq20);
1141             rinv30           = avx128fma_invsqrt_d(rsq30);
1142
1143             rinvsq00         = avx128fma_inv_d(rsq00);
1144             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1145             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1146             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1147
1148             /* Load parameters for j particles */
1149             jq0              = _mm_load_sd(charge+jnrA+0);
1150             vdwjidx0A        = 2*vdwtype[jnrA+0];
1151
1152             fjx0             = _mm_setzero_pd();
1153             fjy0             = _mm_setzero_pd();
1154             fjz0             = _mm_setzero_pd();
1155
1156             /**************************
1157              * CALCULATE INTERACTIONS *
1158              **************************/
1159
1160             if (gmx_mm_any_lt(rsq00,rcutoff2))
1161             {
1162
1163             /* Compute parameters for interactions between i and j atoms */
1164             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1165
1166             /* LENNARD-JONES DISPERSION/REPULSION */
1167
1168             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1169             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1170
1171             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1172
1173             fscal            = fvdw;
1174
1175             fscal            = _mm_and_pd(fscal,cutoff_mask);
1176
1177             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1178
1179             /* Update vectorial force */
1180             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1181             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1182             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1183             
1184             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1185             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1186             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1187
1188             }
1189
1190             /**************************
1191              * CALCULATE INTERACTIONS *
1192              **************************/
1193
1194             if (gmx_mm_any_lt(rsq10,rcutoff2))
1195             {
1196
1197             r10              = _mm_mul_pd(rsq10,rinv10);
1198
1199             /* Compute parameters for interactions between i and j atoms */
1200             qq10             = _mm_mul_pd(iq1,jq0);
1201
1202             /* EWALD ELECTROSTATICS */
1203
1204             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1205             ewrt             = _mm_mul_pd(r10,ewtabscale);
1206             ewitab           = _mm_cvttpd_epi32(ewrt);
1207 #ifdef __XOP__
1208             eweps            = _mm_frcz_pd(ewrt);
1209 #else
1210             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1211 #endif
1212             twoeweps         = _mm_add_pd(eweps,eweps);
1213             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1214             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1215             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1216
1217             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1218
1219             fscal            = felec;
1220
1221             fscal            = _mm_and_pd(fscal,cutoff_mask);
1222
1223             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1224
1225             /* Update vectorial force */
1226             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1227             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1228             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1229             
1230             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1231             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1232             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1233
1234             }
1235
1236             /**************************
1237              * CALCULATE INTERACTIONS *
1238              **************************/
1239
1240             if (gmx_mm_any_lt(rsq20,rcutoff2))
1241             {
1242
1243             r20              = _mm_mul_pd(rsq20,rinv20);
1244
1245             /* Compute parameters for interactions between i and j atoms */
1246             qq20             = _mm_mul_pd(iq2,jq0);
1247
1248             /* EWALD ELECTROSTATICS */
1249
1250             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1251             ewrt             = _mm_mul_pd(r20,ewtabscale);
1252             ewitab           = _mm_cvttpd_epi32(ewrt);
1253 #ifdef __XOP__
1254             eweps            = _mm_frcz_pd(ewrt);
1255 #else
1256             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1257 #endif
1258             twoeweps         = _mm_add_pd(eweps,eweps);
1259             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1260             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1261             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1262
1263             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1264
1265             fscal            = felec;
1266
1267             fscal            = _mm_and_pd(fscal,cutoff_mask);
1268
1269             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1270
1271             /* Update vectorial force */
1272             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1273             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1274             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1275             
1276             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1277             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1278             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1279
1280             }
1281
1282             /**************************
1283              * CALCULATE INTERACTIONS *
1284              **************************/
1285
1286             if (gmx_mm_any_lt(rsq30,rcutoff2))
1287             {
1288
1289             r30              = _mm_mul_pd(rsq30,rinv30);
1290
1291             /* Compute parameters for interactions between i and j atoms */
1292             qq30             = _mm_mul_pd(iq3,jq0);
1293
1294             /* EWALD ELECTROSTATICS */
1295
1296             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1297             ewrt             = _mm_mul_pd(r30,ewtabscale);
1298             ewitab           = _mm_cvttpd_epi32(ewrt);
1299 #ifdef __XOP__
1300             eweps            = _mm_frcz_pd(ewrt);
1301 #else
1302             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1303 #endif
1304             twoeweps         = _mm_add_pd(eweps,eweps);
1305             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1306             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1307             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1308
1309             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1310
1311             fscal            = felec;
1312
1313             fscal            = _mm_and_pd(fscal,cutoff_mask);
1314
1315             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1316
1317             /* Update vectorial force */
1318             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1319             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1320             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1321             
1322             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1323             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1324             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1325
1326             }
1327
1328             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1329
1330             /* Inner loop uses 162 flops */
1331         }
1332
1333         /* End of innermost loop */
1334
1335         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1336                                               f+i_coord_offset,fshift+i_shift_offset);
1337
1338         /* Increment number of inner iterations */
1339         inneriter                  += j_index_end - j_index_start;
1340
1341         /* Outer loop uses 24 flops */
1342     }
1343
1344     /* Increment number of outer iterations */
1345     outeriter        += nri;
1346
1347     /* Update outer/inner flops */
1348
1349     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*162);
1350 }