d191d3ca4cc9b755ed4549f795cce29c4be5540d
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          ewitab;
103     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
134     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
135     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff_scalar   = fr->rcoulomb;
140     rcutoff          = _mm_set1_pd(rcutoff_scalar);
141     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
142
143     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
144     rvdw             = _mm_set1_pd(fr->rvdw);
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
171
172         fix0             = _mm_setzero_pd();
173         fiy0             = _mm_setzero_pd();
174         fiz0             = _mm_setzero_pd();
175         fix1             = _mm_setzero_pd();
176         fiy1             = _mm_setzero_pd();
177         fiz1             = _mm_setzero_pd();
178         fix2             = _mm_setzero_pd();
179         fiy2             = _mm_setzero_pd();
180         fiz2             = _mm_setzero_pd();
181         fix3             = _mm_setzero_pd();
182         fiy3             = _mm_setzero_pd();
183         fiz3             = _mm_setzero_pd();
184
185         /* Reset potential sums */
186         velecsum         = _mm_setzero_pd();
187         vvdwsum          = _mm_setzero_pd();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198
199             /* load j atom coordinates */
200             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_pd(ix0,jx0);
205             dy00             = _mm_sub_pd(iy0,jy0);
206             dz00             = _mm_sub_pd(iz0,jz0);
207             dx10             = _mm_sub_pd(ix1,jx0);
208             dy10             = _mm_sub_pd(iy1,jy0);
209             dz10             = _mm_sub_pd(iz1,jz0);
210             dx20             = _mm_sub_pd(ix2,jx0);
211             dy20             = _mm_sub_pd(iy2,jy0);
212             dz20             = _mm_sub_pd(iz2,jz0);
213             dx30             = _mm_sub_pd(ix3,jx0);
214             dy30             = _mm_sub_pd(iy3,jy0);
215             dz30             = _mm_sub_pd(iz3,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
219             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
220             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
221             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
222
223             rinv10           = gmx_mm_invsqrt_pd(rsq10);
224             rinv20           = gmx_mm_invsqrt_pd(rsq20);
225             rinv30           = gmx_mm_invsqrt_pd(rsq30);
226
227             rinvsq00         = gmx_mm_inv_pd(rsq00);
228             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
229             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
230             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236
237             fjx0             = _mm_setzero_pd();
238             fjy0             = _mm_setzero_pd();
239             fjz0             = _mm_setzero_pd();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_mm_any_lt(rsq00,rcutoff2))
246             {
247
248             /* Compute parameters for interactions between i and j atoms */
249             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
250                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
251
252             /* LENNARD-JONES DISPERSION/REPULSION */
253
254             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
255             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
256             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
257             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
258                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
259             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
260
261             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
265             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
266
267             fscal            = fvdw;
268
269             fscal            = _mm_and_pd(fscal,cutoff_mask);
270
271             /* Update vectorial force */
272             fix0             = _mm_macc_pd(dx00,fscal,fix0);
273             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
274             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
275             
276             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
277             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
278             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
279
280             }
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             if (gmx_mm_any_lt(rsq10,rcutoff2))
287             {
288
289             r10              = _mm_mul_pd(rsq10,rinv10);
290
291             /* Compute parameters for interactions between i and j atoms */
292             qq10             = _mm_mul_pd(iq1,jq0);
293
294             /* EWALD ELECTROSTATICS */
295
296             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
297             ewrt             = _mm_mul_pd(r10,ewtabscale);
298             ewitab           = _mm_cvttpd_epi32(ewrt);
299 #ifdef __XOP__
300             eweps            = _mm_frcz_pd(ewrt);
301 #else
302             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
303 #endif
304             twoeweps         = _mm_add_pd(eweps,eweps);
305             ewitab           = _mm_slli_epi32(ewitab,2);
306             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
307             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
308             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
309             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
310             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
311             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
312             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
313             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
314             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
315             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
316
317             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velec            = _mm_and_pd(velec,cutoff_mask);
321             velecsum         = _mm_add_pd(velecsum,velec);
322
323             fscal            = felec;
324
325             fscal            = _mm_and_pd(fscal,cutoff_mask);
326
327             /* Update vectorial force */
328             fix1             = _mm_macc_pd(dx10,fscal,fix1);
329             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
330             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
331             
332             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
333             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
334             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
335
336             }
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             if (gmx_mm_any_lt(rsq20,rcutoff2))
343             {
344
345             r20              = _mm_mul_pd(rsq20,rinv20);
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq20             = _mm_mul_pd(iq2,jq0);
349
350             /* EWALD ELECTROSTATICS */
351
352             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
353             ewrt             = _mm_mul_pd(r20,ewtabscale);
354             ewitab           = _mm_cvttpd_epi32(ewrt);
355 #ifdef __XOP__
356             eweps            = _mm_frcz_pd(ewrt);
357 #else
358             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
359 #endif
360             twoeweps         = _mm_add_pd(eweps,eweps);
361             ewitab           = _mm_slli_epi32(ewitab,2);
362             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
363             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
364             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
365             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
366             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
367             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
368             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
369             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
370             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
371             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
372
373             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
374
375             /* Update potential sum for this i atom from the interaction with this j atom. */
376             velec            = _mm_and_pd(velec,cutoff_mask);
377             velecsum         = _mm_add_pd(velecsum,velec);
378
379             fscal            = felec;
380
381             fscal            = _mm_and_pd(fscal,cutoff_mask);
382
383             /* Update vectorial force */
384             fix2             = _mm_macc_pd(dx20,fscal,fix2);
385             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
386             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
387             
388             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
389             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
390             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
391
392             }
393
394             /**************************
395              * CALCULATE INTERACTIONS *
396              **************************/
397
398             if (gmx_mm_any_lt(rsq30,rcutoff2))
399             {
400
401             r30              = _mm_mul_pd(rsq30,rinv30);
402
403             /* Compute parameters for interactions between i and j atoms */
404             qq30             = _mm_mul_pd(iq3,jq0);
405
406             /* EWALD ELECTROSTATICS */
407
408             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
409             ewrt             = _mm_mul_pd(r30,ewtabscale);
410             ewitab           = _mm_cvttpd_epi32(ewrt);
411 #ifdef __XOP__
412             eweps            = _mm_frcz_pd(ewrt);
413 #else
414             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
415 #endif
416             twoeweps         = _mm_add_pd(eweps,eweps);
417             ewitab           = _mm_slli_epi32(ewitab,2);
418             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
419             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
420             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
421             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
422             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
423             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
424             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
425             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
426             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
427             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
428
429             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velec            = _mm_and_pd(velec,cutoff_mask);
433             velecsum         = _mm_add_pd(velecsum,velec);
434
435             fscal            = felec;
436
437             fscal            = _mm_and_pd(fscal,cutoff_mask);
438
439             /* Update vectorial force */
440             fix3             = _mm_macc_pd(dx30,fscal,fix3);
441             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
442             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
443             
444             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
445             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
446             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
447
448             }
449
450             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
451
452             /* Inner loop uses 194 flops */
453         }
454
455         if(jidx<j_index_end)
456         {
457
458             jnrA             = jjnr[jidx];
459             j_coord_offsetA  = DIM*jnrA;
460
461             /* load j atom coordinates */
462             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
463                                               &jx0,&jy0,&jz0);
464
465             /* Calculate displacement vector */
466             dx00             = _mm_sub_pd(ix0,jx0);
467             dy00             = _mm_sub_pd(iy0,jy0);
468             dz00             = _mm_sub_pd(iz0,jz0);
469             dx10             = _mm_sub_pd(ix1,jx0);
470             dy10             = _mm_sub_pd(iy1,jy0);
471             dz10             = _mm_sub_pd(iz1,jz0);
472             dx20             = _mm_sub_pd(ix2,jx0);
473             dy20             = _mm_sub_pd(iy2,jy0);
474             dz20             = _mm_sub_pd(iz2,jz0);
475             dx30             = _mm_sub_pd(ix3,jx0);
476             dy30             = _mm_sub_pd(iy3,jy0);
477             dz30             = _mm_sub_pd(iz3,jz0);
478
479             /* Calculate squared distance and things based on it */
480             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
481             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
482             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
483             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
484
485             rinv10           = gmx_mm_invsqrt_pd(rsq10);
486             rinv20           = gmx_mm_invsqrt_pd(rsq20);
487             rinv30           = gmx_mm_invsqrt_pd(rsq30);
488
489             rinvsq00         = gmx_mm_inv_pd(rsq00);
490             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
491             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
492             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
493
494             /* Load parameters for j particles */
495             jq0              = _mm_load_sd(charge+jnrA+0);
496             vdwjidx0A        = 2*vdwtype[jnrA+0];
497
498             fjx0             = _mm_setzero_pd();
499             fjy0             = _mm_setzero_pd();
500             fjz0             = _mm_setzero_pd();
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             if (gmx_mm_any_lt(rsq00,rcutoff2))
507             {
508
509             /* Compute parameters for interactions between i and j atoms */
510             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
511
512             /* LENNARD-JONES DISPERSION/REPULSION */
513
514             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
515             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
516             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
517             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
518                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
519             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
520
521             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
522
523             /* Update potential sum for this i atom from the interaction with this j atom. */
524             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
525             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
526             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
527
528             fscal            = fvdw;
529
530             fscal            = _mm_and_pd(fscal,cutoff_mask);
531
532             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
533
534             /* Update vectorial force */
535             fix0             = _mm_macc_pd(dx00,fscal,fix0);
536             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
537             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
538             
539             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
540             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
541             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
542
543             }
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             if (gmx_mm_any_lt(rsq10,rcutoff2))
550             {
551
552             r10              = _mm_mul_pd(rsq10,rinv10);
553
554             /* Compute parameters for interactions between i and j atoms */
555             qq10             = _mm_mul_pd(iq1,jq0);
556
557             /* EWALD ELECTROSTATICS */
558
559             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
560             ewrt             = _mm_mul_pd(r10,ewtabscale);
561             ewitab           = _mm_cvttpd_epi32(ewrt);
562 #ifdef __XOP__
563             eweps            = _mm_frcz_pd(ewrt);
564 #else
565             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
566 #endif
567             twoeweps         = _mm_add_pd(eweps,eweps);
568             ewitab           = _mm_slli_epi32(ewitab,2);
569             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
570             ewtabD           = _mm_setzero_pd();
571             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
572             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
573             ewtabFn          = _mm_setzero_pd();
574             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
575             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
576             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
577             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
578             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
579
580             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
581
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             velec            = _mm_and_pd(velec,cutoff_mask);
584             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
585             velecsum         = _mm_add_pd(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _mm_and_pd(fscal,cutoff_mask);
590
591             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
592
593             /* Update vectorial force */
594             fix1             = _mm_macc_pd(dx10,fscal,fix1);
595             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
596             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
597             
598             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
599             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
600             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
601
602             }
603
604             /**************************
605              * CALCULATE INTERACTIONS *
606              **************************/
607
608             if (gmx_mm_any_lt(rsq20,rcutoff2))
609             {
610
611             r20              = _mm_mul_pd(rsq20,rinv20);
612
613             /* Compute parameters for interactions between i and j atoms */
614             qq20             = _mm_mul_pd(iq2,jq0);
615
616             /* EWALD ELECTROSTATICS */
617
618             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
619             ewrt             = _mm_mul_pd(r20,ewtabscale);
620             ewitab           = _mm_cvttpd_epi32(ewrt);
621 #ifdef __XOP__
622             eweps            = _mm_frcz_pd(ewrt);
623 #else
624             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
625 #endif
626             twoeweps         = _mm_add_pd(eweps,eweps);
627             ewitab           = _mm_slli_epi32(ewitab,2);
628             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
629             ewtabD           = _mm_setzero_pd();
630             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
631             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
632             ewtabFn          = _mm_setzero_pd();
633             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
634             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
635             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
636             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
637             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
638
639             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
640
641             /* Update potential sum for this i atom from the interaction with this j atom. */
642             velec            = _mm_and_pd(velec,cutoff_mask);
643             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
644             velecsum         = _mm_add_pd(velecsum,velec);
645
646             fscal            = felec;
647
648             fscal            = _mm_and_pd(fscal,cutoff_mask);
649
650             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
651
652             /* Update vectorial force */
653             fix2             = _mm_macc_pd(dx20,fscal,fix2);
654             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
655             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
656             
657             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
658             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
659             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
660
661             }
662
663             /**************************
664              * CALCULATE INTERACTIONS *
665              **************************/
666
667             if (gmx_mm_any_lt(rsq30,rcutoff2))
668             {
669
670             r30              = _mm_mul_pd(rsq30,rinv30);
671
672             /* Compute parameters for interactions between i and j atoms */
673             qq30             = _mm_mul_pd(iq3,jq0);
674
675             /* EWALD ELECTROSTATICS */
676
677             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
678             ewrt             = _mm_mul_pd(r30,ewtabscale);
679             ewitab           = _mm_cvttpd_epi32(ewrt);
680 #ifdef __XOP__
681             eweps            = _mm_frcz_pd(ewrt);
682 #else
683             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
684 #endif
685             twoeweps         = _mm_add_pd(eweps,eweps);
686             ewitab           = _mm_slli_epi32(ewitab,2);
687             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
688             ewtabD           = _mm_setzero_pd();
689             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
690             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
691             ewtabFn          = _mm_setzero_pd();
692             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
693             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
694             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
695             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
696             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
697
698             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
699
700             /* Update potential sum for this i atom from the interaction with this j atom. */
701             velec            = _mm_and_pd(velec,cutoff_mask);
702             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
703             velecsum         = _mm_add_pd(velecsum,velec);
704
705             fscal            = felec;
706
707             fscal            = _mm_and_pd(fscal,cutoff_mask);
708
709             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
710
711             /* Update vectorial force */
712             fix3             = _mm_macc_pd(dx30,fscal,fix3);
713             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
714             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
715             
716             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
717             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
718             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
719
720             }
721
722             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
723
724             /* Inner loop uses 194 flops */
725         }
726
727         /* End of innermost loop */
728
729         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
730                                               f+i_coord_offset,fshift+i_shift_offset);
731
732         ggid                        = gid[iidx];
733         /* Update potential energies */
734         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
735         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
736
737         /* Increment number of inner iterations */
738         inneriter                  += j_index_end - j_index_start;
739
740         /* Outer loop uses 26 flops */
741     }
742
743     /* Increment number of outer iterations */
744     outeriter        += nri;
745
746     /* Update outer/inner flops */
747
748     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*194);
749 }
750 /*
751  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_128_fma_double
752  * Electrostatics interaction: Ewald
753  * VdW interaction:            LennardJones
754  * Geometry:                   Water4-Particle
755  * Calculate force/pot:        Force
756  */
757 void
758 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_128_fma_double
759                     (t_nblist                    * gmx_restrict       nlist,
760                      rvec                        * gmx_restrict          xx,
761                      rvec                        * gmx_restrict          ff,
762                      t_forcerec                  * gmx_restrict          fr,
763                      t_mdatoms                   * gmx_restrict     mdatoms,
764                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
765                      t_nrnb                      * gmx_restrict        nrnb)
766 {
767     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
768      * just 0 for non-waters.
769      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
770      * jnr indices corresponding to data put in the four positions in the SIMD register.
771      */
772     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
773     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
774     int              jnrA,jnrB;
775     int              j_coord_offsetA,j_coord_offsetB;
776     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
777     real             rcutoff_scalar;
778     real             *shiftvec,*fshift,*x,*f;
779     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
780     int              vdwioffset0;
781     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
782     int              vdwioffset1;
783     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
784     int              vdwioffset2;
785     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
786     int              vdwioffset3;
787     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
788     int              vdwjidx0A,vdwjidx0B;
789     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
790     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
791     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
792     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
793     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
794     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
795     real             *charge;
796     int              nvdwtype;
797     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
798     int              *vdwtype;
799     real             *vdwparam;
800     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
801     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
802     __m128i          ewitab;
803     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
804     real             *ewtab;
805     __m128d          dummy_mask,cutoff_mask;
806     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
807     __m128d          one     = _mm_set1_pd(1.0);
808     __m128d          two     = _mm_set1_pd(2.0);
809     x                = xx[0];
810     f                = ff[0];
811
812     nri              = nlist->nri;
813     iinr             = nlist->iinr;
814     jindex           = nlist->jindex;
815     jjnr             = nlist->jjnr;
816     shiftidx         = nlist->shift;
817     gid              = nlist->gid;
818     shiftvec         = fr->shift_vec[0];
819     fshift           = fr->fshift[0];
820     facel            = _mm_set1_pd(fr->epsfac);
821     charge           = mdatoms->chargeA;
822     nvdwtype         = fr->ntype;
823     vdwparam         = fr->nbfp;
824     vdwtype          = mdatoms->typeA;
825
826     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
827     ewtab            = fr->ic->tabq_coul_F;
828     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
829     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
830
831     /* Setup water-specific parameters */
832     inr              = nlist->iinr[0];
833     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
834     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
835     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
836     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
837
838     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
839     rcutoff_scalar   = fr->rcoulomb;
840     rcutoff          = _mm_set1_pd(rcutoff_scalar);
841     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
842
843     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
844     rvdw             = _mm_set1_pd(fr->rvdw);
845
846     /* Avoid stupid compiler warnings */
847     jnrA = jnrB = 0;
848     j_coord_offsetA = 0;
849     j_coord_offsetB = 0;
850
851     outeriter        = 0;
852     inneriter        = 0;
853
854     /* Start outer loop over neighborlists */
855     for(iidx=0; iidx<nri; iidx++)
856     {
857         /* Load shift vector for this list */
858         i_shift_offset   = DIM*shiftidx[iidx];
859
860         /* Load limits for loop over neighbors */
861         j_index_start    = jindex[iidx];
862         j_index_end      = jindex[iidx+1];
863
864         /* Get outer coordinate index */
865         inr              = iinr[iidx];
866         i_coord_offset   = DIM*inr;
867
868         /* Load i particle coords and add shift vector */
869         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
870                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
871
872         fix0             = _mm_setzero_pd();
873         fiy0             = _mm_setzero_pd();
874         fiz0             = _mm_setzero_pd();
875         fix1             = _mm_setzero_pd();
876         fiy1             = _mm_setzero_pd();
877         fiz1             = _mm_setzero_pd();
878         fix2             = _mm_setzero_pd();
879         fiy2             = _mm_setzero_pd();
880         fiz2             = _mm_setzero_pd();
881         fix3             = _mm_setzero_pd();
882         fiy3             = _mm_setzero_pd();
883         fiz3             = _mm_setzero_pd();
884
885         /* Start inner kernel loop */
886         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
887         {
888
889             /* Get j neighbor index, and coordinate index */
890             jnrA             = jjnr[jidx];
891             jnrB             = jjnr[jidx+1];
892             j_coord_offsetA  = DIM*jnrA;
893             j_coord_offsetB  = DIM*jnrB;
894
895             /* load j atom coordinates */
896             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
897                                               &jx0,&jy0,&jz0);
898
899             /* Calculate displacement vector */
900             dx00             = _mm_sub_pd(ix0,jx0);
901             dy00             = _mm_sub_pd(iy0,jy0);
902             dz00             = _mm_sub_pd(iz0,jz0);
903             dx10             = _mm_sub_pd(ix1,jx0);
904             dy10             = _mm_sub_pd(iy1,jy0);
905             dz10             = _mm_sub_pd(iz1,jz0);
906             dx20             = _mm_sub_pd(ix2,jx0);
907             dy20             = _mm_sub_pd(iy2,jy0);
908             dz20             = _mm_sub_pd(iz2,jz0);
909             dx30             = _mm_sub_pd(ix3,jx0);
910             dy30             = _mm_sub_pd(iy3,jy0);
911             dz30             = _mm_sub_pd(iz3,jz0);
912
913             /* Calculate squared distance and things based on it */
914             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
915             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
916             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
917             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
918
919             rinv10           = gmx_mm_invsqrt_pd(rsq10);
920             rinv20           = gmx_mm_invsqrt_pd(rsq20);
921             rinv30           = gmx_mm_invsqrt_pd(rsq30);
922
923             rinvsq00         = gmx_mm_inv_pd(rsq00);
924             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
925             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
926             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
927
928             /* Load parameters for j particles */
929             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
930             vdwjidx0A        = 2*vdwtype[jnrA+0];
931             vdwjidx0B        = 2*vdwtype[jnrB+0];
932
933             fjx0             = _mm_setzero_pd();
934             fjy0             = _mm_setzero_pd();
935             fjz0             = _mm_setzero_pd();
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             if (gmx_mm_any_lt(rsq00,rcutoff2))
942             {
943
944             /* Compute parameters for interactions between i and j atoms */
945             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
946                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
947
948             /* LENNARD-JONES DISPERSION/REPULSION */
949
950             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
951             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
952
953             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
954
955             fscal            = fvdw;
956
957             fscal            = _mm_and_pd(fscal,cutoff_mask);
958
959             /* Update vectorial force */
960             fix0             = _mm_macc_pd(dx00,fscal,fix0);
961             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
962             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
963             
964             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
965             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
966             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
967
968             }
969
970             /**************************
971              * CALCULATE INTERACTIONS *
972              **************************/
973
974             if (gmx_mm_any_lt(rsq10,rcutoff2))
975             {
976
977             r10              = _mm_mul_pd(rsq10,rinv10);
978
979             /* Compute parameters for interactions between i and j atoms */
980             qq10             = _mm_mul_pd(iq1,jq0);
981
982             /* EWALD ELECTROSTATICS */
983
984             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
985             ewrt             = _mm_mul_pd(r10,ewtabscale);
986             ewitab           = _mm_cvttpd_epi32(ewrt);
987 #ifdef __XOP__
988             eweps            = _mm_frcz_pd(ewrt);
989 #else
990             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
991 #endif
992             twoeweps         = _mm_add_pd(eweps,eweps);
993             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
994                                          &ewtabF,&ewtabFn);
995             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
996             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
997
998             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
999
1000             fscal            = felec;
1001
1002             fscal            = _mm_and_pd(fscal,cutoff_mask);
1003
1004             /* Update vectorial force */
1005             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1006             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1007             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1008             
1009             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1010             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1011             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1012
1013             }
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             if (gmx_mm_any_lt(rsq20,rcutoff2))
1020             {
1021
1022             r20              = _mm_mul_pd(rsq20,rinv20);
1023
1024             /* Compute parameters for interactions between i and j atoms */
1025             qq20             = _mm_mul_pd(iq2,jq0);
1026
1027             /* EWALD ELECTROSTATICS */
1028
1029             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1030             ewrt             = _mm_mul_pd(r20,ewtabscale);
1031             ewitab           = _mm_cvttpd_epi32(ewrt);
1032 #ifdef __XOP__
1033             eweps            = _mm_frcz_pd(ewrt);
1034 #else
1035             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1036 #endif
1037             twoeweps         = _mm_add_pd(eweps,eweps);
1038             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1039                                          &ewtabF,&ewtabFn);
1040             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1041             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1042
1043             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1044
1045             fscal            = felec;
1046
1047             fscal            = _mm_and_pd(fscal,cutoff_mask);
1048
1049             /* Update vectorial force */
1050             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1051             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1052             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1053             
1054             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1055             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1056             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1057
1058             }
1059
1060             /**************************
1061              * CALCULATE INTERACTIONS *
1062              **************************/
1063
1064             if (gmx_mm_any_lt(rsq30,rcutoff2))
1065             {
1066
1067             r30              = _mm_mul_pd(rsq30,rinv30);
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq30             = _mm_mul_pd(iq3,jq0);
1071
1072             /* EWALD ELECTROSTATICS */
1073
1074             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1075             ewrt             = _mm_mul_pd(r30,ewtabscale);
1076             ewitab           = _mm_cvttpd_epi32(ewrt);
1077 #ifdef __XOP__
1078             eweps            = _mm_frcz_pd(ewrt);
1079 #else
1080             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1081 #endif
1082             twoeweps         = _mm_add_pd(eweps,eweps);
1083             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1084                                          &ewtabF,&ewtabFn);
1085             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1086             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1087
1088             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1089
1090             fscal            = felec;
1091
1092             fscal            = _mm_and_pd(fscal,cutoff_mask);
1093
1094             /* Update vectorial force */
1095             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1096             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1097             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1098             
1099             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1100             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1101             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1102
1103             }
1104
1105             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1106
1107             /* Inner loop uses 162 flops */
1108         }
1109
1110         if(jidx<j_index_end)
1111         {
1112
1113             jnrA             = jjnr[jidx];
1114             j_coord_offsetA  = DIM*jnrA;
1115
1116             /* load j atom coordinates */
1117             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1118                                               &jx0,&jy0,&jz0);
1119
1120             /* Calculate displacement vector */
1121             dx00             = _mm_sub_pd(ix0,jx0);
1122             dy00             = _mm_sub_pd(iy0,jy0);
1123             dz00             = _mm_sub_pd(iz0,jz0);
1124             dx10             = _mm_sub_pd(ix1,jx0);
1125             dy10             = _mm_sub_pd(iy1,jy0);
1126             dz10             = _mm_sub_pd(iz1,jz0);
1127             dx20             = _mm_sub_pd(ix2,jx0);
1128             dy20             = _mm_sub_pd(iy2,jy0);
1129             dz20             = _mm_sub_pd(iz2,jz0);
1130             dx30             = _mm_sub_pd(ix3,jx0);
1131             dy30             = _mm_sub_pd(iy3,jy0);
1132             dz30             = _mm_sub_pd(iz3,jz0);
1133
1134             /* Calculate squared distance and things based on it */
1135             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1136             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1137             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1138             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1139
1140             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1141             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1142             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1143
1144             rinvsq00         = gmx_mm_inv_pd(rsq00);
1145             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1146             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1147             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1148
1149             /* Load parameters for j particles */
1150             jq0              = _mm_load_sd(charge+jnrA+0);
1151             vdwjidx0A        = 2*vdwtype[jnrA+0];
1152
1153             fjx0             = _mm_setzero_pd();
1154             fjy0             = _mm_setzero_pd();
1155             fjz0             = _mm_setzero_pd();
1156
1157             /**************************
1158              * CALCULATE INTERACTIONS *
1159              **************************/
1160
1161             if (gmx_mm_any_lt(rsq00,rcutoff2))
1162             {
1163
1164             /* Compute parameters for interactions between i and j atoms */
1165             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1166
1167             /* LENNARD-JONES DISPERSION/REPULSION */
1168
1169             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1170             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1171
1172             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1173
1174             fscal            = fvdw;
1175
1176             fscal            = _mm_and_pd(fscal,cutoff_mask);
1177
1178             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1179
1180             /* Update vectorial force */
1181             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1182             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1183             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1184             
1185             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1186             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1187             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1188
1189             }
1190
1191             /**************************
1192              * CALCULATE INTERACTIONS *
1193              **************************/
1194
1195             if (gmx_mm_any_lt(rsq10,rcutoff2))
1196             {
1197
1198             r10              = _mm_mul_pd(rsq10,rinv10);
1199
1200             /* Compute parameters for interactions between i and j atoms */
1201             qq10             = _mm_mul_pd(iq1,jq0);
1202
1203             /* EWALD ELECTROSTATICS */
1204
1205             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1206             ewrt             = _mm_mul_pd(r10,ewtabscale);
1207             ewitab           = _mm_cvttpd_epi32(ewrt);
1208 #ifdef __XOP__
1209             eweps            = _mm_frcz_pd(ewrt);
1210 #else
1211             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1212 #endif
1213             twoeweps         = _mm_add_pd(eweps,eweps);
1214             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1215             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1216             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1217
1218             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1219
1220             fscal            = felec;
1221
1222             fscal            = _mm_and_pd(fscal,cutoff_mask);
1223
1224             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1225
1226             /* Update vectorial force */
1227             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1228             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1229             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1230             
1231             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1232             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1233             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1234
1235             }
1236
1237             /**************************
1238              * CALCULATE INTERACTIONS *
1239              **************************/
1240
1241             if (gmx_mm_any_lt(rsq20,rcutoff2))
1242             {
1243
1244             r20              = _mm_mul_pd(rsq20,rinv20);
1245
1246             /* Compute parameters for interactions between i and j atoms */
1247             qq20             = _mm_mul_pd(iq2,jq0);
1248
1249             /* EWALD ELECTROSTATICS */
1250
1251             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1252             ewrt             = _mm_mul_pd(r20,ewtabscale);
1253             ewitab           = _mm_cvttpd_epi32(ewrt);
1254 #ifdef __XOP__
1255             eweps            = _mm_frcz_pd(ewrt);
1256 #else
1257             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1258 #endif
1259             twoeweps         = _mm_add_pd(eweps,eweps);
1260             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1261             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1262             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1263
1264             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1265
1266             fscal            = felec;
1267
1268             fscal            = _mm_and_pd(fscal,cutoff_mask);
1269
1270             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1271
1272             /* Update vectorial force */
1273             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1274             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1275             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1276             
1277             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1278             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1279             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1280
1281             }
1282
1283             /**************************
1284              * CALCULATE INTERACTIONS *
1285              **************************/
1286
1287             if (gmx_mm_any_lt(rsq30,rcutoff2))
1288             {
1289
1290             r30              = _mm_mul_pd(rsq30,rinv30);
1291
1292             /* Compute parameters for interactions between i and j atoms */
1293             qq30             = _mm_mul_pd(iq3,jq0);
1294
1295             /* EWALD ELECTROSTATICS */
1296
1297             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1298             ewrt             = _mm_mul_pd(r30,ewtabscale);
1299             ewitab           = _mm_cvttpd_epi32(ewrt);
1300 #ifdef __XOP__
1301             eweps            = _mm_frcz_pd(ewrt);
1302 #else
1303             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1304 #endif
1305             twoeweps         = _mm_add_pd(eweps,eweps);
1306             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1307             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1308             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1309
1310             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1311
1312             fscal            = felec;
1313
1314             fscal            = _mm_and_pd(fscal,cutoff_mask);
1315
1316             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1317
1318             /* Update vectorial force */
1319             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1320             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1321             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1322             
1323             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1324             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1325             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1326
1327             }
1328
1329             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1330
1331             /* Inner loop uses 162 flops */
1332         }
1333
1334         /* End of innermost loop */
1335
1336         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1337                                               f+i_coord_offset,fshift+i_shift_offset);
1338
1339         /* Increment number of inner iterations */
1340         inneriter                  += j_index_end - j_index_start;
1341
1342         /* Outer loop uses 24 flops */
1343     }
1344
1345     /* Increment number of outer iterations */
1346     outeriter        += nri;
1347
1348     /* Update outer/inner flops */
1349
1350     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*162);
1351 }