Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          ewitab;
105     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     __m128d          dummy_mask,cutoff_mask;
108     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
109     __m128d          one     = _mm_set1_pd(1.0);
110     __m128d          two     = _mm_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_pd(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm_set1_pd(rcutoff_scalar);
143     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
144
145     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
146     rvdw             = _mm_set1_pd(fr->rvdw);
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
173
174         fix0             = _mm_setzero_pd();
175         fiy0             = _mm_setzero_pd();
176         fiz0             = _mm_setzero_pd();
177         fix1             = _mm_setzero_pd();
178         fiy1             = _mm_setzero_pd();
179         fiz1             = _mm_setzero_pd();
180         fix2             = _mm_setzero_pd();
181         fiy2             = _mm_setzero_pd();
182         fiz2             = _mm_setzero_pd();
183         fix3             = _mm_setzero_pd();
184         fiy3             = _mm_setzero_pd();
185         fiz3             = _mm_setzero_pd();
186
187         /* Reset potential sums */
188         velecsum         = _mm_setzero_pd();
189         vvdwsum          = _mm_setzero_pd();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200
201             /* load j atom coordinates */
202             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
203                                               &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm_sub_pd(ix0,jx0);
207             dy00             = _mm_sub_pd(iy0,jy0);
208             dz00             = _mm_sub_pd(iz0,jz0);
209             dx10             = _mm_sub_pd(ix1,jx0);
210             dy10             = _mm_sub_pd(iy1,jy0);
211             dz10             = _mm_sub_pd(iz1,jz0);
212             dx20             = _mm_sub_pd(ix2,jx0);
213             dy20             = _mm_sub_pd(iy2,jy0);
214             dz20             = _mm_sub_pd(iz2,jz0);
215             dx30             = _mm_sub_pd(ix3,jx0);
216             dy30             = _mm_sub_pd(iy3,jy0);
217             dz30             = _mm_sub_pd(iz3,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
221             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
222             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
223             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
224
225             rinv10           = gmx_mm_invsqrt_pd(rsq10);
226             rinv20           = gmx_mm_invsqrt_pd(rsq20);
227             rinv30           = gmx_mm_invsqrt_pd(rsq30);
228
229             rinvsq00         = gmx_mm_inv_pd(rsq00);
230             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
231             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
232             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238
239             fjx0             = _mm_setzero_pd();
240             fjy0             = _mm_setzero_pd();
241             fjz0             = _mm_setzero_pd();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_mm_any_lt(rsq00,rcutoff2))
248             {
249
250             /* Compute parameters for interactions between i and j atoms */
251             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
253
254             /* LENNARD-JONES DISPERSION/REPULSION */
255
256             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
257             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
258             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
259             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
260                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
261             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
262
263             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
267             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
268
269             fscal            = fvdw;
270
271             fscal            = _mm_and_pd(fscal,cutoff_mask);
272
273             /* Update vectorial force */
274             fix0             = _mm_macc_pd(dx00,fscal,fix0);
275             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
276             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
277             
278             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
279             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
280             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
281
282             }
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             if (gmx_mm_any_lt(rsq10,rcutoff2))
289             {
290
291             r10              = _mm_mul_pd(rsq10,rinv10);
292
293             /* Compute parameters for interactions between i and j atoms */
294             qq10             = _mm_mul_pd(iq1,jq0);
295
296             /* EWALD ELECTROSTATICS */
297
298             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
299             ewrt             = _mm_mul_pd(r10,ewtabscale);
300             ewitab           = _mm_cvttpd_epi32(ewrt);
301 #ifdef __XOP__
302             eweps            = _mm_frcz_pd(ewrt);
303 #else
304             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
305 #endif
306             twoeweps         = _mm_add_pd(eweps,eweps);
307             ewitab           = _mm_slli_epi32(ewitab,2);
308             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
309             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
310             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
311             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
312             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
313             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
314             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
315             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
316             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
317             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
318
319             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velec            = _mm_and_pd(velec,cutoff_mask);
323             velecsum         = _mm_add_pd(velecsum,velec);
324
325             fscal            = felec;
326
327             fscal            = _mm_and_pd(fscal,cutoff_mask);
328
329             /* Update vectorial force */
330             fix1             = _mm_macc_pd(dx10,fscal,fix1);
331             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
332             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
333             
334             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
335             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
336             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
337
338             }
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             if (gmx_mm_any_lt(rsq20,rcutoff2))
345             {
346
347             r20              = _mm_mul_pd(rsq20,rinv20);
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq20             = _mm_mul_pd(iq2,jq0);
351
352             /* EWALD ELECTROSTATICS */
353
354             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
355             ewrt             = _mm_mul_pd(r20,ewtabscale);
356             ewitab           = _mm_cvttpd_epi32(ewrt);
357 #ifdef __XOP__
358             eweps            = _mm_frcz_pd(ewrt);
359 #else
360             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
361 #endif
362             twoeweps         = _mm_add_pd(eweps,eweps);
363             ewitab           = _mm_slli_epi32(ewitab,2);
364             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
365             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
366             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
367             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
368             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
369             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
370             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
371             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
372             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
373             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
374
375             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velec            = _mm_and_pd(velec,cutoff_mask);
379             velecsum         = _mm_add_pd(velecsum,velec);
380
381             fscal            = felec;
382
383             fscal            = _mm_and_pd(fscal,cutoff_mask);
384
385             /* Update vectorial force */
386             fix2             = _mm_macc_pd(dx20,fscal,fix2);
387             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
388             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
389             
390             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
391             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
392             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
393
394             }
395
396             /**************************
397              * CALCULATE INTERACTIONS *
398              **************************/
399
400             if (gmx_mm_any_lt(rsq30,rcutoff2))
401             {
402
403             r30              = _mm_mul_pd(rsq30,rinv30);
404
405             /* Compute parameters for interactions between i and j atoms */
406             qq30             = _mm_mul_pd(iq3,jq0);
407
408             /* EWALD ELECTROSTATICS */
409
410             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
411             ewrt             = _mm_mul_pd(r30,ewtabscale);
412             ewitab           = _mm_cvttpd_epi32(ewrt);
413 #ifdef __XOP__
414             eweps            = _mm_frcz_pd(ewrt);
415 #else
416             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
417 #endif
418             twoeweps         = _mm_add_pd(eweps,eweps);
419             ewitab           = _mm_slli_epi32(ewitab,2);
420             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
421             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
422             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
423             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
424             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
425             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
426             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
427             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
428             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
429             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
430
431             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
432
433             /* Update potential sum for this i atom from the interaction with this j atom. */
434             velec            = _mm_and_pd(velec,cutoff_mask);
435             velecsum         = _mm_add_pd(velecsum,velec);
436
437             fscal            = felec;
438
439             fscal            = _mm_and_pd(fscal,cutoff_mask);
440
441             /* Update vectorial force */
442             fix3             = _mm_macc_pd(dx30,fscal,fix3);
443             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
444             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
445             
446             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
447             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
448             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
449
450             }
451
452             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
453
454             /* Inner loop uses 194 flops */
455         }
456
457         if(jidx<j_index_end)
458         {
459
460             jnrA             = jjnr[jidx];
461             j_coord_offsetA  = DIM*jnrA;
462
463             /* load j atom coordinates */
464             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
465                                               &jx0,&jy0,&jz0);
466
467             /* Calculate displacement vector */
468             dx00             = _mm_sub_pd(ix0,jx0);
469             dy00             = _mm_sub_pd(iy0,jy0);
470             dz00             = _mm_sub_pd(iz0,jz0);
471             dx10             = _mm_sub_pd(ix1,jx0);
472             dy10             = _mm_sub_pd(iy1,jy0);
473             dz10             = _mm_sub_pd(iz1,jz0);
474             dx20             = _mm_sub_pd(ix2,jx0);
475             dy20             = _mm_sub_pd(iy2,jy0);
476             dz20             = _mm_sub_pd(iz2,jz0);
477             dx30             = _mm_sub_pd(ix3,jx0);
478             dy30             = _mm_sub_pd(iy3,jy0);
479             dz30             = _mm_sub_pd(iz3,jz0);
480
481             /* Calculate squared distance and things based on it */
482             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
483             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
484             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
485             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
486
487             rinv10           = gmx_mm_invsqrt_pd(rsq10);
488             rinv20           = gmx_mm_invsqrt_pd(rsq20);
489             rinv30           = gmx_mm_invsqrt_pd(rsq30);
490
491             rinvsq00         = gmx_mm_inv_pd(rsq00);
492             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
493             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
494             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
495
496             /* Load parameters for j particles */
497             jq0              = _mm_load_sd(charge+jnrA+0);
498             vdwjidx0A        = 2*vdwtype[jnrA+0];
499
500             fjx0             = _mm_setzero_pd();
501             fjy0             = _mm_setzero_pd();
502             fjz0             = _mm_setzero_pd();
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             if (gmx_mm_any_lt(rsq00,rcutoff2))
509             {
510
511             /* Compute parameters for interactions between i and j atoms */
512             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
513
514             /* LENNARD-JONES DISPERSION/REPULSION */
515
516             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
517             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
518             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
519             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
520                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
521             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
522
523             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
527             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
528             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
529
530             fscal            = fvdw;
531
532             fscal            = _mm_and_pd(fscal,cutoff_mask);
533
534             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
535
536             /* Update vectorial force */
537             fix0             = _mm_macc_pd(dx00,fscal,fix0);
538             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
539             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
540             
541             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
542             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
543             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
544
545             }
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             if (gmx_mm_any_lt(rsq10,rcutoff2))
552             {
553
554             r10              = _mm_mul_pd(rsq10,rinv10);
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq10             = _mm_mul_pd(iq1,jq0);
558
559             /* EWALD ELECTROSTATICS */
560
561             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
562             ewrt             = _mm_mul_pd(r10,ewtabscale);
563             ewitab           = _mm_cvttpd_epi32(ewrt);
564 #ifdef __XOP__
565             eweps            = _mm_frcz_pd(ewrt);
566 #else
567             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
568 #endif
569             twoeweps         = _mm_add_pd(eweps,eweps);
570             ewitab           = _mm_slli_epi32(ewitab,2);
571             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
572             ewtabD           = _mm_setzero_pd();
573             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
574             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
575             ewtabFn          = _mm_setzero_pd();
576             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
577             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
578             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
579             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
580             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
581
582             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm_and_pd(velec,cutoff_mask);
586             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
587             velecsum         = _mm_add_pd(velecsum,velec);
588
589             fscal            = felec;
590
591             fscal            = _mm_and_pd(fscal,cutoff_mask);
592
593             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
594
595             /* Update vectorial force */
596             fix1             = _mm_macc_pd(dx10,fscal,fix1);
597             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
598             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
599             
600             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
601             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
602             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
603
604             }
605
606             /**************************
607              * CALCULATE INTERACTIONS *
608              **************************/
609
610             if (gmx_mm_any_lt(rsq20,rcutoff2))
611             {
612
613             r20              = _mm_mul_pd(rsq20,rinv20);
614
615             /* Compute parameters for interactions between i and j atoms */
616             qq20             = _mm_mul_pd(iq2,jq0);
617
618             /* EWALD ELECTROSTATICS */
619
620             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
621             ewrt             = _mm_mul_pd(r20,ewtabscale);
622             ewitab           = _mm_cvttpd_epi32(ewrt);
623 #ifdef __XOP__
624             eweps            = _mm_frcz_pd(ewrt);
625 #else
626             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
627 #endif
628             twoeweps         = _mm_add_pd(eweps,eweps);
629             ewitab           = _mm_slli_epi32(ewitab,2);
630             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
631             ewtabD           = _mm_setzero_pd();
632             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
633             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
634             ewtabFn          = _mm_setzero_pd();
635             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
636             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
637             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
638             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
639             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
640
641             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
642
643             /* Update potential sum for this i atom from the interaction with this j atom. */
644             velec            = _mm_and_pd(velec,cutoff_mask);
645             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
646             velecsum         = _mm_add_pd(velecsum,velec);
647
648             fscal            = felec;
649
650             fscal            = _mm_and_pd(fscal,cutoff_mask);
651
652             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
653
654             /* Update vectorial force */
655             fix2             = _mm_macc_pd(dx20,fscal,fix2);
656             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
657             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
658             
659             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
660             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
661             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
662
663             }
664
665             /**************************
666              * CALCULATE INTERACTIONS *
667              **************************/
668
669             if (gmx_mm_any_lt(rsq30,rcutoff2))
670             {
671
672             r30              = _mm_mul_pd(rsq30,rinv30);
673
674             /* Compute parameters for interactions between i and j atoms */
675             qq30             = _mm_mul_pd(iq3,jq0);
676
677             /* EWALD ELECTROSTATICS */
678
679             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
680             ewrt             = _mm_mul_pd(r30,ewtabscale);
681             ewitab           = _mm_cvttpd_epi32(ewrt);
682 #ifdef __XOP__
683             eweps            = _mm_frcz_pd(ewrt);
684 #else
685             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
686 #endif
687             twoeweps         = _mm_add_pd(eweps,eweps);
688             ewitab           = _mm_slli_epi32(ewitab,2);
689             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
690             ewtabD           = _mm_setzero_pd();
691             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
692             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
693             ewtabFn          = _mm_setzero_pd();
694             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
695             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
696             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
697             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
698             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
699
700             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
701
702             /* Update potential sum for this i atom from the interaction with this j atom. */
703             velec            = _mm_and_pd(velec,cutoff_mask);
704             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
705             velecsum         = _mm_add_pd(velecsum,velec);
706
707             fscal            = felec;
708
709             fscal            = _mm_and_pd(fscal,cutoff_mask);
710
711             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
712
713             /* Update vectorial force */
714             fix3             = _mm_macc_pd(dx30,fscal,fix3);
715             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
716             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
717             
718             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
719             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
720             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
721
722             }
723
724             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
725
726             /* Inner loop uses 194 flops */
727         }
728
729         /* End of innermost loop */
730
731         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
732                                               f+i_coord_offset,fshift+i_shift_offset);
733
734         ggid                        = gid[iidx];
735         /* Update potential energies */
736         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
737         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
738
739         /* Increment number of inner iterations */
740         inneriter                  += j_index_end - j_index_start;
741
742         /* Outer loop uses 26 flops */
743     }
744
745     /* Increment number of outer iterations */
746     outeriter        += nri;
747
748     /* Update outer/inner flops */
749
750     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*194);
751 }
752 /*
753  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_128_fma_double
754  * Electrostatics interaction: Ewald
755  * VdW interaction:            LennardJones
756  * Geometry:                   Water4-Particle
757  * Calculate force/pot:        Force
758  */
759 void
760 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_128_fma_double
761                     (t_nblist                    * gmx_restrict       nlist,
762                      rvec                        * gmx_restrict          xx,
763                      rvec                        * gmx_restrict          ff,
764                      t_forcerec                  * gmx_restrict          fr,
765                      t_mdatoms                   * gmx_restrict     mdatoms,
766                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
767                      t_nrnb                      * gmx_restrict        nrnb)
768 {
769     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
770      * just 0 for non-waters.
771      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
772      * jnr indices corresponding to data put in the four positions in the SIMD register.
773      */
774     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
775     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
776     int              jnrA,jnrB;
777     int              j_coord_offsetA,j_coord_offsetB;
778     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
779     real             rcutoff_scalar;
780     real             *shiftvec,*fshift,*x,*f;
781     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
782     int              vdwioffset0;
783     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
784     int              vdwioffset1;
785     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
786     int              vdwioffset2;
787     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
788     int              vdwioffset3;
789     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
790     int              vdwjidx0A,vdwjidx0B;
791     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
792     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
793     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
794     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
795     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
796     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
797     real             *charge;
798     int              nvdwtype;
799     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
800     int              *vdwtype;
801     real             *vdwparam;
802     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
803     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
804     __m128i          ewitab;
805     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
806     real             *ewtab;
807     __m128d          dummy_mask,cutoff_mask;
808     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
809     __m128d          one     = _mm_set1_pd(1.0);
810     __m128d          two     = _mm_set1_pd(2.0);
811     x                = xx[0];
812     f                = ff[0];
813
814     nri              = nlist->nri;
815     iinr             = nlist->iinr;
816     jindex           = nlist->jindex;
817     jjnr             = nlist->jjnr;
818     shiftidx         = nlist->shift;
819     gid              = nlist->gid;
820     shiftvec         = fr->shift_vec[0];
821     fshift           = fr->fshift[0];
822     facel            = _mm_set1_pd(fr->epsfac);
823     charge           = mdatoms->chargeA;
824     nvdwtype         = fr->ntype;
825     vdwparam         = fr->nbfp;
826     vdwtype          = mdatoms->typeA;
827
828     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
829     ewtab            = fr->ic->tabq_coul_F;
830     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
831     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
832
833     /* Setup water-specific parameters */
834     inr              = nlist->iinr[0];
835     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
836     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
837     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
838     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
839
840     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
841     rcutoff_scalar   = fr->rcoulomb;
842     rcutoff          = _mm_set1_pd(rcutoff_scalar);
843     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
844
845     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
846     rvdw             = _mm_set1_pd(fr->rvdw);
847
848     /* Avoid stupid compiler warnings */
849     jnrA = jnrB = 0;
850     j_coord_offsetA = 0;
851     j_coord_offsetB = 0;
852
853     outeriter        = 0;
854     inneriter        = 0;
855
856     /* Start outer loop over neighborlists */
857     for(iidx=0; iidx<nri; iidx++)
858     {
859         /* Load shift vector for this list */
860         i_shift_offset   = DIM*shiftidx[iidx];
861
862         /* Load limits for loop over neighbors */
863         j_index_start    = jindex[iidx];
864         j_index_end      = jindex[iidx+1];
865
866         /* Get outer coordinate index */
867         inr              = iinr[iidx];
868         i_coord_offset   = DIM*inr;
869
870         /* Load i particle coords and add shift vector */
871         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
872                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
873
874         fix0             = _mm_setzero_pd();
875         fiy0             = _mm_setzero_pd();
876         fiz0             = _mm_setzero_pd();
877         fix1             = _mm_setzero_pd();
878         fiy1             = _mm_setzero_pd();
879         fiz1             = _mm_setzero_pd();
880         fix2             = _mm_setzero_pd();
881         fiy2             = _mm_setzero_pd();
882         fiz2             = _mm_setzero_pd();
883         fix3             = _mm_setzero_pd();
884         fiy3             = _mm_setzero_pd();
885         fiz3             = _mm_setzero_pd();
886
887         /* Start inner kernel loop */
888         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
889         {
890
891             /* Get j neighbor index, and coordinate index */
892             jnrA             = jjnr[jidx];
893             jnrB             = jjnr[jidx+1];
894             j_coord_offsetA  = DIM*jnrA;
895             j_coord_offsetB  = DIM*jnrB;
896
897             /* load j atom coordinates */
898             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
899                                               &jx0,&jy0,&jz0);
900
901             /* Calculate displacement vector */
902             dx00             = _mm_sub_pd(ix0,jx0);
903             dy00             = _mm_sub_pd(iy0,jy0);
904             dz00             = _mm_sub_pd(iz0,jz0);
905             dx10             = _mm_sub_pd(ix1,jx0);
906             dy10             = _mm_sub_pd(iy1,jy0);
907             dz10             = _mm_sub_pd(iz1,jz0);
908             dx20             = _mm_sub_pd(ix2,jx0);
909             dy20             = _mm_sub_pd(iy2,jy0);
910             dz20             = _mm_sub_pd(iz2,jz0);
911             dx30             = _mm_sub_pd(ix3,jx0);
912             dy30             = _mm_sub_pd(iy3,jy0);
913             dz30             = _mm_sub_pd(iz3,jz0);
914
915             /* Calculate squared distance and things based on it */
916             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
917             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
918             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
919             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
920
921             rinv10           = gmx_mm_invsqrt_pd(rsq10);
922             rinv20           = gmx_mm_invsqrt_pd(rsq20);
923             rinv30           = gmx_mm_invsqrt_pd(rsq30);
924
925             rinvsq00         = gmx_mm_inv_pd(rsq00);
926             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
927             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
928             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
929
930             /* Load parameters for j particles */
931             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
932             vdwjidx0A        = 2*vdwtype[jnrA+0];
933             vdwjidx0B        = 2*vdwtype[jnrB+0];
934
935             fjx0             = _mm_setzero_pd();
936             fjy0             = _mm_setzero_pd();
937             fjz0             = _mm_setzero_pd();
938
939             /**************************
940              * CALCULATE INTERACTIONS *
941              **************************/
942
943             if (gmx_mm_any_lt(rsq00,rcutoff2))
944             {
945
946             /* Compute parameters for interactions between i and j atoms */
947             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
948                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
949
950             /* LENNARD-JONES DISPERSION/REPULSION */
951
952             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
953             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
954
955             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
956
957             fscal            = fvdw;
958
959             fscal            = _mm_and_pd(fscal,cutoff_mask);
960
961             /* Update vectorial force */
962             fix0             = _mm_macc_pd(dx00,fscal,fix0);
963             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
964             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
965             
966             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
967             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
968             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
969
970             }
971
972             /**************************
973              * CALCULATE INTERACTIONS *
974              **************************/
975
976             if (gmx_mm_any_lt(rsq10,rcutoff2))
977             {
978
979             r10              = _mm_mul_pd(rsq10,rinv10);
980
981             /* Compute parameters for interactions between i and j atoms */
982             qq10             = _mm_mul_pd(iq1,jq0);
983
984             /* EWALD ELECTROSTATICS */
985
986             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
987             ewrt             = _mm_mul_pd(r10,ewtabscale);
988             ewitab           = _mm_cvttpd_epi32(ewrt);
989 #ifdef __XOP__
990             eweps            = _mm_frcz_pd(ewrt);
991 #else
992             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
993 #endif
994             twoeweps         = _mm_add_pd(eweps,eweps);
995             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
996                                          &ewtabF,&ewtabFn);
997             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
998             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
999
1000             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1001
1002             fscal            = felec;
1003
1004             fscal            = _mm_and_pd(fscal,cutoff_mask);
1005
1006             /* Update vectorial force */
1007             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1008             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1009             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1010             
1011             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1012             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1013             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1014
1015             }
1016
1017             /**************************
1018              * CALCULATE INTERACTIONS *
1019              **************************/
1020
1021             if (gmx_mm_any_lt(rsq20,rcutoff2))
1022             {
1023
1024             r20              = _mm_mul_pd(rsq20,rinv20);
1025
1026             /* Compute parameters for interactions between i and j atoms */
1027             qq20             = _mm_mul_pd(iq2,jq0);
1028
1029             /* EWALD ELECTROSTATICS */
1030
1031             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1032             ewrt             = _mm_mul_pd(r20,ewtabscale);
1033             ewitab           = _mm_cvttpd_epi32(ewrt);
1034 #ifdef __XOP__
1035             eweps            = _mm_frcz_pd(ewrt);
1036 #else
1037             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1038 #endif
1039             twoeweps         = _mm_add_pd(eweps,eweps);
1040             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1041                                          &ewtabF,&ewtabFn);
1042             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1043             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1044
1045             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1046
1047             fscal            = felec;
1048
1049             fscal            = _mm_and_pd(fscal,cutoff_mask);
1050
1051             /* Update vectorial force */
1052             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1053             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1054             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1055             
1056             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1057             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1058             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1059
1060             }
1061
1062             /**************************
1063              * CALCULATE INTERACTIONS *
1064              **************************/
1065
1066             if (gmx_mm_any_lt(rsq30,rcutoff2))
1067             {
1068
1069             r30              = _mm_mul_pd(rsq30,rinv30);
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             qq30             = _mm_mul_pd(iq3,jq0);
1073
1074             /* EWALD ELECTROSTATICS */
1075
1076             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1077             ewrt             = _mm_mul_pd(r30,ewtabscale);
1078             ewitab           = _mm_cvttpd_epi32(ewrt);
1079 #ifdef __XOP__
1080             eweps            = _mm_frcz_pd(ewrt);
1081 #else
1082             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1083 #endif
1084             twoeweps         = _mm_add_pd(eweps,eweps);
1085             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1086                                          &ewtabF,&ewtabFn);
1087             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1088             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1089
1090             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1091
1092             fscal            = felec;
1093
1094             fscal            = _mm_and_pd(fscal,cutoff_mask);
1095
1096             /* Update vectorial force */
1097             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1098             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1099             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1100             
1101             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1102             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1103             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1104
1105             }
1106
1107             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1108
1109             /* Inner loop uses 162 flops */
1110         }
1111
1112         if(jidx<j_index_end)
1113         {
1114
1115             jnrA             = jjnr[jidx];
1116             j_coord_offsetA  = DIM*jnrA;
1117
1118             /* load j atom coordinates */
1119             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1120                                               &jx0,&jy0,&jz0);
1121
1122             /* Calculate displacement vector */
1123             dx00             = _mm_sub_pd(ix0,jx0);
1124             dy00             = _mm_sub_pd(iy0,jy0);
1125             dz00             = _mm_sub_pd(iz0,jz0);
1126             dx10             = _mm_sub_pd(ix1,jx0);
1127             dy10             = _mm_sub_pd(iy1,jy0);
1128             dz10             = _mm_sub_pd(iz1,jz0);
1129             dx20             = _mm_sub_pd(ix2,jx0);
1130             dy20             = _mm_sub_pd(iy2,jy0);
1131             dz20             = _mm_sub_pd(iz2,jz0);
1132             dx30             = _mm_sub_pd(ix3,jx0);
1133             dy30             = _mm_sub_pd(iy3,jy0);
1134             dz30             = _mm_sub_pd(iz3,jz0);
1135
1136             /* Calculate squared distance and things based on it */
1137             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1138             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1139             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1140             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1141
1142             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1143             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1144             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1145
1146             rinvsq00         = gmx_mm_inv_pd(rsq00);
1147             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1148             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1149             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1150
1151             /* Load parameters for j particles */
1152             jq0              = _mm_load_sd(charge+jnrA+0);
1153             vdwjidx0A        = 2*vdwtype[jnrA+0];
1154
1155             fjx0             = _mm_setzero_pd();
1156             fjy0             = _mm_setzero_pd();
1157             fjz0             = _mm_setzero_pd();
1158
1159             /**************************
1160              * CALCULATE INTERACTIONS *
1161              **************************/
1162
1163             if (gmx_mm_any_lt(rsq00,rcutoff2))
1164             {
1165
1166             /* Compute parameters for interactions between i and j atoms */
1167             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1168
1169             /* LENNARD-JONES DISPERSION/REPULSION */
1170
1171             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1172             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1173
1174             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1175
1176             fscal            = fvdw;
1177
1178             fscal            = _mm_and_pd(fscal,cutoff_mask);
1179
1180             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1181
1182             /* Update vectorial force */
1183             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1184             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1185             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1186             
1187             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1188             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1189             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1190
1191             }
1192
1193             /**************************
1194              * CALCULATE INTERACTIONS *
1195              **************************/
1196
1197             if (gmx_mm_any_lt(rsq10,rcutoff2))
1198             {
1199
1200             r10              = _mm_mul_pd(rsq10,rinv10);
1201
1202             /* Compute parameters for interactions between i and j atoms */
1203             qq10             = _mm_mul_pd(iq1,jq0);
1204
1205             /* EWALD ELECTROSTATICS */
1206
1207             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1208             ewrt             = _mm_mul_pd(r10,ewtabscale);
1209             ewitab           = _mm_cvttpd_epi32(ewrt);
1210 #ifdef __XOP__
1211             eweps            = _mm_frcz_pd(ewrt);
1212 #else
1213             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1214 #endif
1215             twoeweps         = _mm_add_pd(eweps,eweps);
1216             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1217             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1218             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1219
1220             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1221
1222             fscal            = felec;
1223
1224             fscal            = _mm_and_pd(fscal,cutoff_mask);
1225
1226             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1227
1228             /* Update vectorial force */
1229             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1230             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1231             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1232             
1233             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1234             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1235             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1236
1237             }
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             if (gmx_mm_any_lt(rsq20,rcutoff2))
1244             {
1245
1246             r20              = _mm_mul_pd(rsq20,rinv20);
1247
1248             /* Compute parameters for interactions between i and j atoms */
1249             qq20             = _mm_mul_pd(iq2,jq0);
1250
1251             /* EWALD ELECTROSTATICS */
1252
1253             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1254             ewrt             = _mm_mul_pd(r20,ewtabscale);
1255             ewitab           = _mm_cvttpd_epi32(ewrt);
1256 #ifdef __XOP__
1257             eweps            = _mm_frcz_pd(ewrt);
1258 #else
1259             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1260 #endif
1261             twoeweps         = _mm_add_pd(eweps,eweps);
1262             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1263             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1264             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1265
1266             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1267
1268             fscal            = felec;
1269
1270             fscal            = _mm_and_pd(fscal,cutoff_mask);
1271
1272             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1273
1274             /* Update vectorial force */
1275             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1276             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1277             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1278             
1279             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1280             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1281             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1282
1283             }
1284
1285             /**************************
1286              * CALCULATE INTERACTIONS *
1287              **************************/
1288
1289             if (gmx_mm_any_lt(rsq30,rcutoff2))
1290             {
1291
1292             r30              = _mm_mul_pd(rsq30,rinv30);
1293
1294             /* Compute parameters for interactions between i and j atoms */
1295             qq30             = _mm_mul_pd(iq3,jq0);
1296
1297             /* EWALD ELECTROSTATICS */
1298
1299             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1300             ewrt             = _mm_mul_pd(r30,ewtabscale);
1301             ewitab           = _mm_cvttpd_epi32(ewrt);
1302 #ifdef __XOP__
1303             eweps            = _mm_frcz_pd(ewrt);
1304 #else
1305             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1306 #endif
1307             twoeweps         = _mm_add_pd(eweps,eweps);
1308             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1309             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1310             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1311
1312             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1313
1314             fscal            = felec;
1315
1316             fscal            = _mm_and_pd(fscal,cutoff_mask);
1317
1318             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1319
1320             /* Update vectorial force */
1321             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1322             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1323             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1324             
1325             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1326             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1327             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1328
1329             }
1330
1331             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1332
1333             /* Inner loop uses 162 flops */
1334         }
1335
1336         /* End of innermost loop */
1337
1338         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1339                                               f+i_coord_offset,fshift+i_shift_offset);
1340
1341         /* Increment number of inner iterations */
1342         inneriter                  += j_index_end - j_index_start;
1343
1344         /* Outer loop uses 24 flops */
1345     }
1346
1347     /* Increment number of outer iterations */
1348     outeriter        += nri;
1349
1350     /* Update outer/inner flops */
1351
1352     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*162);
1353 }