51f90300de25d494f71a3536b02b7a97e0cc6c16
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Water3
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     int              vdwjidx1A,vdwjidx1B;
89     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
90     int              vdwjidx2A,vdwjidx2B;
91     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
94     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
95     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
97     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
98     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
100     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
101     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
102     real             *charge;
103     int              nvdwtype;
104     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
105     int              *vdwtype;
106     real             *vdwparam;
107     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
108     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
109     __m128i          ewitab;
110     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     real             *ewtab;
112     __m128d          dummy_mask,cutoff_mask;
113     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
114     __m128d          one     = _mm_set1_pd(1.0);
115     __m128d          two     = _mm_set1_pd(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_pd(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
141     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
142     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     jq0              = _mm_set1_pd(charge[inr+0]);
146     jq1              = _mm_set1_pd(charge[inr+1]);
147     jq2              = _mm_set1_pd(charge[inr+2]);
148     vdwjidx0A        = 2*vdwtype[inr+0];
149     qq00             = _mm_mul_pd(iq0,jq0);
150     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
151     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
152     qq01             = _mm_mul_pd(iq0,jq1);
153     qq02             = _mm_mul_pd(iq0,jq2);
154     qq10             = _mm_mul_pd(iq1,jq0);
155     qq11             = _mm_mul_pd(iq1,jq1);
156     qq12             = _mm_mul_pd(iq1,jq2);
157     qq20             = _mm_mul_pd(iq2,jq0);
158     qq21             = _mm_mul_pd(iq2,jq1);
159     qq22             = _mm_mul_pd(iq2,jq2);
160
161     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
162     rcutoff_scalar   = fr->rcoulomb;
163     rcutoff          = _mm_set1_pd(rcutoff_scalar);
164     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
165
166     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
167     rvdw             = _mm_set1_pd(fr->rvdw);
168
169     /* Avoid stupid compiler warnings */
170     jnrA = jnrB = 0;
171     j_coord_offsetA = 0;
172     j_coord_offsetB = 0;
173
174     outeriter        = 0;
175     inneriter        = 0;
176
177     /* Start outer loop over neighborlists */
178     for(iidx=0; iidx<nri; iidx++)
179     {
180         /* Load shift vector for this list */
181         i_shift_offset   = DIM*shiftidx[iidx];
182
183         /* Load limits for loop over neighbors */
184         j_index_start    = jindex[iidx];
185         j_index_end      = jindex[iidx+1];
186
187         /* Get outer coordinate index */
188         inr              = iinr[iidx];
189         i_coord_offset   = DIM*inr;
190
191         /* Load i particle coords and add shift vector */
192         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
193                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
194
195         fix0             = _mm_setzero_pd();
196         fiy0             = _mm_setzero_pd();
197         fiz0             = _mm_setzero_pd();
198         fix1             = _mm_setzero_pd();
199         fiy1             = _mm_setzero_pd();
200         fiz1             = _mm_setzero_pd();
201         fix2             = _mm_setzero_pd();
202         fiy2             = _mm_setzero_pd();
203         fiz2             = _mm_setzero_pd();
204
205         /* Reset potential sums */
206         velecsum         = _mm_setzero_pd();
207         vvdwsum          = _mm_setzero_pd();
208
209         /* Start inner kernel loop */
210         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
211         {
212
213             /* Get j neighbor index, and coordinate index */
214             jnrA             = jjnr[jidx];
215             jnrB             = jjnr[jidx+1];
216             j_coord_offsetA  = DIM*jnrA;
217             j_coord_offsetB  = DIM*jnrB;
218
219             /* load j atom coordinates */
220             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
221                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
222
223             /* Calculate displacement vector */
224             dx00             = _mm_sub_pd(ix0,jx0);
225             dy00             = _mm_sub_pd(iy0,jy0);
226             dz00             = _mm_sub_pd(iz0,jz0);
227             dx01             = _mm_sub_pd(ix0,jx1);
228             dy01             = _mm_sub_pd(iy0,jy1);
229             dz01             = _mm_sub_pd(iz0,jz1);
230             dx02             = _mm_sub_pd(ix0,jx2);
231             dy02             = _mm_sub_pd(iy0,jy2);
232             dz02             = _mm_sub_pd(iz0,jz2);
233             dx10             = _mm_sub_pd(ix1,jx0);
234             dy10             = _mm_sub_pd(iy1,jy0);
235             dz10             = _mm_sub_pd(iz1,jz0);
236             dx11             = _mm_sub_pd(ix1,jx1);
237             dy11             = _mm_sub_pd(iy1,jy1);
238             dz11             = _mm_sub_pd(iz1,jz1);
239             dx12             = _mm_sub_pd(ix1,jx2);
240             dy12             = _mm_sub_pd(iy1,jy2);
241             dz12             = _mm_sub_pd(iz1,jz2);
242             dx20             = _mm_sub_pd(ix2,jx0);
243             dy20             = _mm_sub_pd(iy2,jy0);
244             dz20             = _mm_sub_pd(iz2,jz0);
245             dx21             = _mm_sub_pd(ix2,jx1);
246             dy21             = _mm_sub_pd(iy2,jy1);
247             dz21             = _mm_sub_pd(iz2,jz1);
248             dx22             = _mm_sub_pd(ix2,jx2);
249             dy22             = _mm_sub_pd(iy2,jy2);
250             dz22             = _mm_sub_pd(iz2,jz2);
251
252             /* Calculate squared distance and things based on it */
253             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
254             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
255             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
256             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
257             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
258             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
259             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
260             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
261             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
262
263             rinv00           = gmx_mm_invsqrt_pd(rsq00);
264             rinv01           = gmx_mm_invsqrt_pd(rsq01);
265             rinv02           = gmx_mm_invsqrt_pd(rsq02);
266             rinv10           = gmx_mm_invsqrt_pd(rsq10);
267             rinv11           = gmx_mm_invsqrt_pd(rsq11);
268             rinv12           = gmx_mm_invsqrt_pd(rsq12);
269             rinv20           = gmx_mm_invsqrt_pd(rsq20);
270             rinv21           = gmx_mm_invsqrt_pd(rsq21);
271             rinv22           = gmx_mm_invsqrt_pd(rsq22);
272
273             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
274             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
275             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
276             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
277             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
278             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
279             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
280             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
281             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
282
283             fjx0             = _mm_setzero_pd();
284             fjy0             = _mm_setzero_pd();
285             fjz0             = _mm_setzero_pd();
286             fjx1             = _mm_setzero_pd();
287             fjy1             = _mm_setzero_pd();
288             fjz1             = _mm_setzero_pd();
289             fjx2             = _mm_setzero_pd();
290             fjy2             = _mm_setzero_pd();
291             fjz2             = _mm_setzero_pd();
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             if (gmx_mm_any_lt(rsq00,rcutoff2))
298             {
299
300             r00              = _mm_mul_pd(rsq00,rinv00);
301
302             /* EWALD ELECTROSTATICS */
303
304             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
305             ewrt             = _mm_mul_pd(r00,ewtabscale);
306             ewitab           = _mm_cvttpd_epi32(ewrt);
307 #ifdef __XOP__
308             eweps            = _mm_frcz_pd(ewrt);
309 #else
310             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
311 #endif
312             twoeweps         = _mm_add_pd(eweps,eweps);
313             ewitab           = _mm_slli_epi32(ewitab,2);
314             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
315             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
316             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
317             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
318             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
319             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
320             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
321             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
322             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
323             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
324
325             /* LENNARD-JONES DISPERSION/REPULSION */
326
327             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
328             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
329             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
330             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
331                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
332             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
333
334             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velec            = _mm_and_pd(velec,cutoff_mask);
338             velecsum         = _mm_add_pd(velecsum,velec);
339             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
340             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
341
342             fscal            = _mm_add_pd(felec,fvdw);
343
344             fscal            = _mm_and_pd(fscal,cutoff_mask);
345
346             /* Update vectorial force */
347             fix0             = _mm_macc_pd(dx00,fscal,fix0);
348             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
349             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
350             
351             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
352             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
353             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
354
355             }
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             if (gmx_mm_any_lt(rsq01,rcutoff2))
362             {
363
364             r01              = _mm_mul_pd(rsq01,rinv01);
365
366             /* EWALD ELECTROSTATICS */
367
368             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
369             ewrt             = _mm_mul_pd(r01,ewtabscale);
370             ewitab           = _mm_cvttpd_epi32(ewrt);
371 #ifdef __XOP__
372             eweps            = _mm_frcz_pd(ewrt);
373 #else
374             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
375 #endif
376             twoeweps         = _mm_add_pd(eweps,eweps);
377             ewitab           = _mm_slli_epi32(ewitab,2);
378             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
379             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
380             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
381             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
382             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
383             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
384             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
385             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
386             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
387             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
388
389             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velec            = _mm_and_pd(velec,cutoff_mask);
393             velecsum         = _mm_add_pd(velecsum,velec);
394
395             fscal            = felec;
396
397             fscal            = _mm_and_pd(fscal,cutoff_mask);
398
399             /* Update vectorial force */
400             fix0             = _mm_macc_pd(dx01,fscal,fix0);
401             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
402             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
403             
404             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
405             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
406             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
407
408             }
409
410             /**************************
411              * CALCULATE INTERACTIONS *
412              **************************/
413
414             if (gmx_mm_any_lt(rsq02,rcutoff2))
415             {
416
417             r02              = _mm_mul_pd(rsq02,rinv02);
418
419             /* EWALD ELECTROSTATICS */
420
421             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
422             ewrt             = _mm_mul_pd(r02,ewtabscale);
423             ewitab           = _mm_cvttpd_epi32(ewrt);
424 #ifdef __XOP__
425             eweps            = _mm_frcz_pd(ewrt);
426 #else
427             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
428 #endif
429             twoeweps         = _mm_add_pd(eweps,eweps);
430             ewitab           = _mm_slli_epi32(ewitab,2);
431             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
432             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
433             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
434             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
435             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
436             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
437             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
438             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
439             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
440             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
441
442             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
443
444             /* Update potential sum for this i atom from the interaction with this j atom. */
445             velec            = _mm_and_pd(velec,cutoff_mask);
446             velecsum         = _mm_add_pd(velecsum,velec);
447
448             fscal            = felec;
449
450             fscal            = _mm_and_pd(fscal,cutoff_mask);
451
452             /* Update vectorial force */
453             fix0             = _mm_macc_pd(dx02,fscal,fix0);
454             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
455             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
456             
457             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
458             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
459             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
460
461             }
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             if (gmx_mm_any_lt(rsq10,rcutoff2))
468             {
469
470             r10              = _mm_mul_pd(rsq10,rinv10);
471
472             /* EWALD ELECTROSTATICS */
473
474             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
475             ewrt             = _mm_mul_pd(r10,ewtabscale);
476             ewitab           = _mm_cvttpd_epi32(ewrt);
477 #ifdef __XOP__
478             eweps            = _mm_frcz_pd(ewrt);
479 #else
480             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
481 #endif
482             twoeweps         = _mm_add_pd(eweps,eweps);
483             ewitab           = _mm_slli_epi32(ewitab,2);
484             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
485             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
486             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
487             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
488             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
489             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
490             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
491             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
492             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
493             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
494
495             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
496
497             /* Update potential sum for this i atom from the interaction with this j atom. */
498             velec            = _mm_and_pd(velec,cutoff_mask);
499             velecsum         = _mm_add_pd(velecsum,velec);
500
501             fscal            = felec;
502
503             fscal            = _mm_and_pd(fscal,cutoff_mask);
504
505             /* Update vectorial force */
506             fix1             = _mm_macc_pd(dx10,fscal,fix1);
507             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
508             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
509             
510             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
511             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
512             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
513
514             }
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             if (gmx_mm_any_lt(rsq11,rcutoff2))
521             {
522
523             r11              = _mm_mul_pd(rsq11,rinv11);
524
525             /* EWALD ELECTROSTATICS */
526
527             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
528             ewrt             = _mm_mul_pd(r11,ewtabscale);
529             ewitab           = _mm_cvttpd_epi32(ewrt);
530 #ifdef __XOP__
531             eweps            = _mm_frcz_pd(ewrt);
532 #else
533             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
534 #endif
535             twoeweps         = _mm_add_pd(eweps,eweps);
536             ewitab           = _mm_slli_epi32(ewitab,2);
537             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
538             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
539             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
540             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
541             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
542             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
543             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
544             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
545             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
546             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
547
548             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _mm_and_pd(velec,cutoff_mask);
552             velecsum         = _mm_add_pd(velecsum,velec);
553
554             fscal            = felec;
555
556             fscal            = _mm_and_pd(fscal,cutoff_mask);
557
558             /* Update vectorial force */
559             fix1             = _mm_macc_pd(dx11,fscal,fix1);
560             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
561             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
562             
563             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
564             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
565             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
566
567             }
568
569             /**************************
570              * CALCULATE INTERACTIONS *
571              **************************/
572
573             if (gmx_mm_any_lt(rsq12,rcutoff2))
574             {
575
576             r12              = _mm_mul_pd(rsq12,rinv12);
577
578             /* EWALD ELECTROSTATICS */
579
580             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
581             ewrt             = _mm_mul_pd(r12,ewtabscale);
582             ewitab           = _mm_cvttpd_epi32(ewrt);
583 #ifdef __XOP__
584             eweps            = _mm_frcz_pd(ewrt);
585 #else
586             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
587 #endif
588             twoeweps         = _mm_add_pd(eweps,eweps);
589             ewitab           = _mm_slli_epi32(ewitab,2);
590             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
591             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
592             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
593             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
594             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
595             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
596             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
597             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
598             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
599             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
600
601             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
602
603             /* Update potential sum for this i atom from the interaction with this j atom. */
604             velec            = _mm_and_pd(velec,cutoff_mask);
605             velecsum         = _mm_add_pd(velecsum,velec);
606
607             fscal            = felec;
608
609             fscal            = _mm_and_pd(fscal,cutoff_mask);
610
611             /* Update vectorial force */
612             fix1             = _mm_macc_pd(dx12,fscal,fix1);
613             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
614             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
615             
616             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
617             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
618             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
619
620             }
621
622             /**************************
623              * CALCULATE INTERACTIONS *
624              **************************/
625
626             if (gmx_mm_any_lt(rsq20,rcutoff2))
627             {
628
629             r20              = _mm_mul_pd(rsq20,rinv20);
630
631             /* EWALD ELECTROSTATICS */
632
633             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
634             ewrt             = _mm_mul_pd(r20,ewtabscale);
635             ewitab           = _mm_cvttpd_epi32(ewrt);
636 #ifdef __XOP__
637             eweps            = _mm_frcz_pd(ewrt);
638 #else
639             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
640 #endif
641             twoeweps         = _mm_add_pd(eweps,eweps);
642             ewitab           = _mm_slli_epi32(ewitab,2);
643             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
644             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
645             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
646             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
647             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
648             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
649             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
650             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
651             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
652             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
653
654             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
655
656             /* Update potential sum for this i atom from the interaction with this j atom. */
657             velec            = _mm_and_pd(velec,cutoff_mask);
658             velecsum         = _mm_add_pd(velecsum,velec);
659
660             fscal            = felec;
661
662             fscal            = _mm_and_pd(fscal,cutoff_mask);
663
664             /* Update vectorial force */
665             fix2             = _mm_macc_pd(dx20,fscal,fix2);
666             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
667             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
668             
669             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
670             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
671             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
672
673             }
674
675             /**************************
676              * CALCULATE INTERACTIONS *
677              **************************/
678
679             if (gmx_mm_any_lt(rsq21,rcutoff2))
680             {
681
682             r21              = _mm_mul_pd(rsq21,rinv21);
683
684             /* EWALD ELECTROSTATICS */
685
686             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
687             ewrt             = _mm_mul_pd(r21,ewtabscale);
688             ewitab           = _mm_cvttpd_epi32(ewrt);
689 #ifdef __XOP__
690             eweps            = _mm_frcz_pd(ewrt);
691 #else
692             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
693 #endif
694             twoeweps         = _mm_add_pd(eweps,eweps);
695             ewitab           = _mm_slli_epi32(ewitab,2);
696             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
697             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
698             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
699             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
700             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
701             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
702             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
703             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
704             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
705             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
706
707             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
708
709             /* Update potential sum for this i atom from the interaction with this j atom. */
710             velec            = _mm_and_pd(velec,cutoff_mask);
711             velecsum         = _mm_add_pd(velecsum,velec);
712
713             fscal            = felec;
714
715             fscal            = _mm_and_pd(fscal,cutoff_mask);
716
717             /* Update vectorial force */
718             fix2             = _mm_macc_pd(dx21,fscal,fix2);
719             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
720             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
721             
722             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
723             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
724             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
725
726             }
727
728             /**************************
729              * CALCULATE INTERACTIONS *
730              **************************/
731
732             if (gmx_mm_any_lt(rsq22,rcutoff2))
733             {
734
735             r22              = _mm_mul_pd(rsq22,rinv22);
736
737             /* EWALD ELECTROSTATICS */
738
739             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
740             ewrt             = _mm_mul_pd(r22,ewtabscale);
741             ewitab           = _mm_cvttpd_epi32(ewrt);
742 #ifdef __XOP__
743             eweps            = _mm_frcz_pd(ewrt);
744 #else
745             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
746 #endif
747             twoeweps         = _mm_add_pd(eweps,eweps);
748             ewitab           = _mm_slli_epi32(ewitab,2);
749             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
750             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
751             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
752             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
753             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
754             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
755             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
756             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
757             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
758             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
759
760             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
761
762             /* Update potential sum for this i atom from the interaction with this j atom. */
763             velec            = _mm_and_pd(velec,cutoff_mask);
764             velecsum         = _mm_add_pd(velecsum,velec);
765
766             fscal            = felec;
767
768             fscal            = _mm_and_pd(fscal,cutoff_mask);
769
770             /* Update vectorial force */
771             fix2             = _mm_macc_pd(dx22,fscal,fix2);
772             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
773             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
774             
775             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
776             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
777             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
778
779             }
780
781             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
782
783             /* Inner loop uses 459 flops */
784         }
785
786         if(jidx<j_index_end)
787         {
788
789             jnrA             = jjnr[jidx];
790             j_coord_offsetA  = DIM*jnrA;
791
792             /* load j atom coordinates */
793             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
794                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
795
796             /* Calculate displacement vector */
797             dx00             = _mm_sub_pd(ix0,jx0);
798             dy00             = _mm_sub_pd(iy0,jy0);
799             dz00             = _mm_sub_pd(iz0,jz0);
800             dx01             = _mm_sub_pd(ix0,jx1);
801             dy01             = _mm_sub_pd(iy0,jy1);
802             dz01             = _mm_sub_pd(iz0,jz1);
803             dx02             = _mm_sub_pd(ix0,jx2);
804             dy02             = _mm_sub_pd(iy0,jy2);
805             dz02             = _mm_sub_pd(iz0,jz2);
806             dx10             = _mm_sub_pd(ix1,jx0);
807             dy10             = _mm_sub_pd(iy1,jy0);
808             dz10             = _mm_sub_pd(iz1,jz0);
809             dx11             = _mm_sub_pd(ix1,jx1);
810             dy11             = _mm_sub_pd(iy1,jy1);
811             dz11             = _mm_sub_pd(iz1,jz1);
812             dx12             = _mm_sub_pd(ix1,jx2);
813             dy12             = _mm_sub_pd(iy1,jy2);
814             dz12             = _mm_sub_pd(iz1,jz2);
815             dx20             = _mm_sub_pd(ix2,jx0);
816             dy20             = _mm_sub_pd(iy2,jy0);
817             dz20             = _mm_sub_pd(iz2,jz0);
818             dx21             = _mm_sub_pd(ix2,jx1);
819             dy21             = _mm_sub_pd(iy2,jy1);
820             dz21             = _mm_sub_pd(iz2,jz1);
821             dx22             = _mm_sub_pd(ix2,jx2);
822             dy22             = _mm_sub_pd(iy2,jy2);
823             dz22             = _mm_sub_pd(iz2,jz2);
824
825             /* Calculate squared distance and things based on it */
826             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
827             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
828             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
829             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
830             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
831             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
832             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
833             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
834             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
835
836             rinv00           = gmx_mm_invsqrt_pd(rsq00);
837             rinv01           = gmx_mm_invsqrt_pd(rsq01);
838             rinv02           = gmx_mm_invsqrt_pd(rsq02);
839             rinv10           = gmx_mm_invsqrt_pd(rsq10);
840             rinv11           = gmx_mm_invsqrt_pd(rsq11);
841             rinv12           = gmx_mm_invsqrt_pd(rsq12);
842             rinv20           = gmx_mm_invsqrt_pd(rsq20);
843             rinv21           = gmx_mm_invsqrt_pd(rsq21);
844             rinv22           = gmx_mm_invsqrt_pd(rsq22);
845
846             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
847             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
848             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
849             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
850             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
851             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
852             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
853             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
854             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
855
856             fjx0             = _mm_setzero_pd();
857             fjy0             = _mm_setzero_pd();
858             fjz0             = _mm_setzero_pd();
859             fjx1             = _mm_setzero_pd();
860             fjy1             = _mm_setzero_pd();
861             fjz1             = _mm_setzero_pd();
862             fjx2             = _mm_setzero_pd();
863             fjy2             = _mm_setzero_pd();
864             fjz2             = _mm_setzero_pd();
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             if (gmx_mm_any_lt(rsq00,rcutoff2))
871             {
872
873             r00              = _mm_mul_pd(rsq00,rinv00);
874
875             /* EWALD ELECTROSTATICS */
876
877             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
878             ewrt             = _mm_mul_pd(r00,ewtabscale);
879             ewitab           = _mm_cvttpd_epi32(ewrt);
880 #ifdef __XOP__
881             eweps            = _mm_frcz_pd(ewrt);
882 #else
883             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
884 #endif
885             twoeweps         = _mm_add_pd(eweps,eweps);
886             ewitab           = _mm_slli_epi32(ewitab,2);
887             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
888             ewtabD           = _mm_setzero_pd();
889             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
890             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
891             ewtabFn          = _mm_setzero_pd();
892             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
893             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
894             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
895             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
896             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
897
898             /* LENNARD-JONES DISPERSION/REPULSION */
899
900             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
901             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
902             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
903             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
904                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
905             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
906
907             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
908
909             /* Update potential sum for this i atom from the interaction with this j atom. */
910             velec            = _mm_and_pd(velec,cutoff_mask);
911             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
912             velecsum         = _mm_add_pd(velecsum,velec);
913             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
914             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
915             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
916
917             fscal            = _mm_add_pd(felec,fvdw);
918
919             fscal            = _mm_and_pd(fscal,cutoff_mask);
920
921             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
922
923             /* Update vectorial force */
924             fix0             = _mm_macc_pd(dx00,fscal,fix0);
925             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
926             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
927             
928             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
929             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
930             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
931
932             }
933
934             /**************************
935              * CALCULATE INTERACTIONS *
936              **************************/
937
938             if (gmx_mm_any_lt(rsq01,rcutoff2))
939             {
940
941             r01              = _mm_mul_pd(rsq01,rinv01);
942
943             /* EWALD ELECTROSTATICS */
944
945             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
946             ewrt             = _mm_mul_pd(r01,ewtabscale);
947             ewitab           = _mm_cvttpd_epi32(ewrt);
948 #ifdef __XOP__
949             eweps            = _mm_frcz_pd(ewrt);
950 #else
951             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
952 #endif
953             twoeweps         = _mm_add_pd(eweps,eweps);
954             ewitab           = _mm_slli_epi32(ewitab,2);
955             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
956             ewtabD           = _mm_setzero_pd();
957             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
958             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
959             ewtabFn          = _mm_setzero_pd();
960             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
961             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
962             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
963             velec            = _mm_mul_pd(qq01,_mm_sub_pd(_mm_sub_pd(rinv01,sh_ewald),velec));
964             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
965
966             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
967
968             /* Update potential sum for this i atom from the interaction with this j atom. */
969             velec            = _mm_and_pd(velec,cutoff_mask);
970             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
971             velecsum         = _mm_add_pd(velecsum,velec);
972
973             fscal            = felec;
974
975             fscal            = _mm_and_pd(fscal,cutoff_mask);
976
977             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
978
979             /* Update vectorial force */
980             fix0             = _mm_macc_pd(dx01,fscal,fix0);
981             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
982             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
983             
984             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
985             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
986             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
987
988             }
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             if (gmx_mm_any_lt(rsq02,rcutoff2))
995             {
996
997             r02              = _mm_mul_pd(rsq02,rinv02);
998
999             /* EWALD ELECTROSTATICS */
1000
1001             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1002             ewrt             = _mm_mul_pd(r02,ewtabscale);
1003             ewitab           = _mm_cvttpd_epi32(ewrt);
1004 #ifdef __XOP__
1005             eweps            = _mm_frcz_pd(ewrt);
1006 #else
1007             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1008 #endif
1009             twoeweps         = _mm_add_pd(eweps,eweps);
1010             ewitab           = _mm_slli_epi32(ewitab,2);
1011             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1012             ewtabD           = _mm_setzero_pd();
1013             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1014             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1015             ewtabFn          = _mm_setzero_pd();
1016             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1017             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1018             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1019             velec            = _mm_mul_pd(qq02,_mm_sub_pd(_mm_sub_pd(rinv02,sh_ewald),velec));
1020             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1021
1022             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1023
1024             /* Update potential sum for this i atom from the interaction with this j atom. */
1025             velec            = _mm_and_pd(velec,cutoff_mask);
1026             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1027             velecsum         = _mm_add_pd(velecsum,velec);
1028
1029             fscal            = felec;
1030
1031             fscal            = _mm_and_pd(fscal,cutoff_mask);
1032
1033             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1034
1035             /* Update vectorial force */
1036             fix0             = _mm_macc_pd(dx02,fscal,fix0);
1037             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
1038             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
1039             
1040             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
1041             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
1042             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
1043
1044             }
1045
1046             /**************************
1047              * CALCULATE INTERACTIONS *
1048              **************************/
1049
1050             if (gmx_mm_any_lt(rsq10,rcutoff2))
1051             {
1052
1053             r10              = _mm_mul_pd(rsq10,rinv10);
1054
1055             /* EWALD ELECTROSTATICS */
1056
1057             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1058             ewrt             = _mm_mul_pd(r10,ewtabscale);
1059             ewitab           = _mm_cvttpd_epi32(ewrt);
1060 #ifdef __XOP__
1061             eweps            = _mm_frcz_pd(ewrt);
1062 #else
1063             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1064 #endif
1065             twoeweps         = _mm_add_pd(eweps,eweps);
1066             ewitab           = _mm_slli_epi32(ewitab,2);
1067             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1068             ewtabD           = _mm_setzero_pd();
1069             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1070             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1071             ewtabFn          = _mm_setzero_pd();
1072             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1073             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1074             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1075             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
1076             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1077
1078             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1079
1080             /* Update potential sum for this i atom from the interaction with this j atom. */
1081             velec            = _mm_and_pd(velec,cutoff_mask);
1082             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1083             velecsum         = _mm_add_pd(velecsum,velec);
1084
1085             fscal            = felec;
1086
1087             fscal            = _mm_and_pd(fscal,cutoff_mask);
1088
1089             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1090
1091             /* Update vectorial force */
1092             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1093             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1094             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1095             
1096             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1097             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1098             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1099
1100             }
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             if (gmx_mm_any_lt(rsq11,rcutoff2))
1107             {
1108
1109             r11              = _mm_mul_pd(rsq11,rinv11);
1110
1111             /* EWALD ELECTROSTATICS */
1112
1113             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1114             ewrt             = _mm_mul_pd(r11,ewtabscale);
1115             ewitab           = _mm_cvttpd_epi32(ewrt);
1116 #ifdef __XOP__
1117             eweps            = _mm_frcz_pd(ewrt);
1118 #else
1119             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1120 #endif
1121             twoeweps         = _mm_add_pd(eweps,eweps);
1122             ewitab           = _mm_slli_epi32(ewitab,2);
1123             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1124             ewtabD           = _mm_setzero_pd();
1125             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1126             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1127             ewtabFn          = _mm_setzero_pd();
1128             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1129             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1130             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1131             velec            = _mm_mul_pd(qq11,_mm_sub_pd(_mm_sub_pd(rinv11,sh_ewald),velec));
1132             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1133
1134             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1135
1136             /* Update potential sum for this i atom from the interaction with this j atom. */
1137             velec            = _mm_and_pd(velec,cutoff_mask);
1138             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1139             velecsum         = _mm_add_pd(velecsum,velec);
1140
1141             fscal            = felec;
1142
1143             fscal            = _mm_and_pd(fscal,cutoff_mask);
1144
1145             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1146
1147             /* Update vectorial force */
1148             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1149             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1150             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1151             
1152             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1153             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1154             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1155
1156             }
1157
1158             /**************************
1159              * CALCULATE INTERACTIONS *
1160              **************************/
1161
1162             if (gmx_mm_any_lt(rsq12,rcutoff2))
1163             {
1164
1165             r12              = _mm_mul_pd(rsq12,rinv12);
1166
1167             /* EWALD ELECTROSTATICS */
1168
1169             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1170             ewrt             = _mm_mul_pd(r12,ewtabscale);
1171             ewitab           = _mm_cvttpd_epi32(ewrt);
1172 #ifdef __XOP__
1173             eweps            = _mm_frcz_pd(ewrt);
1174 #else
1175             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1176 #endif
1177             twoeweps         = _mm_add_pd(eweps,eweps);
1178             ewitab           = _mm_slli_epi32(ewitab,2);
1179             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1180             ewtabD           = _mm_setzero_pd();
1181             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1182             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1183             ewtabFn          = _mm_setzero_pd();
1184             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1185             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1186             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1187             velec            = _mm_mul_pd(qq12,_mm_sub_pd(_mm_sub_pd(rinv12,sh_ewald),velec));
1188             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1189
1190             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1191
1192             /* Update potential sum for this i atom from the interaction with this j atom. */
1193             velec            = _mm_and_pd(velec,cutoff_mask);
1194             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1195             velecsum         = _mm_add_pd(velecsum,velec);
1196
1197             fscal            = felec;
1198
1199             fscal            = _mm_and_pd(fscal,cutoff_mask);
1200
1201             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1202
1203             /* Update vectorial force */
1204             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1205             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1206             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1207             
1208             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1209             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1210             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1211
1212             }
1213
1214             /**************************
1215              * CALCULATE INTERACTIONS *
1216              **************************/
1217
1218             if (gmx_mm_any_lt(rsq20,rcutoff2))
1219             {
1220
1221             r20              = _mm_mul_pd(rsq20,rinv20);
1222
1223             /* EWALD ELECTROSTATICS */
1224
1225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1226             ewrt             = _mm_mul_pd(r20,ewtabscale);
1227             ewitab           = _mm_cvttpd_epi32(ewrt);
1228 #ifdef __XOP__
1229             eweps            = _mm_frcz_pd(ewrt);
1230 #else
1231             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1232 #endif
1233             twoeweps         = _mm_add_pd(eweps,eweps);
1234             ewitab           = _mm_slli_epi32(ewitab,2);
1235             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1236             ewtabD           = _mm_setzero_pd();
1237             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1238             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1239             ewtabFn          = _mm_setzero_pd();
1240             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1241             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1242             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1243             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
1244             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1245
1246             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1247
1248             /* Update potential sum for this i atom from the interaction with this j atom. */
1249             velec            = _mm_and_pd(velec,cutoff_mask);
1250             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1251             velecsum         = _mm_add_pd(velecsum,velec);
1252
1253             fscal            = felec;
1254
1255             fscal            = _mm_and_pd(fscal,cutoff_mask);
1256
1257             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1258
1259             /* Update vectorial force */
1260             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1261             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1262             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1263             
1264             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1265             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1266             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1267
1268             }
1269
1270             /**************************
1271              * CALCULATE INTERACTIONS *
1272              **************************/
1273
1274             if (gmx_mm_any_lt(rsq21,rcutoff2))
1275             {
1276
1277             r21              = _mm_mul_pd(rsq21,rinv21);
1278
1279             /* EWALD ELECTROSTATICS */
1280
1281             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1282             ewrt             = _mm_mul_pd(r21,ewtabscale);
1283             ewitab           = _mm_cvttpd_epi32(ewrt);
1284 #ifdef __XOP__
1285             eweps            = _mm_frcz_pd(ewrt);
1286 #else
1287             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1288 #endif
1289             twoeweps         = _mm_add_pd(eweps,eweps);
1290             ewitab           = _mm_slli_epi32(ewitab,2);
1291             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1292             ewtabD           = _mm_setzero_pd();
1293             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1294             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1295             ewtabFn          = _mm_setzero_pd();
1296             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1297             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1298             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1299             velec            = _mm_mul_pd(qq21,_mm_sub_pd(_mm_sub_pd(rinv21,sh_ewald),velec));
1300             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1301
1302             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1303
1304             /* Update potential sum for this i atom from the interaction with this j atom. */
1305             velec            = _mm_and_pd(velec,cutoff_mask);
1306             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1307             velecsum         = _mm_add_pd(velecsum,velec);
1308
1309             fscal            = felec;
1310
1311             fscal            = _mm_and_pd(fscal,cutoff_mask);
1312
1313             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1314
1315             /* Update vectorial force */
1316             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1317             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1318             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1319             
1320             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1321             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1322             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1323
1324             }
1325
1326             /**************************
1327              * CALCULATE INTERACTIONS *
1328              **************************/
1329
1330             if (gmx_mm_any_lt(rsq22,rcutoff2))
1331             {
1332
1333             r22              = _mm_mul_pd(rsq22,rinv22);
1334
1335             /* EWALD ELECTROSTATICS */
1336
1337             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1338             ewrt             = _mm_mul_pd(r22,ewtabscale);
1339             ewitab           = _mm_cvttpd_epi32(ewrt);
1340 #ifdef __XOP__
1341             eweps            = _mm_frcz_pd(ewrt);
1342 #else
1343             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1344 #endif
1345             twoeweps         = _mm_add_pd(eweps,eweps);
1346             ewitab           = _mm_slli_epi32(ewitab,2);
1347             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1348             ewtabD           = _mm_setzero_pd();
1349             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1350             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1351             ewtabFn          = _mm_setzero_pd();
1352             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1353             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1354             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1355             velec            = _mm_mul_pd(qq22,_mm_sub_pd(_mm_sub_pd(rinv22,sh_ewald),velec));
1356             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1357
1358             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
1359
1360             /* Update potential sum for this i atom from the interaction with this j atom. */
1361             velec            = _mm_and_pd(velec,cutoff_mask);
1362             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1363             velecsum         = _mm_add_pd(velecsum,velec);
1364
1365             fscal            = felec;
1366
1367             fscal            = _mm_and_pd(fscal,cutoff_mask);
1368
1369             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1370
1371             /* Update vectorial force */
1372             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1373             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1374             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1375             
1376             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1377             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1378             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1379
1380             }
1381
1382             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1383
1384             /* Inner loop uses 459 flops */
1385         }
1386
1387         /* End of innermost loop */
1388
1389         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1390                                               f+i_coord_offset,fshift+i_shift_offset);
1391
1392         ggid                        = gid[iidx];
1393         /* Update potential energies */
1394         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1395         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1396
1397         /* Increment number of inner iterations */
1398         inneriter                  += j_index_end - j_index_start;
1399
1400         /* Outer loop uses 20 flops */
1401     }
1402
1403     /* Increment number of outer iterations */
1404     outeriter        += nri;
1405
1406     /* Update outer/inner flops */
1407
1408     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*459);
1409 }
1410 /*
1411  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_F_avx_128_fma_double
1412  * Electrostatics interaction: Ewald
1413  * VdW interaction:            LennardJones
1414  * Geometry:                   Water3-Water3
1415  * Calculate force/pot:        Force
1416  */
1417 void
1418 nb_kernel_ElecEwSh_VdwLJSh_GeomW3W3_F_avx_128_fma_double
1419                     (t_nblist                    * gmx_restrict       nlist,
1420                      rvec                        * gmx_restrict          xx,
1421                      rvec                        * gmx_restrict          ff,
1422                      t_forcerec                  * gmx_restrict          fr,
1423                      t_mdatoms                   * gmx_restrict     mdatoms,
1424                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1425                      t_nrnb                      * gmx_restrict        nrnb)
1426 {
1427     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1428      * just 0 for non-waters.
1429      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1430      * jnr indices corresponding to data put in the four positions in the SIMD register.
1431      */
1432     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1433     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1434     int              jnrA,jnrB;
1435     int              j_coord_offsetA,j_coord_offsetB;
1436     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1437     real             rcutoff_scalar;
1438     real             *shiftvec,*fshift,*x,*f;
1439     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1440     int              vdwioffset0;
1441     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1442     int              vdwioffset1;
1443     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1444     int              vdwioffset2;
1445     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1446     int              vdwjidx0A,vdwjidx0B;
1447     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1448     int              vdwjidx1A,vdwjidx1B;
1449     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1450     int              vdwjidx2A,vdwjidx2B;
1451     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1452     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1453     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1454     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1455     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1456     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1457     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1458     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1459     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1460     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1461     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1462     real             *charge;
1463     int              nvdwtype;
1464     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1465     int              *vdwtype;
1466     real             *vdwparam;
1467     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1468     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1469     __m128i          ewitab;
1470     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1471     real             *ewtab;
1472     __m128d          dummy_mask,cutoff_mask;
1473     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1474     __m128d          one     = _mm_set1_pd(1.0);
1475     __m128d          two     = _mm_set1_pd(2.0);
1476     x                = xx[0];
1477     f                = ff[0];
1478
1479     nri              = nlist->nri;
1480     iinr             = nlist->iinr;
1481     jindex           = nlist->jindex;
1482     jjnr             = nlist->jjnr;
1483     shiftidx         = nlist->shift;
1484     gid              = nlist->gid;
1485     shiftvec         = fr->shift_vec[0];
1486     fshift           = fr->fshift[0];
1487     facel            = _mm_set1_pd(fr->epsfac);
1488     charge           = mdatoms->chargeA;
1489     nvdwtype         = fr->ntype;
1490     vdwparam         = fr->nbfp;
1491     vdwtype          = mdatoms->typeA;
1492
1493     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1494     ewtab            = fr->ic->tabq_coul_F;
1495     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1496     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1497
1498     /* Setup water-specific parameters */
1499     inr              = nlist->iinr[0];
1500     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1501     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1502     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1503     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1504
1505     jq0              = _mm_set1_pd(charge[inr+0]);
1506     jq1              = _mm_set1_pd(charge[inr+1]);
1507     jq2              = _mm_set1_pd(charge[inr+2]);
1508     vdwjidx0A        = 2*vdwtype[inr+0];
1509     qq00             = _mm_mul_pd(iq0,jq0);
1510     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1511     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1512     qq01             = _mm_mul_pd(iq0,jq1);
1513     qq02             = _mm_mul_pd(iq0,jq2);
1514     qq10             = _mm_mul_pd(iq1,jq0);
1515     qq11             = _mm_mul_pd(iq1,jq1);
1516     qq12             = _mm_mul_pd(iq1,jq2);
1517     qq20             = _mm_mul_pd(iq2,jq0);
1518     qq21             = _mm_mul_pd(iq2,jq1);
1519     qq22             = _mm_mul_pd(iq2,jq2);
1520
1521     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1522     rcutoff_scalar   = fr->rcoulomb;
1523     rcutoff          = _mm_set1_pd(rcutoff_scalar);
1524     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
1525
1526     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
1527     rvdw             = _mm_set1_pd(fr->rvdw);
1528
1529     /* Avoid stupid compiler warnings */
1530     jnrA = jnrB = 0;
1531     j_coord_offsetA = 0;
1532     j_coord_offsetB = 0;
1533
1534     outeriter        = 0;
1535     inneriter        = 0;
1536
1537     /* Start outer loop over neighborlists */
1538     for(iidx=0; iidx<nri; iidx++)
1539     {
1540         /* Load shift vector for this list */
1541         i_shift_offset   = DIM*shiftidx[iidx];
1542
1543         /* Load limits for loop over neighbors */
1544         j_index_start    = jindex[iidx];
1545         j_index_end      = jindex[iidx+1];
1546
1547         /* Get outer coordinate index */
1548         inr              = iinr[iidx];
1549         i_coord_offset   = DIM*inr;
1550
1551         /* Load i particle coords and add shift vector */
1552         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1553                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1554
1555         fix0             = _mm_setzero_pd();
1556         fiy0             = _mm_setzero_pd();
1557         fiz0             = _mm_setzero_pd();
1558         fix1             = _mm_setzero_pd();
1559         fiy1             = _mm_setzero_pd();
1560         fiz1             = _mm_setzero_pd();
1561         fix2             = _mm_setzero_pd();
1562         fiy2             = _mm_setzero_pd();
1563         fiz2             = _mm_setzero_pd();
1564
1565         /* Start inner kernel loop */
1566         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1567         {
1568
1569             /* Get j neighbor index, and coordinate index */
1570             jnrA             = jjnr[jidx];
1571             jnrB             = jjnr[jidx+1];
1572             j_coord_offsetA  = DIM*jnrA;
1573             j_coord_offsetB  = DIM*jnrB;
1574
1575             /* load j atom coordinates */
1576             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1577                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1578
1579             /* Calculate displacement vector */
1580             dx00             = _mm_sub_pd(ix0,jx0);
1581             dy00             = _mm_sub_pd(iy0,jy0);
1582             dz00             = _mm_sub_pd(iz0,jz0);
1583             dx01             = _mm_sub_pd(ix0,jx1);
1584             dy01             = _mm_sub_pd(iy0,jy1);
1585             dz01             = _mm_sub_pd(iz0,jz1);
1586             dx02             = _mm_sub_pd(ix0,jx2);
1587             dy02             = _mm_sub_pd(iy0,jy2);
1588             dz02             = _mm_sub_pd(iz0,jz2);
1589             dx10             = _mm_sub_pd(ix1,jx0);
1590             dy10             = _mm_sub_pd(iy1,jy0);
1591             dz10             = _mm_sub_pd(iz1,jz0);
1592             dx11             = _mm_sub_pd(ix1,jx1);
1593             dy11             = _mm_sub_pd(iy1,jy1);
1594             dz11             = _mm_sub_pd(iz1,jz1);
1595             dx12             = _mm_sub_pd(ix1,jx2);
1596             dy12             = _mm_sub_pd(iy1,jy2);
1597             dz12             = _mm_sub_pd(iz1,jz2);
1598             dx20             = _mm_sub_pd(ix2,jx0);
1599             dy20             = _mm_sub_pd(iy2,jy0);
1600             dz20             = _mm_sub_pd(iz2,jz0);
1601             dx21             = _mm_sub_pd(ix2,jx1);
1602             dy21             = _mm_sub_pd(iy2,jy1);
1603             dz21             = _mm_sub_pd(iz2,jz1);
1604             dx22             = _mm_sub_pd(ix2,jx2);
1605             dy22             = _mm_sub_pd(iy2,jy2);
1606             dz22             = _mm_sub_pd(iz2,jz2);
1607
1608             /* Calculate squared distance and things based on it */
1609             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1610             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1611             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1612             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1613             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1614             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1615             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1616             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1617             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1618
1619             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1620             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1621             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1622             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1623             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1624             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1625             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1626             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1627             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1628
1629             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1630             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1631             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1632             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1633             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1634             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1635             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1636             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1637             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1638
1639             fjx0             = _mm_setzero_pd();
1640             fjy0             = _mm_setzero_pd();
1641             fjz0             = _mm_setzero_pd();
1642             fjx1             = _mm_setzero_pd();
1643             fjy1             = _mm_setzero_pd();
1644             fjz1             = _mm_setzero_pd();
1645             fjx2             = _mm_setzero_pd();
1646             fjy2             = _mm_setzero_pd();
1647             fjz2             = _mm_setzero_pd();
1648
1649             /**************************
1650              * CALCULATE INTERACTIONS *
1651              **************************/
1652
1653             if (gmx_mm_any_lt(rsq00,rcutoff2))
1654             {
1655
1656             r00              = _mm_mul_pd(rsq00,rinv00);
1657
1658             /* EWALD ELECTROSTATICS */
1659
1660             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1661             ewrt             = _mm_mul_pd(r00,ewtabscale);
1662             ewitab           = _mm_cvttpd_epi32(ewrt);
1663 #ifdef __XOP__
1664             eweps            = _mm_frcz_pd(ewrt);
1665 #else
1666             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1667 #endif
1668             twoeweps         = _mm_add_pd(eweps,eweps);
1669             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1670                                          &ewtabF,&ewtabFn);
1671             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1672             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1673
1674             /* LENNARD-JONES DISPERSION/REPULSION */
1675
1676             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1677             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1678
1679             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1680
1681             fscal            = _mm_add_pd(felec,fvdw);
1682
1683             fscal            = _mm_and_pd(fscal,cutoff_mask);
1684
1685             /* Update vectorial force */
1686             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1687             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1688             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1689             
1690             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1691             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1692             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1693
1694             }
1695
1696             /**************************
1697              * CALCULATE INTERACTIONS *
1698              **************************/
1699
1700             if (gmx_mm_any_lt(rsq01,rcutoff2))
1701             {
1702
1703             r01              = _mm_mul_pd(rsq01,rinv01);
1704
1705             /* EWALD ELECTROSTATICS */
1706
1707             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1708             ewrt             = _mm_mul_pd(r01,ewtabscale);
1709             ewitab           = _mm_cvttpd_epi32(ewrt);
1710 #ifdef __XOP__
1711             eweps            = _mm_frcz_pd(ewrt);
1712 #else
1713             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1714 #endif
1715             twoeweps         = _mm_add_pd(eweps,eweps);
1716             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1717                                          &ewtabF,&ewtabFn);
1718             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1719             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1720
1721             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
1722
1723             fscal            = felec;
1724
1725             fscal            = _mm_and_pd(fscal,cutoff_mask);
1726
1727             /* Update vectorial force */
1728             fix0             = _mm_macc_pd(dx01,fscal,fix0);
1729             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
1730             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
1731             
1732             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
1733             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
1734             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
1735
1736             }
1737
1738             /**************************
1739              * CALCULATE INTERACTIONS *
1740              **************************/
1741
1742             if (gmx_mm_any_lt(rsq02,rcutoff2))
1743             {
1744
1745             r02              = _mm_mul_pd(rsq02,rinv02);
1746
1747             /* EWALD ELECTROSTATICS */
1748
1749             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1750             ewrt             = _mm_mul_pd(r02,ewtabscale);
1751             ewitab           = _mm_cvttpd_epi32(ewrt);
1752 #ifdef __XOP__
1753             eweps            = _mm_frcz_pd(ewrt);
1754 #else
1755             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1756 #endif
1757             twoeweps         = _mm_add_pd(eweps,eweps);
1758             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1759                                          &ewtabF,&ewtabFn);
1760             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1761             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1762
1763             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
1764
1765             fscal            = felec;
1766
1767             fscal            = _mm_and_pd(fscal,cutoff_mask);
1768
1769             /* Update vectorial force */
1770             fix0             = _mm_macc_pd(dx02,fscal,fix0);
1771             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
1772             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
1773             
1774             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
1775             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
1776             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
1777
1778             }
1779
1780             /**************************
1781              * CALCULATE INTERACTIONS *
1782              **************************/
1783
1784             if (gmx_mm_any_lt(rsq10,rcutoff2))
1785             {
1786
1787             r10              = _mm_mul_pd(rsq10,rinv10);
1788
1789             /* EWALD ELECTROSTATICS */
1790
1791             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1792             ewrt             = _mm_mul_pd(r10,ewtabscale);
1793             ewitab           = _mm_cvttpd_epi32(ewrt);
1794 #ifdef __XOP__
1795             eweps            = _mm_frcz_pd(ewrt);
1796 #else
1797             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1798 #endif
1799             twoeweps         = _mm_add_pd(eweps,eweps);
1800             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1801                                          &ewtabF,&ewtabFn);
1802             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1803             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1804
1805             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1806
1807             fscal            = felec;
1808
1809             fscal            = _mm_and_pd(fscal,cutoff_mask);
1810
1811             /* Update vectorial force */
1812             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1813             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1814             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1815             
1816             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1817             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1818             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1819
1820             }
1821
1822             /**************************
1823              * CALCULATE INTERACTIONS *
1824              **************************/
1825
1826             if (gmx_mm_any_lt(rsq11,rcutoff2))
1827             {
1828
1829             r11              = _mm_mul_pd(rsq11,rinv11);
1830
1831             /* EWALD ELECTROSTATICS */
1832
1833             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1834             ewrt             = _mm_mul_pd(r11,ewtabscale);
1835             ewitab           = _mm_cvttpd_epi32(ewrt);
1836 #ifdef __XOP__
1837             eweps            = _mm_frcz_pd(ewrt);
1838 #else
1839             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1840 #endif
1841             twoeweps         = _mm_add_pd(eweps,eweps);
1842             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1843                                          &ewtabF,&ewtabFn);
1844             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1845             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1846
1847             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
1848
1849             fscal            = felec;
1850
1851             fscal            = _mm_and_pd(fscal,cutoff_mask);
1852
1853             /* Update vectorial force */
1854             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1855             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1856             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1857             
1858             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1859             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1860             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1861
1862             }
1863
1864             /**************************
1865              * CALCULATE INTERACTIONS *
1866              **************************/
1867
1868             if (gmx_mm_any_lt(rsq12,rcutoff2))
1869             {
1870
1871             r12              = _mm_mul_pd(rsq12,rinv12);
1872
1873             /* EWALD ELECTROSTATICS */
1874
1875             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1876             ewrt             = _mm_mul_pd(r12,ewtabscale);
1877             ewitab           = _mm_cvttpd_epi32(ewrt);
1878 #ifdef __XOP__
1879             eweps            = _mm_frcz_pd(ewrt);
1880 #else
1881             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1882 #endif
1883             twoeweps         = _mm_add_pd(eweps,eweps);
1884             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1885                                          &ewtabF,&ewtabFn);
1886             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1887             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1888
1889             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
1890
1891             fscal            = felec;
1892
1893             fscal            = _mm_and_pd(fscal,cutoff_mask);
1894
1895             /* Update vectorial force */
1896             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1897             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1898             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1899             
1900             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1901             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1902             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1903
1904             }
1905
1906             /**************************
1907              * CALCULATE INTERACTIONS *
1908              **************************/
1909
1910             if (gmx_mm_any_lt(rsq20,rcutoff2))
1911             {
1912
1913             r20              = _mm_mul_pd(rsq20,rinv20);
1914
1915             /* EWALD ELECTROSTATICS */
1916
1917             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1918             ewrt             = _mm_mul_pd(r20,ewtabscale);
1919             ewitab           = _mm_cvttpd_epi32(ewrt);
1920 #ifdef __XOP__
1921             eweps            = _mm_frcz_pd(ewrt);
1922 #else
1923             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1924 #endif
1925             twoeweps         = _mm_add_pd(eweps,eweps);
1926             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1927                                          &ewtabF,&ewtabFn);
1928             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1929             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1930
1931             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1932
1933             fscal            = felec;
1934
1935             fscal            = _mm_and_pd(fscal,cutoff_mask);
1936
1937             /* Update vectorial force */
1938             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1939             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1940             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1941             
1942             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1943             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1944             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1945
1946             }
1947
1948             /**************************
1949              * CALCULATE INTERACTIONS *
1950              **************************/
1951
1952             if (gmx_mm_any_lt(rsq21,rcutoff2))
1953             {
1954
1955             r21              = _mm_mul_pd(rsq21,rinv21);
1956
1957             /* EWALD ELECTROSTATICS */
1958
1959             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1960             ewrt             = _mm_mul_pd(r21,ewtabscale);
1961             ewitab           = _mm_cvttpd_epi32(ewrt);
1962 #ifdef __XOP__
1963             eweps            = _mm_frcz_pd(ewrt);
1964 #else
1965             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1966 #endif
1967             twoeweps         = _mm_add_pd(eweps,eweps);
1968             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1969                                          &ewtabF,&ewtabFn);
1970             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1971             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1972
1973             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
1974
1975             fscal            = felec;
1976
1977             fscal            = _mm_and_pd(fscal,cutoff_mask);
1978
1979             /* Update vectorial force */
1980             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1981             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1982             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1983             
1984             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1985             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1986             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1987
1988             }
1989
1990             /**************************
1991              * CALCULATE INTERACTIONS *
1992              **************************/
1993
1994             if (gmx_mm_any_lt(rsq22,rcutoff2))
1995             {
1996
1997             r22              = _mm_mul_pd(rsq22,rinv22);
1998
1999             /* EWALD ELECTROSTATICS */
2000
2001             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2002             ewrt             = _mm_mul_pd(r22,ewtabscale);
2003             ewitab           = _mm_cvttpd_epi32(ewrt);
2004 #ifdef __XOP__
2005             eweps            = _mm_frcz_pd(ewrt);
2006 #else
2007             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2008 #endif
2009             twoeweps         = _mm_add_pd(eweps,eweps);
2010             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
2011                                          &ewtabF,&ewtabFn);
2012             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2013             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2014
2015             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2016
2017             fscal            = felec;
2018
2019             fscal            = _mm_and_pd(fscal,cutoff_mask);
2020
2021             /* Update vectorial force */
2022             fix2             = _mm_macc_pd(dx22,fscal,fix2);
2023             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
2024             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
2025             
2026             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
2027             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
2028             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
2029
2030             }
2031
2032             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2033
2034             /* Inner loop uses 385 flops */
2035         }
2036
2037         if(jidx<j_index_end)
2038         {
2039
2040             jnrA             = jjnr[jidx];
2041             j_coord_offsetA  = DIM*jnrA;
2042
2043             /* load j atom coordinates */
2044             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
2045                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
2046
2047             /* Calculate displacement vector */
2048             dx00             = _mm_sub_pd(ix0,jx0);
2049             dy00             = _mm_sub_pd(iy0,jy0);
2050             dz00             = _mm_sub_pd(iz0,jz0);
2051             dx01             = _mm_sub_pd(ix0,jx1);
2052             dy01             = _mm_sub_pd(iy0,jy1);
2053             dz01             = _mm_sub_pd(iz0,jz1);
2054             dx02             = _mm_sub_pd(ix0,jx2);
2055             dy02             = _mm_sub_pd(iy0,jy2);
2056             dz02             = _mm_sub_pd(iz0,jz2);
2057             dx10             = _mm_sub_pd(ix1,jx0);
2058             dy10             = _mm_sub_pd(iy1,jy0);
2059             dz10             = _mm_sub_pd(iz1,jz0);
2060             dx11             = _mm_sub_pd(ix1,jx1);
2061             dy11             = _mm_sub_pd(iy1,jy1);
2062             dz11             = _mm_sub_pd(iz1,jz1);
2063             dx12             = _mm_sub_pd(ix1,jx2);
2064             dy12             = _mm_sub_pd(iy1,jy2);
2065             dz12             = _mm_sub_pd(iz1,jz2);
2066             dx20             = _mm_sub_pd(ix2,jx0);
2067             dy20             = _mm_sub_pd(iy2,jy0);
2068             dz20             = _mm_sub_pd(iz2,jz0);
2069             dx21             = _mm_sub_pd(ix2,jx1);
2070             dy21             = _mm_sub_pd(iy2,jy1);
2071             dz21             = _mm_sub_pd(iz2,jz1);
2072             dx22             = _mm_sub_pd(ix2,jx2);
2073             dy22             = _mm_sub_pd(iy2,jy2);
2074             dz22             = _mm_sub_pd(iz2,jz2);
2075
2076             /* Calculate squared distance and things based on it */
2077             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2078             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
2079             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
2080             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
2081             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2082             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2083             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
2084             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2085             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2086
2087             rinv00           = gmx_mm_invsqrt_pd(rsq00);
2088             rinv01           = gmx_mm_invsqrt_pd(rsq01);
2089             rinv02           = gmx_mm_invsqrt_pd(rsq02);
2090             rinv10           = gmx_mm_invsqrt_pd(rsq10);
2091             rinv11           = gmx_mm_invsqrt_pd(rsq11);
2092             rinv12           = gmx_mm_invsqrt_pd(rsq12);
2093             rinv20           = gmx_mm_invsqrt_pd(rsq20);
2094             rinv21           = gmx_mm_invsqrt_pd(rsq21);
2095             rinv22           = gmx_mm_invsqrt_pd(rsq22);
2096
2097             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
2098             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
2099             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
2100             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
2101             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2102             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2103             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
2104             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2105             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2106
2107             fjx0             = _mm_setzero_pd();
2108             fjy0             = _mm_setzero_pd();
2109             fjz0             = _mm_setzero_pd();
2110             fjx1             = _mm_setzero_pd();
2111             fjy1             = _mm_setzero_pd();
2112             fjz1             = _mm_setzero_pd();
2113             fjx2             = _mm_setzero_pd();
2114             fjy2             = _mm_setzero_pd();
2115             fjz2             = _mm_setzero_pd();
2116
2117             /**************************
2118              * CALCULATE INTERACTIONS *
2119              **************************/
2120
2121             if (gmx_mm_any_lt(rsq00,rcutoff2))
2122             {
2123
2124             r00              = _mm_mul_pd(rsq00,rinv00);
2125
2126             /* EWALD ELECTROSTATICS */
2127
2128             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2129             ewrt             = _mm_mul_pd(r00,ewtabscale);
2130             ewitab           = _mm_cvttpd_epi32(ewrt);
2131 #ifdef __XOP__
2132             eweps            = _mm_frcz_pd(ewrt);
2133 #else
2134             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2135 #endif
2136             twoeweps         = _mm_add_pd(eweps,eweps);
2137             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2138             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2139             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
2140
2141             /* LENNARD-JONES DISPERSION/REPULSION */
2142
2143             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
2144             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
2145
2146             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
2147
2148             fscal            = _mm_add_pd(felec,fvdw);
2149
2150             fscal            = _mm_and_pd(fscal,cutoff_mask);
2151
2152             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2153
2154             /* Update vectorial force */
2155             fix0             = _mm_macc_pd(dx00,fscal,fix0);
2156             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
2157             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
2158             
2159             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
2160             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
2161             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
2162
2163             }
2164
2165             /**************************
2166              * CALCULATE INTERACTIONS *
2167              **************************/
2168
2169             if (gmx_mm_any_lt(rsq01,rcutoff2))
2170             {
2171
2172             r01              = _mm_mul_pd(rsq01,rinv01);
2173
2174             /* EWALD ELECTROSTATICS */
2175
2176             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2177             ewrt             = _mm_mul_pd(r01,ewtabscale);
2178             ewitab           = _mm_cvttpd_epi32(ewrt);
2179 #ifdef __XOP__
2180             eweps            = _mm_frcz_pd(ewrt);
2181 #else
2182             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2183 #endif
2184             twoeweps         = _mm_add_pd(eweps,eweps);
2185             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2186             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2187             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2188
2189             cutoff_mask      = _mm_cmplt_pd(rsq01,rcutoff2);
2190
2191             fscal            = felec;
2192
2193             fscal            = _mm_and_pd(fscal,cutoff_mask);
2194
2195             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2196
2197             /* Update vectorial force */
2198             fix0             = _mm_macc_pd(dx01,fscal,fix0);
2199             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
2200             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
2201             
2202             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
2203             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
2204             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
2205
2206             }
2207
2208             /**************************
2209              * CALCULATE INTERACTIONS *
2210              **************************/
2211
2212             if (gmx_mm_any_lt(rsq02,rcutoff2))
2213             {
2214
2215             r02              = _mm_mul_pd(rsq02,rinv02);
2216
2217             /* EWALD ELECTROSTATICS */
2218
2219             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2220             ewrt             = _mm_mul_pd(r02,ewtabscale);
2221             ewitab           = _mm_cvttpd_epi32(ewrt);
2222 #ifdef __XOP__
2223             eweps            = _mm_frcz_pd(ewrt);
2224 #else
2225             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2226 #endif
2227             twoeweps         = _mm_add_pd(eweps,eweps);
2228             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2229             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2230             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2231
2232             cutoff_mask      = _mm_cmplt_pd(rsq02,rcutoff2);
2233
2234             fscal            = felec;
2235
2236             fscal            = _mm_and_pd(fscal,cutoff_mask);
2237
2238             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2239
2240             /* Update vectorial force */
2241             fix0             = _mm_macc_pd(dx02,fscal,fix0);
2242             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
2243             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
2244             
2245             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
2246             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
2247             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
2248
2249             }
2250
2251             /**************************
2252              * CALCULATE INTERACTIONS *
2253              **************************/
2254
2255             if (gmx_mm_any_lt(rsq10,rcutoff2))
2256             {
2257
2258             r10              = _mm_mul_pd(rsq10,rinv10);
2259
2260             /* EWALD ELECTROSTATICS */
2261
2262             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2263             ewrt             = _mm_mul_pd(r10,ewtabscale);
2264             ewitab           = _mm_cvttpd_epi32(ewrt);
2265 #ifdef __XOP__
2266             eweps            = _mm_frcz_pd(ewrt);
2267 #else
2268             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2269 #endif
2270             twoeweps         = _mm_add_pd(eweps,eweps);
2271             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2272             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2273             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2274
2275             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
2276
2277             fscal            = felec;
2278
2279             fscal            = _mm_and_pd(fscal,cutoff_mask);
2280
2281             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2282
2283             /* Update vectorial force */
2284             fix1             = _mm_macc_pd(dx10,fscal,fix1);
2285             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
2286             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
2287             
2288             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
2289             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
2290             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
2291
2292             }
2293
2294             /**************************
2295              * CALCULATE INTERACTIONS *
2296              **************************/
2297
2298             if (gmx_mm_any_lt(rsq11,rcutoff2))
2299             {
2300
2301             r11              = _mm_mul_pd(rsq11,rinv11);
2302
2303             /* EWALD ELECTROSTATICS */
2304
2305             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2306             ewrt             = _mm_mul_pd(r11,ewtabscale);
2307             ewitab           = _mm_cvttpd_epi32(ewrt);
2308 #ifdef __XOP__
2309             eweps            = _mm_frcz_pd(ewrt);
2310 #else
2311             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2312 #endif
2313             twoeweps         = _mm_add_pd(eweps,eweps);
2314             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2315             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2316             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2317
2318             cutoff_mask      = _mm_cmplt_pd(rsq11,rcutoff2);
2319
2320             fscal            = felec;
2321
2322             fscal            = _mm_and_pd(fscal,cutoff_mask);
2323
2324             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2325
2326             /* Update vectorial force */
2327             fix1             = _mm_macc_pd(dx11,fscal,fix1);
2328             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
2329             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
2330             
2331             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
2332             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
2333             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
2334
2335             }
2336
2337             /**************************
2338              * CALCULATE INTERACTIONS *
2339              **************************/
2340
2341             if (gmx_mm_any_lt(rsq12,rcutoff2))
2342             {
2343
2344             r12              = _mm_mul_pd(rsq12,rinv12);
2345
2346             /* EWALD ELECTROSTATICS */
2347
2348             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2349             ewrt             = _mm_mul_pd(r12,ewtabscale);
2350             ewitab           = _mm_cvttpd_epi32(ewrt);
2351 #ifdef __XOP__
2352             eweps            = _mm_frcz_pd(ewrt);
2353 #else
2354             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2355 #endif
2356             twoeweps         = _mm_add_pd(eweps,eweps);
2357             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2358             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2359             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2360
2361             cutoff_mask      = _mm_cmplt_pd(rsq12,rcutoff2);
2362
2363             fscal            = felec;
2364
2365             fscal            = _mm_and_pd(fscal,cutoff_mask);
2366
2367             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2368
2369             /* Update vectorial force */
2370             fix1             = _mm_macc_pd(dx12,fscal,fix1);
2371             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
2372             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
2373             
2374             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
2375             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
2376             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
2377
2378             }
2379
2380             /**************************
2381              * CALCULATE INTERACTIONS *
2382              **************************/
2383
2384             if (gmx_mm_any_lt(rsq20,rcutoff2))
2385             {
2386
2387             r20              = _mm_mul_pd(rsq20,rinv20);
2388
2389             /* EWALD ELECTROSTATICS */
2390
2391             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2392             ewrt             = _mm_mul_pd(r20,ewtabscale);
2393             ewitab           = _mm_cvttpd_epi32(ewrt);
2394 #ifdef __XOP__
2395             eweps            = _mm_frcz_pd(ewrt);
2396 #else
2397             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2398 #endif
2399             twoeweps         = _mm_add_pd(eweps,eweps);
2400             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2401             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2402             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2403
2404             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
2405
2406             fscal            = felec;
2407
2408             fscal            = _mm_and_pd(fscal,cutoff_mask);
2409
2410             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2411
2412             /* Update vectorial force */
2413             fix2             = _mm_macc_pd(dx20,fscal,fix2);
2414             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
2415             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
2416             
2417             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
2418             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
2419             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
2420
2421             }
2422
2423             /**************************
2424              * CALCULATE INTERACTIONS *
2425              **************************/
2426
2427             if (gmx_mm_any_lt(rsq21,rcutoff2))
2428             {
2429
2430             r21              = _mm_mul_pd(rsq21,rinv21);
2431
2432             /* EWALD ELECTROSTATICS */
2433
2434             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2435             ewrt             = _mm_mul_pd(r21,ewtabscale);
2436             ewitab           = _mm_cvttpd_epi32(ewrt);
2437 #ifdef __XOP__
2438             eweps            = _mm_frcz_pd(ewrt);
2439 #else
2440             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2441 #endif
2442             twoeweps         = _mm_add_pd(eweps,eweps);
2443             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2444             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2445             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2446
2447             cutoff_mask      = _mm_cmplt_pd(rsq21,rcutoff2);
2448
2449             fscal            = felec;
2450
2451             fscal            = _mm_and_pd(fscal,cutoff_mask);
2452
2453             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2454
2455             /* Update vectorial force */
2456             fix2             = _mm_macc_pd(dx21,fscal,fix2);
2457             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
2458             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
2459             
2460             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
2461             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
2462             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
2463
2464             }
2465
2466             /**************************
2467              * CALCULATE INTERACTIONS *
2468              **************************/
2469
2470             if (gmx_mm_any_lt(rsq22,rcutoff2))
2471             {
2472
2473             r22              = _mm_mul_pd(rsq22,rinv22);
2474
2475             /* EWALD ELECTROSTATICS */
2476
2477             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2478             ewrt             = _mm_mul_pd(r22,ewtabscale);
2479             ewitab           = _mm_cvttpd_epi32(ewrt);
2480 #ifdef __XOP__
2481             eweps            = _mm_frcz_pd(ewrt);
2482 #else
2483             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2484 #endif
2485             twoeweps         = _mm_add_pd(eweps,eweps);
2486             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2487             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2488             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2489
2490             cutoff_mask      = _mm_cmplt_pd(rsq22,rcutoff2);
2491
2492             fscal            = felec;
2493
2494             fscal            = _mm_and_pd(fscal,cutoff_mask);
2495
2496             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2497
2498             /* Update vectorial force */
2499             fix2             = _mm_macc_pd(dx22,fscal,fix2);
2500             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
2501             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
2502             
2503             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
2504             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
2505             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
2506
2507             }
2508
2509             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2510
2511             /* Inner loop uses 385 flops */
2512         }
2513
2514         /* End of innermost loop */
2515
2516         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2517                                               f+i_coord_offset,fshift+i_shift_offset);
2518
2519         /* Increment number of inner iterations */
2520         inneriter                  += j_index_end - j_index_start;
2521
2522         /* Outer loop uses 18 flops */
2523     }
2524
2525     /* Increment number of outer iterations */
2526     outeriter        += nri;
2527
2528     /* Update outer/inner flops */
2529
2530     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*385);
2531 }