Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          ewitab;
100     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
126     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
131     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
132     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
136     rcutoff_scalar   = fr->rcoulomb;
137     rcutoff          = _mm_set1_pd(rcutoff_scalar);
138     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
139
140     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
141     rvdw             = _mm_set1_pd(fr->rvdw);
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
168
169         fix0             = _mm_setzero_pd();
170         fiy0             = _mm_setzero_pd();
171         fiz0             = _mm_setzero_pd();
172         fix1             = _mm_setzero_pd();
173         fiy1             = _mm_setzero_pd();
174         fiz1             = _mm_setzero_pd();
175         fix2             = _mm_setzero_pd();
176         fiy2             = _mm_setzero_pd();
177         fiz2             = _mm_setzero_pd();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_pd();
181         vvdwsum          = _mm_setzero_pd();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_pd(ix0,jx0);
199             dy00             = _mm_sub_pd(iy0,jy0);
200             dz00             = _mm_sub_pd(iz0,jz0);
201             dx10             = _mm_sub_pd(ix1,jx0);
202             dy10             = _mm_sub_pd(iy1,jy0);
203             dz10             = _mm_sub_pd(iz1,jz0);
204             dx20             = _mm_sub_pd(ix2,jx0);
205             dy20             = _mm_sub_pd(iy2,jy0);
206             dz20             = _mm_sub_pd(iz2,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
210             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
211             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
212
213             rinv00           = gmx_mm_invsqrt_pd(rsq00);
214             rinv10           = gmx_mm_invsqrt_pd(rsq10);
215             rinv20           = gmx_mm_invsqrt_pd(rsq20);
216
217             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
218             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
219             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225
226             fjx0             = _mm_setzero_pd();
227             fjy0             = _mm_setzero_pd();
228             fjz0             = _mm_setzero_pd();
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             if (gmx_mm_any_lt(rsq00,rcutoff2))
235             {
236
237             r00              = _mm_mul_pd(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm_mul_pd(iq0,jq0);
241             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
243
244             /* EWALD ELECTROSTATICS */
245
246             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
247             ewrt             = _mm_mul_pd(r00,ewtabscale);
248             ewitab           = _mm_cvttpd_epi32(ewrt);
249 #ifdef __XOP__
250             eweps            = _mm_frcz_pd(ewrt);
251 #else
252             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
253 #endif
254             twoeweps         = _mm_add_pd(eweps,eweps);
255             ewitab           = _mm_slli_epi32(ewitab,2);
256             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
257             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
258             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
259             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
260             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
261             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
262             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
263             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
264             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
265             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
266
267             /* LENNARD-JONES DISPERSION/REPULSION */
268
269             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
270             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
271             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
272             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
273                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
274             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
275
276             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velec            = _mm_and_pd(velec,cutoff_mask);
280             velecsum         = _mm_add_pd(velecsum,velec);
281             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
282             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
283
284             fscal            = _mm_add_pd(felec,fvdw);
285
286             fscal            = _mm_and_pd(fscal,cutoff_mask);
287
288             /* Update vectorial force */
289             fix0             = _mm_macc_pd(dx00,fscal,fix0);
290             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
291             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
292             
293             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
294             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
295             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
296
297             }
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             if (gmx_mm_any_lt(rsq10,rcutoff2))
304             {
305
306             r10              = _mm_mul_pd(rsq10,rinv10);
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq10             = _mm_mul_pd(iq1,jq0);
310
311             /* EWALD ELECTROSTATICS */
312
313             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
314             ewrt             = _mm_mul_pd(r10,ewtabscale);
315             ewitab           = _mm_cvttpd_epi32(ewrt);
316 #ifdef __XOP__
317             eweps            = _mm_frcz_pd(ewrt);
318 #else
319             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
320 #endif
321             twoeweps         = _mm_add_pd(eweps,eweps);
322             ewitab           = _mm_slli_epi32(ewitab,2);
323             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
324             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
325             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
326             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
327             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
328             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
329             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
330             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
331             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
332             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
333
334             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velec            = _mm_and_pd(velec,cutoff_mask);
338             velecsum         = _mm_add_pd(velecsum,velec);
339
340             fscal            = felec;
341
342             fscal            = _mm_and_pd(fscal,cutoff_mask);
343
344             /* Update vectorial force */
345             fix1             = _mm_macc_pd(dx10,fscal,fix1);
346             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
347             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
348             
349             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
350             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
351             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
352
353             }
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             if (gmx_mm_any_lt(rsq20,rcutoff2))
360             {
361
362             r20              = _mm_mul_pd(rsq20,rinv20);
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq20             = _mm_mul_pd(iq2,jq0);
366
367             /* EWALD ELECTROSTATICS */
368
369             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
370             ewrt             = _mm_mul_pd(r20,ewtabscale);
371             ewitab           = _mm_cvttpd_epi32(ewrt);
372 #ifdef __XOP__
373             eweps            = _mm_frcz_pd(ewrt);
374 #else
375             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
376 #endif
377             twoeweps         = _mm_add_pd(eweps,eweps);
378             ewitab           = _mm_slli_epi32(ewitab,2);
379             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
380             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
381             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
382             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
383             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
384             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
385             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
386             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
387             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
388             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
389
390             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
391
392             /* Update potential sum for this i atom from the interaction with this j atom. */
393             velec            = _mm_and_pd(velec,cutoff_mask);
394             velecsum         = _mm_add_pd(velecsum,velec);
395
396             fscal            = felec;
397
398             fscal            = _mm_and_pd(fscal,cutoff_mask);
399
400             /* Update vectorial force */
401             fix2             = _mm_macc_pd(dx20,fscal,fix2);
402             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
403             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
404             
405             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
406             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
407             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
408
409             }
410
411             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
412
413             /* Inner loop uses 168 flops */
414         }
415
416         if(jidx<j_index_end)
417         {
418
419             jnrA             = jjnr[jidx];
420             j_coord_offsetA  = DIM*jnrA;
421
422             /* load j atom coordinates */
423             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
424                                               &jx0,&jy0,&jz0);
425
426             /* Calculate displacement vector */
427             dx00             = _mm_sub_pd(ix0,jx0);
428             dy00             = _mm_sub_pd(iy0,jy0);
429             dz00             = _mm_sub_pd(iz0,jz0);
430             dx10             = _mm_sub_pd(ix1,jx0);
431             dy10             = _mm_sub_pd(iy1,jy0);
432             dz10             = _mm_sub_pd(iz1,jz0);
433             dx20             = _mm_sub_pd(ix2,jx0);
434             dy20             = _mm_sub_pd(iy2,jy0);
435             dz20             = _mm_sub_pd(iz2,jz0);
436
437             /* Calculate squared distance and things based on it */
438             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
439             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
440             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
441
442             rinv00           = gmx_mm_invsqrt_pd(rsq00);
443             rinv10           = gmx_mm_invsqrt_pd(rsq10);
444             rinv20           = gmx_mm_invsqrt_pd(rsq20);
445
446             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
447             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
448             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
449
450             /* Load parameters for j particles */
451             jq0              = _mm_load_sd(charge+jnrA+0);
452             vdwjidx0A        = 2*vdwtype[jnrA+0];
453
454             fjx0             = _mm_setzero_pd();
455             fjy0             = _mm_setzero_pd();
456             fjz0             = _mm_setzero_pd();
457
458             /**************************
459              * CALCULATE INTERACTIONS *
460              **************************/
461
462             if (gmx_mm_any_lt(rsq00,rcutoff2))
463             {
464
465             r00              = _mm_mul_pd(rsq00,rinv00);
466
467             /* Compute parameters for interactions between i and j atoms */
468             qq00             = _mm_mul_pd(iq0,jq0);
469             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
470
471             /* EWALD ELECTROSTATICS */
472
473             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
474             ewrt             = _mm_mul_pd(r00,ewtabscale);
475             ewitab           = _mm_cvttpd_epi32(ewrt);
476 #ifdef __XOP__
477             eweps            = _mm_frcz_pd(ewrt);
478 #else
479             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
480 #endif
481             twoeweps         = _mm_add_pd(eweps,eweps);
482             ewitab           = _mm_slli_epi32(ewitab,2);
483             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
484             ewtabD           = _mm_setzero_pd();
485             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
486             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
487             ewtabFn          = _mm_setzero_pd();
488             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
489             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
490             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
491             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
492             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
493
494             /* LENNARD-JONES DISPERSION/REPULSION */
495
496             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
497             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
498             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
499             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
500                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
501             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
502
503             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_and_pd(velec,cutoff_mask);
507             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
508             velecsum         = _mm_add_pd(velecsum,velec);
509             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
510             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
511             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
512
513             fscal            = _mm_add_pd(felec,fvdw);
514
515             fscal            = _mm_and_pd(fscal,cutoff_mask);
516
517             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
518
519             /* Update vectorial force */
520             fix0             = _mm_macc_pd(dx00,fscal,fix0);
521             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
522             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
523             
524             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
525             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
526             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
527
528             }
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             if (gmx_mm_any_lt(rsq10,rcutoff2))
535             {
536
537             r10              = _mm_mul_pd(rsq10,rinv10);
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq10             = _mm_mul_pd(iq1,jq0);
541
542             /* EWALD ELECTROSTATICS */
543
544             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
545             ewrt             = _mm_mul_pd(r10,ewtabscale);
546             ewitab           = _mm_cvttpd_epi32(ewrt);
547 #ifdef __XOP__
548             eweps            = _mm_frcz_pd(ewrt);
549 #else
550             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
551 #endif
552             twoeweps         = _mm_add_pd(eweps,eweps);
553             ewitab           = _mm_slli_epi32(ewitab,2);
554             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
555             ewtabD           = _mm_setzero_pd();
556             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
557             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
558             ewtabFn          = _mm_setzero_pd();
559             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
560             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
561             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
562             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
563             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
564
565             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
566
567             /* Update potential sum for this i atom from the interaction with this j atom. */
568             velec            = _mm_and_pd(velec,cutoff_mask);
569             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
570             velecsum         = _mm_add_pd(velecsum,velec);
571
572             fscal            = felec;
573
574             fscal            = _mm_and_pd(fscal,cutoff_mask);
575
576             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
577
578             /* Update vectorial force */
579             fix1             = _mm_macc_pd(dx10,fscal,fix1);
580             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
581             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
582             
583             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
584             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
585             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
586
587             }
588
589             /**************************
590              * CALCULATE INTERACTIONS *
591              **************************/
592
593             if (gmx_mm_any_lt(rsq20,rcutoff2))
594             {
595
596             r20              = _mm_mul_pd(rsq20,rinv20);
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq20             = _mm_mul_pd(iq2,jq0);
600
601             /* EWALD ELECTROSTATICS */
602
603             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
604             ewrt             = _mm_mul_pd(r20,ewtabscale);
605             ewitab           = _mm_cvttpd_epi32(ewrt);
606 #ifdef __XOP__
607             eweps            = _mm_frcz_pd(ewrt);
608 #else
609             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
610 #endif
611             twoeweps         = _mm_add_pd(eweps,eweps);
612             ewitab           = _mm_slli_epi32(ewitab,2);
613             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
614             ewtabD           = _mm_setzero_pd();
615             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
616             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
617             ewtabFn          = _mm_setzero_pd();
618             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
619             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
620             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
621             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
622             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
623
624             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             velec            = _mm_and_pd(velec,cutoff_mask);
628             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
629             velecsum         = _mm_add_pd(velecsum,velec);
630
631             fscal            = felec;
632
633             fscal            = _mm_and_pd(fscal,cutoff_mask);
634
635             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
636
637             /* Update vectorial force */
638             fix2             = _mm_macc_pd(dx20,fscal,fix2);
639             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
640             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
641             
642             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
643             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
644             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
645
646             }
647
648             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
649
650             /* Inner loop uses 168 flops */
651         }
652
653         /* End of innermost loop */
654
655         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
656                                               f+i_coord_offset,fshift+i_shift_offset);
657
658         ggid                        = gid[iidx];
659         /* Update potential energies */
660         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
661         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
662
663         /* Increment number of inner iterations */
664         inneriter                  += j_index_end - j_index_start;
665
666         /* Outer loop uses 20 flops */
667     }
668
669     /* Increment number of outer iterations */
670     outeriter        += nri;
671
672     /* Update outer/inner flops */
673
674     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*168);
675 }
676 /*
677  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_128_fma_double
678  * Electrostatics interaction: Ewald
679  * VdW interaction:            LennardJones
680  * Geometry:                   Water3-Particle
681  * Calculate force/pot:        Force
682  */
683 void
684 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_128_fma_double
685                     (t_nblist                    * gmx_restrict       nlist,
686                      rvec                        * gmx_restrict          xx,
687                      rvec                        * gmx_restrict          ff,
688                      t_forcerec                  * gmx_restrict          fr,
689                      t_mdatoms                   * gmx_restrict     mdatoms,
690                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
691                      t_nrnb                      * gmx_restrict        nrnb)
692 {
693     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
694      * just 0 for non-waters.
695      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
696      * jnr indices corresponding to data put in the four positions in the SIMD register.
697      */
698     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
699     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
700     int              jnrA,jnrB;
701     int              j_coord_offsetA,j_coord_offsetB;
702     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
703     real             rcutoff_scalar;
704     real             *shiftvec,*fshift,*x,*f;
705     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
706     int              vdwioffset0;
707     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
708     int              vdwioffset1;
709     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
710     int              vdwioffset2;
711     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
712     int              vdwjidx0A,vdwjidx0B;
713     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
714     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
715     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
716     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
717     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
718     real             *charge;
719     int              nvdwtype;
720     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
721     int              *vdwtype;
722     real             *vdwparam;
723     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
724     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
725     __m128i          ewitab;
726     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
727     real             *ewtab;
728     __m128d          dummy_mask,cutoff_mask;
729     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
730     __m128d          one     = _mm_set1_pd(1.0);
731     __m128d          two     = _mm_set1_pd(2.0);
732     x                = xx[0];
733     f                = ff[0];
734
735     nri              = nlist->nri;
736     iinr             = nlist->iinr;
737     jindex           = nlist->jindex;
738     jjnr             = nlist->jjnr;
739     shiftidx         = nlist->shift;
740     gid              = nlist->gid;
741     shiftvec         = fr->shift_vec[0];
742     fshift           = fr->fshift[0];
743     facel            = _mm_set1_pd(fr->epsfac);
744     charge           = mdatoms->chargeA;
745     nvdwtype         = fr->ntype;
746     vdwparam         = fr->nbfp;
747     vdwtype          = mdatoms->typeA;
748
749     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
750     ewtab            = fr->ic->tabq_coul_F;
751     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
752     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
753
754     /* Setup water-specific parameters */
755     inr              = nlist->iinr[0];
756     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
757     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
758     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
759     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
760
761     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
762     rcutoff_scalar   = fr->rcoulomb;
763     rcutoff          = _mm_set1_pd(rcutoff_scalar);
764     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
765
766     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
767     rvdw             = _mm_set1_pd(fr->rvdw);
768
769     /* Avoid stupid compiler warnings */
770     jnrA = jnrB = 0;
771     j_coord_offsetA = 0;
772     j_coord_offsetB = 0;
773
774     outeriter        = 0;
775     inneriter        = 0;
776
777     /* Start outer loop over neighborlists */
778     for(iidx=0; iidx<nri; iidx++)
779     {
780         /* Load shift vector for this list */
781         i_shift_offset   = DIM*shiftidx[iidx];
782
783         /* Load limits for loop over neighbors */
784         j_index_start    = jindex[iidx];
785         j_index_end      = jindex[iidx+1];
786
787         /* Get outer coordinate index */
788         inr              = iinr[iidx];
789         i_coord_offset   = DIM*inr;
790
791         /* Load i particle coords and add shift vector */
792         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
793                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
794
795         fix0             = _mm_setzero_pd();
796         fiy0             = _mm_setzero_pd();
797         fiz0             = _mm_setzero_pd();
798         fix1             = _mm_setzero_pd();
799         fiy1             = _mm_setzero_pd();
800         fiz1             = _mm_setzero_pd();
801         fix2             = _mm_setzero_pd();
802         fiy2             = _mm_setzero_pd();
803         fiz2             = _mm_setzero_pd();
804
805         /* Start inner kernel loop */
806         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
807         {
808
809             /* Get j neighbor index, and coordinate index */
810             jnrA             = jjnr[jidx];
811             jnrB             = jjnr[jidx+1];
812             j_coord_offsetA  = DIM*jnrA;
813             j_coord_offsetB  = DIM*jnrB;
814
815             /* load j atom coordinates */
816             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
817                                               &jx0,&jy0,&jz0);
818
819             /* Calculate displacement vector */
820             dx00             = _mm_sub_pd(ix0,jx0);
821             dy00             = _mm_sub_pd(iy0,jy0);
822             dz00             = _mm_sub_pd(iz0,jz0);
823             dx10             = _mm_sub_pd(ix1,jx0);
824             dy10             = _mm_sub_pd(iy1,jy0);
825             dz10             = _mm_sub_pd(iz1,jz0);
826             dx20             = _mm_sub_pd(ix2,jx0);
827             dy20             = _mm_sub_pd(iy2,jy0);
828             dz20             = _mm_sub_pd(iz2,jz0);
829
830             /* Calculate squared distance and things based on it */
831             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
832             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
833             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
834
835             rinv00           = gmx_mm_invsqrt_pd(rsq00);
836             rinv10           = gmx_mm_invsqrt_pd(rsq10);
837             rinv20           = gmx_mm_invsqrt_pd(rsq20);
838
839             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
840             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
841             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
842
843             /* Load parameters for j particles */
844             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
845             vdwjidx0A        = 2*vdwtype[jnrA+0];
846             vdwjidx0B        = 2*vdwtype[jnrB+0];
847
848             fjx0             = _mm_setzero_pd();
849             fjy0             = _mm_setzero_pd();
850             fjz0             = _mm_setzero_pd();
851
852             /**************************
853              * CALCULATE INTERACTIONS *
854              **************************/
855
856             if (gmx_mm_any_lt(rsq00,rcutoff2))
857             {
858
859             r00              = _mm_mul_pd(rsq00,rinv00);
860
861             /* Compute parameters for interactions between i and j atoms */
862             qq00             = _mm_mul_pd(iq0,jq0);
863             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
864                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
865
866             /* EWALD ELECTROSTATICS */
867
868             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
869             ewrt             = _mm_mul_pd(r00,ewtabscale);
870             ewitab           = _mm_cvttpd_epi32(ewrt);
871 #ifdef __XOP__
872             eweps            = _mm_frcz_pd(ewrt);
873 #else
874             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
875 #endif
876             twoeweps         = _mm_add_pd(eweps,eweps);
877             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
878                                          &ewtabF,&ewtabFn);
879             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
880             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
881
882             /* LENNARD-JONES DISPERSION/REPULSION */
883
884             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
885             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
886
887             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
888
889             fscal            = _mm_add_pd(felec,fvdw);
890
891             fscal            = _mm_and_pd(fscal,cutoff_mask);
892
893             /* Update vectorial force */
894             fix0             = _mm_macc_pd(dx00,fscal,fix0);
895             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
896             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
897             
898             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
899             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
900             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
901
902             }
903
904             /**************************
905              * CALCULATE INTERACTIONS *
906              **************************/
907
908             if (gmx_mm_any_lt(rsq10,rcutoff2))
909             {
910
911             r10              = _mm_mul_pd(rsq10,rinv10);
912
913             /* Compute parameters for interactions between i and j atoms */
914             qq10             = _mm_mul_pd(iq1,jq0);
915
916             /* EWALD ELECTROSTATICS */
917
918             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
919             ewrt             = _mm_mul_pd(r10,ewtabscale);
920             ewitab           = _mm_cvttpd_epi32(ewrt);
921 #ifdef __XOP__
922             eweps            = _mm_frcz_pd(ewrt);
923 #else
924             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
925 #endif
926             twoeweps         = _mm_add_pd(eweps,eweps);
927             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
928                                          &ewtabF,&ewtabFn);
929             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
930             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
931
932             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
933
934             fscal            = felec;
935
936             fscal            = _mm_and_pd(fscal,cutoff_mask);
937
938             /* Update vectorial force */
939             fix1             = _mm_macc_pd(dx10,fscal,fix1);
940             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
941             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
942             
943             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
944             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
945             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
946
947             }
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             if (gmx_mm_any_lt(rsq20,rcutoff2))
954             {
955
956             r20              = _mm_mul_pd(rsq20,rinv20);
957
958             /* Compute parameters for interactions between i and j atoms */
959             qq20             = _mm_mul_pd(iq2,jq0);
960
961             /* EWALD ELECTROSTATICS */
962
963             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964             ewrt             = _mm_mul_pd(r20,ewtabscale);
965             ewitab           = _mm_cvttpd_epi32(ewrt);
966 #ifdef __XOP__
967             eweps            = _mm_frcz_pd(ewrt);
968 #else
969             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
970 #endif
971             twoeweps         = _mm_add_pd(eweps,eweps);
972             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
973                                          &ewtabF,&ewtabFn);
974             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
975             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
976
977             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
978
979             fscal            = felec;
980
981             fscal            = _mm_and_pd(fscal,cutoff_mask);
982
983             /* Update vectorial force */
984             fix2             = _mm_macc_pd(dx20,fscal,fix2);
985             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
986             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
987             
988             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
989             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
990             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
991
992             }
993
994             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
995
996             /* Inner loop uses 136 flops */
997         }
998
999         if(jidx<j_index_end)
1000         {
1001
1002             jnrA             = jjnr[jidx];
1003             j_coord_offsetA  = DIM*jnrA;
1004
1005             /* load j atom coordinates */
1006             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1007                                               &jx0,&jy0,&jz0);
1008
1009             /* Calculate displacement vector */
1010             dx00             = _mm_sub_pd(ix0,jx0);
1011             dy00             = _mm_sub_pd(iy0,jy0);
1012             dz00             = _mm_sub_pd(iz0,jz0);
1013             dx10             = _mm_sub_pd(ix1,jx0);
1014             dy10             = _mm_sub_pd(iy1,jy0);
1015             dz10             = _mm_sub_pd(iz1,jz0);
1016             dx20             = _mm_sub_pd(ix2,jx0);
1017             dy20             = _mm_sub_pd(iy2,jy0);
1018             dz20             = _mm_sub_pd(iz2,jz0);
1019
1020             /* Calculate squared distance and things based on it */
1021             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1022             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1023             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1024
1025             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1026             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1027             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1028
1029             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1030             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1031             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1032
1033             /* Load parameters for j particles */
1034             jq0              = _mm_load_sd(charge+jnrA+0);
1035             vdwjidx0A        = 2*vdwtype[jnrA+0];
1036
1037             fjx0             = _mm_setzero_pd();
1038             fjy0             = _mm_setzero_pd();
1039             fjz0             = _mm_setzero_pd();
1040
1041             /**************************
1042              * CALCULATE INTERACTIONS *
1043              **************************/
1044
1045             if (gmx_mm_any_lt(rsq00,rcutoff2))
1046             {
1047
1048             r00              = _mm_mul_pd(rsq00,rinv00);
1049
1050             /* Compute parameters for interactions between i and j atoms */
1051             qq00             = _mm_mul_pd(iq0,jq0);
1052             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1053
1054             /* EWALD ELECTROSTATICS */
1055
1056             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1057             ewrt             = _mm_mul_pd(r00,ewtabscale);
1058             ewitab           = _mm_cvttpd_epi32(ewrt);
1059 #ifdef __XOP__
1060             eweps            = _mm_frcz_pd(ewrt);
1061 #else
1062             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1063 #endif
1064             twoeweps         = _mm_add_pd(eweps,eweps);
1065             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1066             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1067             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1068
1069             /* LENNARD-JONES DISPERSION/REPULSION */
1070
1071             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1072             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1073
1074             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1075
1076             fscal            = _mm_add_pd(felec,fvdw);
1077
1078             fscal            = _mm_and_pd(fscal,cutoff_mask);
1079
1080             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1081
1082             /* Update vectorial force */
1083             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1084             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1085             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1086             
1087             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1088             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1089             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1090
1091             }
1092
1093             /**************************
1094              * CALCULATE INTERACTIONS *
1095              **************************/
1096
1097             if (gmx_mm_any_lt(rsq10,rcutoff2))
1098             {
1099
1100             r10              = _mm_mul_pd(rsq10,rinv10);
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq10             = _mm_mul_pd(iq1,jq0);
1104
1105             /* EWALD ELECTROSTATICS */
1106
1107             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1108             ewrt             = _mm_mul_pd(r10,ewtabscale);
1109             ewitab           = _mm_cvttpd_epi32(ewrt);
1110 #ifdef __XOP__
1111             eweps            = _mm_frcz_pd(ewrt);
1112 #else
1113             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1114 #endif
1115             twoeweps         = _mm_add_pd(eweps,eweps);
1116             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1117             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1118             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1119
1120             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1121
1122             fscal            = felec;
1123
1124             fscal            = _mm_and_pd(fscal,cutoff_mask);
1125
1126             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1127
1128             /* Update vectorial force */
1129             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1130             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1131             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1132             
1133             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1134             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1135             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1136
1137             }
1138
1139             /**************************
1140              * CALCULATE INTERACTIONS *
1141              **************************/
1142
1143             if (gmx_mm_any_lt(rsq20,rcutoff2))
1144             {
1145
1146             r20              = _mm_mul_pd(rsq20,rinv20);
1147
1148             /* Compute parameters for interactions between i and j atoms */
1149             qq20             = _mm_mul_pd(iq2,jq0);
1150
1151             /* EWALD ELECTROSTATICS */
1152
1153             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1154             ewrt             = _mm_mul_pd(r20,ewtabscale);
1155             ewitab           = _mm_cvttpd_epi32(ewrt);
1156 #ifdef __XOP__
1157             eweps            = _mm_frcz_pd(ewrt);
1158 #else
1159             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1160 #endif
1161             twoeweps         = _mm_add_pd(eweps,eweps);
1162             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1163             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1164             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1165
1166             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1167
1168             fscal            = felec;
1169
1170             fscal            = _mm_and_pd(fscal,cutoff_mask);
1171
1172             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1173
1174             /* Update vectorial force */
1175             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1176             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1177             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1178             
1179             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1180             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1181             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1182
1183             }
1184
1185             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1186
1187             /* Inner loop uses 136 flops */
1188         }
1189
1190         /* End of innermost loop */
1191
1192         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1193                                               f+i_coord_offset,fshift+i_shift_offset);
1194
1195         /* Increment number of inner iterations */
1196         inneriter                  += j_index_end - j_index_start;
1197
1198         /* Outer loop uses 18 flops */
1199     }
1200
1201     /* Increment number of outer iterations */
1202     outeriter        += nri;
1203
1204     /* Update outer/inner flops */
1205
1206     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*136);
1207 }