Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          ewitab;
102     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     real             *ewtab;
104     __m128d          dummy_mask,cutoff_mask;
105     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
106     __m128d          one     = _mm_set1_pd(1.0);
107     __m128d          two     = _mm_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
128     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
133     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
134     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->rcoulomb;
139     rcutoff          = _mm_set1_pd(rcutoff_scalar);
140     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
141
142     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
143     rvdw             = _mm_set1_pd(fr->rvdw);
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170
171         fix0             = _mm_setzero_pd();
172         fiy0             = _mm_setzero_pd();
173         fiz0             = _mm_setzero_pd();
174         fix1             = _mm_setzero_pd();
175         fiy1             = _mm_setzero_pd();
176         fiz1             = _mm_setzero_pd();
177         fix2             = _mm_setzero_pd();
178         fiy2             = _mm_setzero_pd();
179         fiz2             = _mm_setzero_pd();
180
181         /* Reset potential sums */
182         velecsum         = _mm_setzero_pd();
183         vvdwsum          = _mm_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_pd(ix0,jx0);
201             dy00             = _mm_sub_pd(iy0,jy0);
202             dz00             = _mm_sub_pd(iz0,jz0);
203             dx10             = _mm_sub_pd(ix1,jx0);
204             dy10             = _mm_sub_pd(iy1,jy0);
205             dz10             = _mm_sub_pd(iz1,jz0);
206             dx20             = _mm_sub_pd(ix2,jx0);
207             dy20             = _mm_sub_pd(iy2,jy0);
208             dz20             = _mm_sub_pd(iz2,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
214
215             rinv00           = gmx_mm_invsqrt_pd(rsq00);
216             rinv10           = gmx_mm_invsqrt_pd(rsq10);
217             rinv20           = gmx_mm_invsqrt_pd(rsq20);
218
219             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
220             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
221             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227
228             fjx0             = _mm_setzero_pd();
229             fjy0             = _mm_setzero_pd();
230             fjz0             = _mm_setzero_pd();
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             if (gmx_mm_any_lt(rsq00,rcutoff2))
237             {
238
239             r00              = _mm_mul_pd(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm_mul_pd(iq0,jq0);
243             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
245
246             /* EWALD ELECTROSTATICS */
247
248             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
249             ewrt             = _mm_mul_pd(r00,ewtabscale);
250             ewitab           = _mm_cvttpd_epi32(ewrt);
251 #ifdef __XOP__
252             eweps            = _mm_frcz_pd(ewrt);
253 #else
254             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
255 #endif
256             twoeweps         = _mm_add_pd(eweps,eweps);
257             ewitab           = _mm_slli_epi32(ewitab,2);
258             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
259             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
260             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
261             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
262             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
263             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
264             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
265             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
266             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
267             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
268
269             /* LENNARD-JONES DISPERSION/REPULSION */
270
271             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
272             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
273             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
274             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
275                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
276             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
277
278             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velec            = _mm_and_pd(velec,cutoff_mask);
282             velecsum         = _mm_add_pd(velecsum,velec);
283             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
284             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
285
286             fscal            = _mm_add_pd(felec,fvdw);
287
288             fscal            = _mm_and_pd(fscal,cutoff_mask);
289
290             /* Update vectorial force */
291             fix0             = _mm_macc_pd(dx00,fscal,fix0);
292             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
293             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
294             
295             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
296             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
297             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
298
299             }
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             if (gmx_mm_any_lt(rsq10,rcutoff2))
306             {
307
308             r10              = _mm_mul_pd(rsq10,rinv10);
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq10             = _mm_mul_pd(iq1,jq0);
312
313             /* EWALD ELECTROSTATICS */
314
315             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
316             ewrt             = _mm_mul_pd(r10,ewtabscale);
317             ewitab           = _mm_cvttpd_epi32(ewrt);
318 #ifdef __XOP__
319             eweps            = _mm_frcz_pd(ewrt);
320 #else
321             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
322 #endif
323             twoeweps         = _mm_add_pd(eweps,eweps);
324             ewitab           = _mm_slli_epi32(ewitab,2);
325             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
326             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
327             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
328             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
329             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
330             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
331             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
332             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
333             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
334             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
335
336             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velec            = _mm_and_pd(velec,cutoff_mask);
340             velecsum         = _mm_add_pd(velecsum,velec);
341
342             fscal            = felec;
343
344             fscal            = _mm_and_pd(fscal,cutoff_mask);
345
346             /* Update vectorial force */
347             fix1             = _mm_macc_pd(dx10,fscal,fix1);
348             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
349             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
350             
351             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
352             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
353             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
354
355             }
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             if (gmx_mm_any_lt(rsq20,rcutoff2))
362             {
363
364             r20              = _mm_mul_pd(rsq20,rinv20);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq20             = _mm_mul_pd(iq2,jq0);
368
369             /* EWALD ELECTROSTATICS */
370
371             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
372             ewrt             = _mm_mul_pd(r20,ewtabscale);
373             ewitab           = _mm_cvttpd_epi32(ewrt);
374 #ifdef __XOP__
375             eweps            = _mm_frcz_pd(ewrt);
376 #else
377             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
378 #endif
379             twoeweps         = _mm_add_pd(eweps,eweps);
380             ewitab           = _mm_slli_epi32(ewitab,2);
381             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
382             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
383             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
384             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
385             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
386             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
387             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
388             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
389             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
390             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
391
392             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
393
394             /* Update potential sum for this i atom from the interaction with this j atom. */
395             velec            = _mm_and_pd(velec,cutoff_mask);
396             velecsum         = _mm_add_pd(velecsum,velec);
397
398             fscal            = felec;
399
400             fscal            = _mm_and_pd(fscal,cutoff_mask);
401
402             /* Update vectorial force */
403             fix2             = _mm_macc_pd(dx20,fscal,fix2);
404             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
405             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
406             
407             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
408             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
409             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
410
411             }
412
413             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
414
415             /* Inner loop uses 168 flops */
416         }
417
418         if(jidx<j_index_end)
419         {
420
421             jnrA             = jjnr[jidx];
422             j_coord_offsetA  = DIM*jnrA;
423
424             /* load j atom coordinates */
425             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
426                                               &jx0,&jy0,&jz0);
427
428             /* Calculate displacement vector */
429             dx00             = _mm_sub_pd(ix0,jx0);
430             dy00             = _mm_sub_pd(iy0,jy0);
431             dz00             = _mm_sub_pd(iz0,jz0);
432             dx10             = _mm_sub_pd(ix1,jx0);
433             dy10             = _mm_sub_pd(iy1,jy0);
434             dz10             = _mm_sub_pd(iz1,jz0);
435             dx20             = _mm_sub_pd(ix2,jx0);
436             dy20             = _mm_sub_pd(iy2,jy0);
437             dz20             = _mm_sub_pd(iz2,jz0);
438
439             /* Calculate squared distance and things based on it */
440             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
441             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
442             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
443
444             rinv00           = gmx_mm_invsqrt_pd(rsq00);
445             rinv10           = gmx_mm_invsqrt_pd(rsq10);
446             rinv20           = gmx_mm_invsqrt_pd(rsq20);
447
448             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
449             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
450             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
451
452             /* Load parameters for j particles */
453             jq0              = _mm_load_sd(charge+jnrA+0);
454             vdwjidx0A        = 2*vdwtype[jnrA+0];
455
456             fjx0             = _mm_setzero_pd();
457             fjy0             = _mm_setzero_pd();
458             fjz0             = _mm_setzero_pd();
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             if (gmx_mm_any_lt(rsq00,rcutoff2))
465             {
466
467             r00              = _mm_mul_pd(rsq00,rinv00);
468
469             /* Compute parameters for interactions between i and j atoms */
470             qq00             = _mm_mul_pd(iq0,jq0);
471             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
472
473             /* EWALD ELECTROSTATICS */
474
475             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
476             ewrt             = _mm_mul_pd(r00,ewtabscale);
477             ewitab           = _mm_cvttpd_epi32(ewrt);
478 #ifdef __XOP__
479             eweps            = _mm_frcz_pd(ewrt);
480 #else
481             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
482 #endif
483             twoeweps         = _mm_add_pd(eweps,eweps);
484             ewitab           = _mm_slli_epi32(ewitab,2);
485             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
486             ewtabD           = _mm_setzero_pd();
487             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
488             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
489             ewtabFn          = _mm_setzero_pd();
490             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
491             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
492             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
493             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
494             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
495
496             /* LENNARD-JONES DISPERSION/REPULSION */
497
498             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
499             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
500             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
501             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
502                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
503             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
504
505             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
506
507             /* Update potential sum for this i atom from the interaction with this j atom. */
508             velec            = _mm_and_pd(velec,cutoff_mask);
509             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
510             velecsum         = _mm_add_pd(velecsum,velec);
511             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
512             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
513             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
514
515             fscal            = _mm_add_pd(felec,fvdw);
516
517             fscal            = _mm_and_pd(fscal,cutoff_mask);
518
519             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
520
521             /* Update vectorial force */
522             fix0             = _mm_macc_pd(dx00,fscal,fix0);
523             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
524             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
525             
526             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
527             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
528             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
529
530             }
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             if (gmx_mm_any_lt(rsq10,rcutoff2))
537             {
538
539             r10              = _mm_mul_pd(rsq10,rinv10);
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq10             = _mm_mul_pd(iq1,jq0);
543
544             /* EWALD ELECTROSTATICS */
545
546             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
547             ewrt             = _mm_mul_pd(r10,ewtabscale);
548             ewitab           = _mm_cvttpd_epi32(ewrt);
549 #ifdef __XOP__
550             eweps            = _mm_frcz_pd(ewrt);
551 #else
552             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
553 #endif
554             twoeweps         = _mm_add_pd(eweps,eweps);
555             ewitab           = _mm_slli_epi32(ewitab,2);
556             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
557             ewtabD           = _mm_setzero_pd();
558             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
559             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
560             ewtabFn          = _mm_setzero_pd();
561             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
562             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
563             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
564             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
565             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
566
567             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velec            = _mm_and_pd(velec,cutoff_mask);
571             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
572             velecsum         = _mm_add_pd(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _mm_and_pd(fscal,cutoff_mask);
577
578             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
579
580             /* Update vectorial force */
581             fix1             = _mm_macc_pd(dx10,fscal,fix1);
582             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
583             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
584             
585             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
586             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
587             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
588
589             }
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             if (gmx_mm_any_lt(rsq20,rcutoff2))
596             {
597
598             r20              = _mm_mul_pd(rsq20,rinv20);
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq20             = _mm_mul_pd(iq2,jq0);
602
603             /* EWALD ELECTROSTATICS */
604
605             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
606             ewrt             = _mm_mul_pd(r20,ewtabscale);
607             ewitab           = _mm_cvttpd_epi32(ewrt);
608 #ifdef __XOP__
609             eweps            = _mm_frcz_pd(ewrt);
610 #else
611             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
612 #endif
613             twoeweps         = _mm_add_pd(eweps,eweps);
614             ewitab           = _mm_slli_epi32(ewitab,2);
615             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
616             ewtabD           = _mm_setzero_pd();
617             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
618             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
619             ewtabFn          = _mm_setzero_pd();
620             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
621             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
622             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
623             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
624             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
625
626             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
627
628             /* Update potential sum for this i atom from the interaction with this j atom. */
629             velec            = _mm_and_pd(velec,cutoff_mask);
630             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
631             velecsum         = _mm_add_pd(velecsum,velec);
632
633             fscal            = felec;
634
635             fscal            = _mm_and_pd(fscal,cutoff_mask);
636
637             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
638
639             /* Update vectorial force */
640             fix2             = _mm_macc_pd(dx20,fscal,fix2);
641             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
642             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
643             
644             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
645             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
646             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
647
648             }
649
650             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
651
652             /* Inner loop uses 168 flops */
653         }
654
655         /* End of innermost loop */
656
657         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
658                                               f+i_coord_offset,fshift+i_shift_offset);
659
660         ggid                        = gid[iidx];
661         /* Update potential energies */
662         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
663         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
664
665         /* Increment number of inner iterations */
666         inneriter                  += j_index_end - j_index_start;
667
668         /* Outer loop uses 20 flops */
669     }
670
671     /* Increment number of outer iterations */
672     outeriter        += nri;
673
674     /* Update outer/inner flops */
675
676     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*168);
677 }
678 /*
679  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_128_fma_double
680  * Electrostatics interaction: Ewald
681  * VdW interaction:            LennardJones
682  * Geometry:                   Water3-Particle
683  * Calculate force/pot:        Force
684  */
685 void
686 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_128_fma_double
687                     (t_nblist                    * gmx_restrict       nlist,
688                      rvec                        * gmx_restrict          xx,
689                      rvec                        * gmx_restrict          ff,
690                      t_forcerec                  * gmx_restrict          fr,
691                      t_mdatoms                   * gmx_restrict     mdatoms,
692                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
693                      t_nrnb                      * gmx_restrict        nrnb)
694 {
695     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
696      * just 0 for non-waters.
697      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
698      * jnr indices corresponding to data put in the four positions in the SIMD register.
699      */
700     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
701     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
702     int              jnrA,jnrB;
703     int              j_coord_offsetA,j_coord_offsetB;
704     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
705     real             rcutoff_scalar;
706     real             *shiftvec,*fshift,*x,*f;
707     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
708     int              vdwioffset0;
709     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
710     int              vdwioffset1;
711     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
712     int              vdwioffset2;
713     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
714     int              vdwjidx0A,vdwjidx0B;
715     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
716     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
717     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
718     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
719     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
720     real             *charge;
721     int              nvdwtype;
722     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
723     int              *vdwtype;
724     real             *vdwparam;
725     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
726     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
727     __m128i          ewitab;
728     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
729     real             *ewtab;
730     __m128d          dummy_mask,cutoff_mask;
731     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
732     __m128d          one     = _mm_set1_pd(1.0);
733     __m128d          two     = _mm_set1_pd(2.0);
734     x                = xx[0];
735     f                = ff[0];
736
737     nri              = nlist->nri;
738     iinr             = nlist->iinr;
739     jindex           = nlist->jindex;
740     jjnr             = nlist->jjnr;
741     shiftidx         = nlist->shift;
742     gid              = nlist->gid;
743     shiftvec         = fr->shift_vec[0];
744     fshift           = fr->fshift[0];
745     facel            = _mm_set1_pd(fr->epsfac);
746     charge           = mdatoms->chargeA;
747     nvdwtype         = fr->ntype;
748     vdwparam         = fr->nbfp;
749     vdwtype          = mdatoms->typeA;
750
751     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
752     ewtab            = fr->ic->tabq_coul_F;
753     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
754     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
755
756     /* Setup water-specific parameters */
757     inr              = nlist->iinr[0];
758     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
759     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
760     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
761     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
762
763     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
764     rcutoff_scalar   = fr->rcoulomb;
765     rcutoff          = _mm_set1_pd(rcutoff_scalar);
766     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
767
768     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
769     rvdw             = _mm_set1_pd(fr->rvdw);
770
771     /* Avoid stupid compiler warnings */
772     jnrA = jnrB = 0;
773     j_coord_offsetA = 0;
774     j_coord_offsetB = 0;
775
776     outeriter        = 0;
777     inneriter        = 0;
778
779     /* Start outer loop over neighborlists */
780     for(iidx=0; iidx<nri; iidx++)
781     {
782         /* Load shift vector for this list */
783         i_shift_offset   = DIM*shiftidx[iidx];
784
785         /* Load limits for loop over neighbors */
786         j_index_start    = jindex[iidx];
787         j_index_end      = jindex[iidx+1];
788
789         /* Get outer coordinate index */
790         inr              = iinr[iidx];
791         i_coord_offset   = DIM*inr;
792
793         /* Load i particle coords and add shift vector */
794         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
795                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
796
797         fix0             = _mm_setzero_pd();
798         fiy0             = _mm_setzero_pd();
799         fiz0             = _mm_setzero_pd();
800         fix1             = _mm_setzero_pd();
801         fiy1             = _mm_setzero_pd();
802         fiz1             = _mm_setzero_pd();
803         fix2             = _mm_setzero_pd();
804         fiy2             = _mm_setzero_pd();
805         fiz2             = _mm_setzero_pd();
806
807         /* Start inner kernel loop */
808         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
809         {
810
811             /* Get j neighbor index, and coordinate index */
812             jnrA             = jjnr[jidx];
813             jnrB             = jjnr[jidx+1];
814             j_coord_offsetA  = DIM*jnrA;
815             j_coord_offsetB  = DIM*jnrB;
816
817             /* load j atom coordinates */
818             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
819                                               &jx0,&jy0,&jz0);
820
821             /* Calculate displacement vector */
822             dx00             = _mm_sub_pd(ix0,jx0);
823             dy00             = _mm_sub_pd(iy0,jy0);
824             dz00             = _mm_sub_pd(iz0,jz0);
825             dx10             = _mm_sub_pd(ix1,jx0);
826             dy10             = _mm_sub_pd(iy1,jy0);
827             dz10             = _mm_sub_pd(iz1,jz0);
828             dx20             = _mm_sub_pd(ix2,jx0);
829             dy20             = _mm_sub_pd(iy2,jy0);
830             dz20             = _mm_sub_pd(iz2,jz0);
831
832             /* Calculate squared distance and things based on it */
833             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
834             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
835             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
836
837             rinv00           = gmx_mm_invsqrt_pd(rsq00);
838             rinv10           = gmx_mm_invsqrt_pd(rsq10);
839             rinv20           = gmx_mm_invsqrt_pd(rsq20);
840
841             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
842             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
843             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
844
845             /* Load parameters for j particles */
846             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
847             vdwjidx0A        = 2*vdwtype[jnrA+0];
848             vdwjidx0B        = 2*vdwtype[jnrB+0];
849
850             fjx0             = _mm_setzero_pd();
851             fjy0             = _mm_setzero_pd();
852             fjz0             = _mm_setzero_pd();
853
854             /**************************
855              * CALCULATE INTERACTIONS *
856              **************************/
857
858             if (gmx_mm_any_lt(rsq00,rcutoff2))
859             {
860
861             r00              = _mm_mul_pd(rsq00,rinv00);
862
863             /* Compute parameters for interactions between i and j atoms */
864             qq00             = _mm_mul_pd(iq0,jq0);
865             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
866                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
867
868             /* EWALD ELECTROSTATICS */
869
870             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
871             ewrt             = _mm_mul_pd(r00,ewtabscale);
872             ewitab           = _mm_cvttpd_epi32(ewrt);
873 #ifdef __XOP__
874             eweps            = _mm_frcz_pd(ewrt);
875 #else
876             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
877 #endif
878             twoeweps         = _mm_add_pd(eweps,eweps);
879             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
880                                          &ewtabF,&ewtabFn);
881             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
882             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
883
884             /* LENNARD-JONES DISPERSION/REPULSION */
885
886             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
887             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
888
889             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
890
891             fscal            = _mm_add_pd(felec,fvdw);
892
893             fscal            = _mm_and_pd(fscal,cutoff_mask);
894
895             /* Update vectorial force */
896             fix0             = _mm_macc_pd(dx00,fscal,fix0);
897             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
898             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
899             
900             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
901             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
902             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
903
904             }
905
906             /**************************
907              * CALCULATE INTERACTIONS *
908              **************************/
909
910             if (gmx_mm_any_lt(rsq10,rcutoff2))
911             {
912
913             r10              = _mm_mul_pd(rsq10,rinv10);
914
915             /* Compute parameters for interactions between i and j atoms */
916             qq10             = _mm_mul_pd(iq1,jq0);
917
918             /* EWALD ELECTROSTATICS */
919
920             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
921             ewrt             = _mm_mul_pd(r10,ewtabscale);
922             ewitab           = _mm_cvttpd_epi32(ewrt);
923 #ifdef __XOP__
924             eweps            = _mm_frcz_pd(ewrt);
925 #else
926             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
927 #endif
928             twoeweps         = _mm_add_pd(eweps,eweps);
929             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
930                                          &ewtabF,&ewtabFn);
931             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
932             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
933
934             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
935
936             fscal            = felec;
937
938             fscal            = _mm_and_pd(fscal,cutoff_mask);
939
940             /* Update vectorial force */
941             fix1             = _mm_macc_pd(dx10,fscal,fix1);
942             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
943             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
944             
945             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
946             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
947             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
948
949             }
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             if (gmx_mm_any_lt(rsq20,rcutoff2))
956             {
957
958             r20              = _mm_mul_pd(rsq20,rinv20);
959
960             /* Compute parameters for interactions between i and j atoms */
961             qq20             = _mm_mul_pd(iq2,jq0);
962
963             /* EWALD ELECTROSTATICS */
964
965             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
966             ewrt             = _mm_mul_pd(r20,ewtabscale);
967             ewitab           = _mm_cvttpd_epi32(ewrt);
968 #ifdef __XOP__
969             eweps            = _mm_frcz_pd(ewrt);
970 #else
971             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
972 #endif
973             twoeweps         = _mm_add_pd(eweps,eweps);
974             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
975                                          &ewtabF,&ewtabFn);
976             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
977             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
978
979             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
980
981             fscal            = felec;
982
983             fscal            = _mm_and_pd(fscal,cutoff_mask);
984
985             /* Update vectorial force */
986             fix2             = _mm_macc_pd(dx20,fscal,fix2);
987             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
988             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
989             
990             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
991             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
992             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
993
994             }
995
996             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
997
998             /* Inner loop uses 136 flops */
999         }
1000
1001         if(jidx<j_index_end)
1002         {
1003
1004             jnrA             = jjnr[jidx];
1005             j_coord_offsetA  = DIM*jnrA;
1006
1007             /* load j atom coordinates */
1008             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1009                                               &jx0,&jy0,&jz0);
1010
1011             /* Calculate displacement vector */
1012             dx00             = _mm_sub_pd(ix0,jx0);
1013             dy00             = _mm_sub_pd(iy0,jy0);
1014             dz00             = _mm_sub_pd(iz0,jz0);
1015             dx10             = _mm_sub_pd(ix1,jx0);
1016             dy10             = _mm_sub_pd(iy1,jy0);
1017             dz10             = _mm_sub_pd(iz1,jz0);
1018             dx20             = _mm_sub_pd(ix2,jx0);
1019             dy20             = _mm_sub_pd(iy2,jy0);
1020             dz20             = _mm_sub_pd(iz2,jz0);
1021
1022             /* Calculate squared distance and things based on it */
1023             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1024             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1025             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1026
1027             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1028             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1029             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1030
1031             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1032             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1033             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1034
1035             /* Load parameters for j particles */
1036             jq0              = _mm_load_sd(charge+jnrA+0);
1037             vdwjidx0A        = 2*vdwtype[jnrA+0];
1038
1039             fjx0             = _mm_setzero_pd();
1040             fjy0             = _mm_setzero_pd();
1041             fjz0             = _mm_setzero_pd();
1042
1043             /**************************
1044              * CALCULATE INTERACTIONS *
1045              **************************/
1046
1047             if (gmx_mm_any_lt(rsq00,rcutoff2))
1048             {
1049
1050             r00              = _mm_mul_pd(rsq00,rinv00);
1051
1052             /* Compute parameters for interactions between i and j atoms */
1053             qq00             = _mm_mul_pd(iq0,jq0);
1054             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1055
1056             /* EWALD ELECTROSTATICS */
1057
1058             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1059             ewrt             = _mm_mul_pd(r00,ewtabscale);
1060             ewitab           = _mm_cvttpd_epi32(ewrt);
1061 #ifdef __XOP__
1062             eweps            = _mm_frcz_pd(ewrt);
1063 #else
1064             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1065 #endif
1066             twoeweps         = _mm_add_pd(eweps,eweps);
1067             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1068             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1069             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1070
1071             /* LENNARD-JONES DISPERSION/REPULSION */
1072
1073             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1074             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1075
1076             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1077
1078             fscal            = _mm_add_pd(felec,fvdw);
1079
1080             fscal            = _mm_and_pd(fscal,cutoff_mask);
1081
1082             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1083
1084             /* Update vectorial force */
1085             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1086             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1087             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1088             
1089             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1090             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1091             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1092
1093             }
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             if (gmx_mm_any_lt(rsq10,rcutoff2))
1100             {
1101
1102             r10              = _mm_mul_pd(rsq10,rinv10);
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq10             = _mm_mul_pd(iq1,jq0);
1106
1107             /* EWALD ELECTROSTATICS */
1108
1109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1110             ewrt             = _mm_mul_pd(r10,ewtabscale);
1111             ewitab           = _mm_cvttpd_epi32(ewrt);
1112 #ifdef __XOP__
1113             eweps            = _mm_frcz_pd(ewrt);
1114 #else
1115             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1116 #endif
1117             twoeweps         = _mm_add_pd(eweps,eweps);
1118             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1119             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1120             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1121
1122             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1123
1124             fscal            = felec;
1125
1126             fscal            = _mm_and_pd(fscal,cutoff_mask);
1127
1128             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1129
1130             /* Update vectorial force */
1131             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1132             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1133             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1134             
1135             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1136             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1137             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1138
1139             }
1140
1141             /**************************
1142              * CALCULATE INTERACTIONS *
1143              **************************/
1144
1145             if (gmx_mm_any_lt(rsq20,rcutoff2))
1146             {
1147
1148             r20              = _mm_mul_pd(rsq20,rinv20);
1149
1150             /* Compute parameters for interactions between i and j atoms */
1151             qq20             = _mm_mul_pd(iq2,jq0);
1152
1153             /* EWALD ELECTROSTATICS */
1154
1155             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1156             ewrt             = _mm_mul_pd(r20,ewtabscale);
1157             ewitab           = _mm_cvttpd_epi32(ewrt);
1158 #ifdef __XOP__
1159             eweps            = _mm_frcz_pd(ewrt);
1160 #else
1161             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1162 #endif
1163             twoeweps         = _mm_add_pd(eweps,eweps);
1164             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1165             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1166             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1167
1168             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1169
1170             fscal            = felec;
1171
1172             fscal            = _mm_and_pd(fscal,cutoff_mask);
1173
1174             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1175
1176             /* Update vectorial force */
1177             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1178             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1179             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1180             
1181             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1182             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1183             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1184
1185             }
1186
1187             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1188
1189             /* Inner loop uses 136 flops */
1190         }
1191
1192         /* End of innermost loop */
1193
1194         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1195                                               f+i_coord_offset,fshift+i_shift_offset);
1196
1197         /* Increment number of inner iterations */
1198         inneriter                  += j_index_end - j_index_start;
1199
1200         /* Outer loop uses 18 flops */
1201     }
1202
1203     /* Increment number of outer iterations */
1204     outeriter        += nri;
1205
1206     /* Update outer/inner flops */
1207
1208     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*136);
1209 }