Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          ewitab;
96     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_pd(rcutoff_scalar);
127     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
128
129     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
130     rvdw             = _mm_set1_pd(fr->rvdw);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _mm_setzero_pd();
158         fiy0             = _mm_setzero_pd();
159         fiz0             = _mm_setzero_pd();
160
161         /* Load parameters for i particles */
162         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
163         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         velecsum         = _mm_setzero_pd();
167         vvdwsum          = _mm_setzero_pd();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178
179             /* load j atom coordinates */
180             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_pd(ix0,jx0);
185             dy00             = _mm_sub_pd(iy0,jy0);
186             dz00             = _mm_sub_pd(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm_invsqrt_pd(rsq00);
192
193             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
197             vdwjidx0A        = 2*vdwtype[jnrA+0];
198             vdwjidx0B        = 2*vdwtype[jnrB+0];
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             if (gmx_mm_any_lt(rsq00,rcutoff2))
205             {
206
207             r00              = _mm_mul_pd(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm_mul_pd(iq0,jq0);
211             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
212                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
213
214             /* EWALD ELECTROSTATICS */
215
216             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
217             ewrt             = _mm_mul_pd(r00,ewtabscale);
218             ewitab           = _mm_cvttpd_epi32(ewrt);
219 #ifdef __XOP__
220             eweps            = _mm_frcz_pd(ewrt);
221 #else
222             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
223 #endif
224             twoeweps         = _mm_add_pd(eweps,eweps);
225             ewitab           = _mm_slli_epi32(ewitab,2);
226             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
227             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
228             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
229             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
230             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
231             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
232             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
233             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
234             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
235             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
236
237             /* LENNARD-JONES DISPERSION/REPULSION */
238
239             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
240             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
241             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
242             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
243                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
244             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
245
246             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             velec            = _mm_and_pd(velec,cutoff_mask);
250             velecsum         = _mm_add_pd(velecsum,velec);
251             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
252             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
253
254             fscal            = _mm_add_pd(felec,fvdw);
255
256             fscal            = _mm_and_pd(fscal,cutoff_mask);
257
258             /* Update vectorial force */
259             fix0             = _mm_macc_pd(dx00,fscal,fix0);
260             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
261             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
262             
263             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
264                                                    _mm_mul_pd(dx00,fscal),
265                                                    _mm_mul_pd(dy00,fscal),
266                                                    _mm_mul_pd(dz00,fscal));
267
268             }
269
270             /* Inner loop uses 67 flops */
271         }
272
273         if(jidx<j_index_end)
274         {
275
276             jnrA             = jjnr[jidx];
277             j_coord_offsetA  = DIM*jnrA;
278
279             /* load j atom coordinates */
280             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
281                                               &jx0,&jy0,&jz0);
282
283             /* Calculate displacement vector */
284             dx00             = _mm_sub_pd(ix0,jx0);
285             dy00             = _mm_sub_pd(iy0,jy0);
286             dz00             = _mm_sub_pd(iz0,jz0);
287
288             /* Calculate squared distance and things based on it */
289             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
290
291             rinv00           = gmx_mm_invsqrt_pd(rsq00);
292
293             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
294
295             /* Load parameters for j particles */
296             jq0              = _mm_load_sd(charge+jnrA+0);
297             vdwjidx0A        = 2*vdwtype[jnrA+0];
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             if (gmx_mm_any_lt(rsq00,rcutoff2))
304             {
305
306             r00              = _mm_mul_pd(rsq00,rinv00);
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq00             = _mm_mul_pd(iq0,jq0);
310             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
311
312             /* EWALD ELECTROSTATICS */
313
314             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
315             ewrt             = _mm_mul_pd(r00,ewtabscale);
316             ewitab           = _mm_cvttpd_epi32(ewrt);
317 #ifdef __XOP__
318             eweps            = _mm_frcz_pd(ewrt);
319 #else
320             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
321 #endif
322             twoeweps         = _mm_add_pd(eweps,eweps);
323             ewitab           = _mm_slli_epi32(ewitab,2);
324             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
325             ewtabD           = _mm_setzero_pd();
326             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
327             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
328             ewtabFn          = _mm_setzero_pd();
329             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
330             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
331             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
332             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
333             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
334
335             /* LENNARD-JONES DISPERSION/REPULSION */
336
337             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
338             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
339             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
340             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
341                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
342             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
343
344             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velec            = _mm_and_pd(velec,cutoff_mask);
348             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
349             velecsum         = _mm_add_pd(velecsum,velec);
350             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
351             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
352             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
353
354             fscal            = _mm_add_pd(felec,fvdw);
355
356             fscal            = _mm_and_pd(fscal,cutoff_mask);
357
358             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
359
360             /* Update vectorial force */
361             fix0             = _mm_macc_pd(dx00,fscal,fix0);
362             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
363             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
364             
365             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
366                                                    _mm_mul_pd(dx00,fscal),
367                                                    _mm_mul_pd(dy00,fscal),
368                                                    _mm_mul_pd(dz00,fscal));
369
370             }
371
372             /* Inner loop uses 67 flops */
373         }
374
375         /* End of innermost loop */
376
377         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
378                                               f+i_coord_offset,fshift+i_shift_offset);
379
380         ggid                        = gid[iidx];
381         /* Update potential energies */
382         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
383         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
384
385         /* Increment number of inner iterations */
386         inneriter                  += j_index_end - j_index_start;
387
388         /* Outer loop uses 9 flops */
389     }
390
391     /* Increment number of outer iterations */
392     outeriter        += nri;
393
394     /* Update outer/inner flops */
395
396     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*67);
397 }
398 /*
399  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_128_fma_double
400  * Electrostatics interaction: Ewald
401  * VdW interaction:            LennardJones
402  * Geometry:                   Particle-Particle
403  * Calculate force/pot:        Force
404  */
405 void
406 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_128_fma_double
407                     (t_nblist                    * gmx_restrict       nlist,
408                      rvec                        * gmx_restrict          xx,
409                      rvec                        * gmx_restrict          ff,
410                      t_forcerec                  * gmx_restrict          fr,
411                      t_mdatoms                   * gmx_restrict     mdatoms,
412                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
413                      t_nrnb                      * gmx_restrict        nrnb)
414 {
415     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
416      * just 0 for non-waters.
417      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
418      * jnr indices corresponding to data put in the four positions in the SIMD register.
419      */
420     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
421     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
422     int              jnrA,jnrB;
423     int              j_coord_offsetA,j_coord_offsetB;
424     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
425     real             rcutoff_scalar;
426     real             *shiftvec,*fshift,*x,*f;
427     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
428     int              vdwioffset0;
429     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
430     int              vdwjidx0A,vdwjidx0B;
431     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
432     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
433     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
434     real             *charge;
435     int              nvdwtype;
436     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
437     int              *vdwtype;
438     real             *vdwparam;
439     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
440     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
441     __m128i          ewitab;
442     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
443     real             *ewtab;
444     __m128d          dummy_mask,cutoff_mask;
445     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
446     __m128d          one     = _mm_set1_pd(1.0);
447     __m128d          two     = _mm_set1_pd(2.0);
448     x                = xx[0];
449     f                = ff[0];
450
451     nri              = nlist->nri;
452     iinr             = nlist->iinr;
453     jindex           = nlist->jindex;
454     jjnr             = nlist->jjnr;
455     shiftidx         = nlist->shift;
456     gid              = nlist->gid;
457     shiftvec         = fr->shift_vec[0];
458     fshift           = fr->fshift[0];
459     facel            = _mm_set1_pd(fr->epsfac);
460     charge           = mdatoms->chargeA;
461     nvdwtype         = fr->ntype;
462     vdwparam         = fr->nbfp;
463     vdwtype          = mdatoms->typeA;
464
465     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
466     ewtab            = fr->ic->tabq_coul_F;
467     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
468     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
469
470     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
471     rcutoff_scalar   = fr->rcoulomb;
472     rcutoff          = _mm_set1_pd(rcutoff_scalar);
473     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
474
475     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
476     rvdw             = _mm_set1_pd(fr->rvdw);
477
478     /* Avoid stupid compiler warnings */
479     jnrA = jnrB = 0;
480     j_coord_offsetA = 0;
481     j_coord_offsetB = 0;
482
483     outeriter        = 0;
484     inneriter        = 0;
485
486     /* Start outer loop over neighborlists */
487     for(iidx=0; iidx<nri; iidx++)
488     {
489         /* Load shift vector for this list */
490         i_shift_offset   = DIM*shiftidx[iidx];
491
492         /* Load limits for loop over neighbors */
493         j_index_start    = jindex[iidx];
494         j_index_end      = jindex[iidx+1];
495
496         /* Get outer coordinate index */
497         inr              = iinr[iidx];
498         i_coord_offset   = DIM*inr;
499
500         /* Load i particle coords and add shift vector */
501         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
502
503         fix0             = _mm_setzero_pd();
504         fiy0             = _mm_setzero_pd();
505         fiz0             = _mm_setzero_pd();
506
507         /* Load parameters for i particles */
508         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
509         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
510
511         /* Start inner kernel loop */
512         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
513         {
514
515             /* Get j neighbor index, and coordinate index */
516             jnrA             = jjnr[jidx];
517             jnrB             = jjnr[jidx+1];
518             j_coord_offsetA  = DIM*jnrA;
519             j_coord_offsetB  = DIM*jnrB;
520
521             /* load j atom coordinates */
522             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
523                                               &jx0,&jy0,&jz0);
524
525             /* Calculate displacement vector */
526             dx00             = _mm_sub_pd(ix0,jx0);
527             dy00             = _mm_sub_pd(iy0,jy0);
528             dz00             = _mm_sub_pd(iz0,jz0);
529
530             /* Calculate squared distance and things based on it */
531             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
532
533             rinv00           = gmx_mm_invsqrt_pd(rsq00);
534
535             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
536
537             /* Load parameters for j particles */
538             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
539             vdwjidx0A        = 2*vdwtype[jnrA+0];
540             vdwjidx0B        = 2*vdwtype[jnrB+0];
541
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             if (gmx_mm_any_lt(rsq00,rcutoff2))
547             {
548
549             r00              = _mm_mul_pd(rsq00,rinv00);
550
551             /* Compute parameters for interactions between i and j atoms */
552             qq00             = _mm_mul_pd(iq0,jq0);
553             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
554                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
555
556             /* EWALD ELECTROSTATICS */
557
558             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
559             ewrt             = _mm_mul_pd(r00,ewtabscale);
560             ewitab           = _mm_cvttpd_epi32(ewrt);
561 #ifdef __XOP__
562             eweps            = _mm_frcz_pd(ewrt);
563 #else
564             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
565 #endif
566             twoeweps         = _mm_add_pd(eweps,eweps);
567             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
568                                          &ewtabF,&ewtabFn);
569             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
570             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
571
572             /* LENNARD-JONES DISPERSION/REPULSION */
573
574             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
575             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
576
577             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
578
579             fscal            = _mm_add_pd(felec,fvdw);
580
581             fscal            = _mm_and_pd(fscal,cutoff_mask);
582
583             /* Update vectorial force */
584             fix0             = _mm_macc_pd(dx00,fscal,fix0);
585             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
586             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
587             
588             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
589                                                    _mm_mul_pd(dx00,fscal),
590                                                    _mm_mul_pd(dy00,fscal),
591                                                    _mm_mul_pd(dz00,fscal));
592
593             }
594
595             /* Inner loop uses 49 flops */
596         }
597
598         if(jidx<j_index_end)
599         {
600
601             jnrA             = jjnr[jidx];
602             j_coord_offsetA  = DIM*jnrA;
603
604             /* load j atom coordinates */
605             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
606                                               &jx0,&jy0,&jz0);
607
608             /* Calculate displacement vector */
609             dx00             = _mm_sub_pd(ix0,jx0);
610             dy00             = _mm_sub_pd(iy0,jy0);
611             dz00             = _mm_sub_pd(iz0,jz0);
612
613             /* Calculate squared distance and things based on it */
614             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
615
616             rinv00           = gmx_mm_invsqrt_pd(rsq00);
617
618             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
619
620             /* Load parameters for j particles */
621             jq0              = _mm_load_sd(charge+jnrA+0);
622             vdwjidx0A        = 2*vdwtype[jnrA+0];
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             if (gmx_mm_any_lt(rsq00,rcutoff2))
629             {
630
631             r00              = _mm_mul_pd(rsq00,rinv00);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq00             = _mm_mul_pd(iq0,jq0);
635             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
636
637             /* EWALD ELECTROSTATICS */
638
639             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
640             ewrt             = _mm_mul_pd(r00,ewtabscale);
641             ewitab           = _mm_cvttpd_epi32(ewrt);
642 #ifdef __XOP__
643             eweps            = _mm_frcz_pd(ewrt);
644 #else
645             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
646 #endif
647             twoeweps         = _mm_add_pd(eweps,eweps);
648             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
649             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
650             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
651
652             /* LENNARD-JONES DISPERSION/REPULSION */
653
654             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
655             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
656
657             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
658
659             fscal            = _mm_add_pd(felec,fvdw);
660
661             fscal            = _mm_and_pd(fscal,cutoff_mask);
662
663             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
664
665             /* Update vectorial force */
666             fix0             = _mm_macc_pd(dx00,fscal,fix0);
667             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
668             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
669             
670             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
671                                                    _mm_mul_pd(dx00,fscal),
672                                                    _mm_mul_pd(dy00,fscal),
673                                                    _mm_mul_pd(dz00,fscal));
674
675             }
676
677             /* Inner loop uses 49 flops */
678         }
679
680         /* End of innermost loop */
681
682         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
683                                               f+i_coord_offset,fshift+i_shift_offset);
684
685         /* Increment number of inner iterations */
686         inneriter                  += j_index_end - j_index_start;
687
688         /* Outer loop uses 7 flops */
689     }
690
691     /* Increment number of outer iterations */
692     outeriter        += nri;
693
694     /* Update outer/inner flops */
695
696     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*49);
697 }