Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d           c6grid_00;
102     __m128d           c6grid_10;
103     __m128d           c6grid_20;
104     __m128d           c6grid_30;
105     real             *vdwgridparam;
106     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
107     __m128d           one_half  = _mm_set1_pd(0.5);
108     __m128d           minus_one = _mm_set1_pd(-1.0);
109     __m128i          ewitab;
110     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     real             *ewtab;
112     __m128d          dummy_mask,cutoff_mask;
113     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
114     __m128d          one     = _mm_set1_pd(1.0);
115     __m128d          two     = _mm_set1_pd(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_pd(fr->ic->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132     vdwgridparam     = fr->ljpme_c6grid;
133     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
134     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
135     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
136
137     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
147     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150     rcutoff_scalar   = fr->ic->rcoulomb;
151     rcutoff          = _mm_set1_pd(rcutoff_scalar);
152     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
153
154     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
155     rvdw             = _mm_set1_pd(fr->ic->rvdw);
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182
183         fix0             = _mm_setzero_pd();
184         fiy0             = _mm_setzero_pd();
185         fiz0             = _mm_setzero_pd();
186         fix1             = _mm_setzero_pd();
187         fiy1             = _mm_setzero_pd();
188         fiz1             = _mm_setzero_pd();
189         fix2             = _mm_setzero_pd();
190         fiy2             = _mm_setzero_pd();
191         fiz2             = _mm_setzero_pd();
192         fix3             = _mm_setzero_pd();
193         fiy3             = _mm_setzero_pd();
194         fiz3             = _mm_setzero_pd();
195
196         /* Reset potential sums */
197         velecsum         = _mm_setzero_pd();
198         vvdwsum          = _mm_setzero_pd();
199
200         /* Start inner kernel loop */
201         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
202         {
203
204             /* Get j neighbor index, and coordinate index */
205             jnrA             = jjnr[jidx];
206             jnrB             = jjnr[jidx+1];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209
210             /* load j atom coordinates */
211             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_pd(ix0,jx0);
216             dy00             = _mm_sub_pd(iy0,jy0);
217             dz00             = _mm_sub_pd(iz0,jz0);
218             dx10             = _mm_sub_pd(ix1,jx0);
219             dy10             = _mm_sub_pd(iy1,jy0);
220             dz10             = _mm_sub_pd(iz1,jz0);
221             dx20             = _mm_sub_pd(ix2,jx0);
222             dy20             = _mm_sub_pd(iy2,jy0);
223             dz20             = _mm_sub_pd(iz2,jz0);
224             dx30             = _mm_sub_pd(ix3,jx0);
225             dy30             = _mm_sub_pd(iy3,jy0);
226             dz30             = _mm_sub_pd(iz3,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
232             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
233
234             rinv00           = avx128fma_invsqrt_d(rsq00);
235             rinv10           = avx128fma_invsqrt_d(rsq10);
236             rinv20           = avx128fma_invsqrt_d(rsq20);
237             rinv30           = avx128fma_invsqrt_d(rsq30);
238
239             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
240             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
241             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
242             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248
249             fjx0             = _mm_setzero_pd();
250             fjy0             = _mm_setzero_pd();
251             fjz0             = _mm_setzero_pd();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             if (gmx_mm_any_lt(rsq00,rcutoff2))
258             {
259
260             r00              = _mm_mul_pd(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
264                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
265             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
266                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
267
268             /* Analytical LJ-PME */
269             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
270             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
271             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
272             exponent         = avx128fma_exp_d(ewcljrsq);
273             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
274             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
275             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
276             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
277             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
278             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
279                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
280             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
281             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
282
283             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
287             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
288
289             fscal            = fvdw;
290
291             fscal            = _mm_and_pd(fscal,cutoff_mask);
292
293             /* Update vectorial force */
294             fix0             = _mm_macc_pd(dx00,fscal,fix0);
295             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
296             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
297             
298             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
299             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
300             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
301
302             }
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             if (gmx_mm_any_lt(rsq10,rcutoff2))
309             {
310
311             r10              = _mm_mul_pd(rsq10,rinv10);
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq10             = _mm_mul_pd(iq1,jq0);
315
316             /* EWALD ELECTROSTATICS */
317
318             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
319             ewrt             = _mm_mul_pd(r10,ewtabscale);
320             ewitab           = _mm_cvttpd_epi32(ewrt);
321 #ifdef __XOP__
322             eweps            = _mm_frcz_pd(ewrt);
323 #else
324             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
325 #endif
326             twoeweps         = _mm_add_pd(eweps,eweps);
327             ewitab           = _mm_slli_epi32(ewitab,2);
328             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
329             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
330             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
331             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
332             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
333             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
334             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
335             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
336             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
337             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
338
339             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velec            = _mm_and_pd(velec,cutoff_mask);
343             velecsum         = _mm_add_pd(velecsum,velec);
344
345             fscal            = felec;
346
347             fscal            = _mm_and_pd(fscal,cutoff_mask);
348
349             /* Update vectorial force */
350             fix1             = _mm_macc_pd(dx10,fscal,fix1);
351             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
352             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
353             
354             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
355             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
356             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
357
358             }
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             if (gmx_mm_any_lt(rsq20,rcutoff2))
365             {
366
367             r20              = _mm_mul_pd(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm_mul_pd(iq2,jq0);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
375             ewrt             = _mm_mul_pd(r20,ewtabscale);
376             ewitab           = _mm_cvttpd_epi32(ewrt);
377 #ifdef __XOP__
378             eweps            = _mm_frcz_pd(ewrt);
379 #else
380             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
381 #endif
382             twoeweps         = _mm_add_pd(eweps,eweps);
383             ewitab           = _mm_slli_epi32(ewitab,2);
384             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
385             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
386             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
387             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
388             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
389             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
390             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
391             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
392             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
393             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
394
395             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
396
397             /* Update potential sum for this i atom from the interaction with this j atom. */
398             velec            = _mm_and_pd(velec,cutoff_mask);
399             velecsum         = _mm_add_pd(velecsum,velec);
400
401             fscal            = felec;
402
403             fscal            = _mm_and_pd(fscal,cutoff_mask);
404
405             /* Update vectorial force */
406             fix2             = _mm_macc_pd(dx20,fscal,fix2);
407             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
408             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
409             
410             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
411             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
412             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
413
414             }
415
416             /**************************
417              * CALCULATE INTERACTIONS *
418              **************************/
419
420             if (gmx_mm_any_lt(rsq30,rcutoff2))
421             {
422
423             r30              = _mm_mul_pd(rsq30,rinv30);
424
425             /* Compute parameters for interactions between i and j atoms */
426             qq30             = _mm_mul_pd(iq3,jq0);
427
428             /* EWALD ELECTROSTATICS */
429
430             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
431             ewrt             = _mm_mul_pd(r30,ewtabscale);
432             ewitab           = _mm_cvttpd_epi32(ewrt);
433 #ifdef __XOP__
434             eweps            = _mm_frcz_pd(ewrt);
435 #else
436             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
437 #endif
438             twoeweps         = _mm_add_pd(eweps,eweps);
439             ewitab           = _mm_slli_epi32(ewitab,2);
440             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
441             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
442             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
443             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
444             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
445             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
446             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
447             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
448             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
449             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
450
451             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
452
453             /* Update potential sum for this i atom from the interaction with this j atom. */
454             velec            = _mm_and_pd(velec,cutoff_mask);
455             velecsum         = _mm_add_pd(velecsum,velec);
456
457             fscal            = felec;
458
459             fscal            = _mm_and_pd(fscal,cutoff_mask);
460
461             /* Update vectorial force */
462             fix3             = _mm_macc_pd(dx30,fscal,fix3);
463             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
464             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
465             
466             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
467             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
468             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
469
470             }
471
472             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
473
474             /* Inner loop uses 208 flops */
475         }
476
477         if(jidx<j_index_end)
478         {
479
480             jnrA             = jjnr[jidx];
481             j_coord_offsetA  = DIM*jnrA;
482
483             /* load j atom coordinates */
484             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
485                                               &jx0,&jy0,&jz0);
486
487             /* Calculate displacement vector */
488             dx00             = _mm_sub_pd(ix0,jx0);
489             dy00             = _mm_sub_pd(iy0,jy0);
490             dz00             = _mm_sub_pd(iz0,jz0);
491             dx10             = _mm_sub_pd(ix1,jx0);
492             dy10             = _mm_sub_pd(iy1,jy0);
493             dz10             = _mm_sub_pd(iz1,jz0);
494             dx20             = _mm_sub_pd(ix2,jx0);
495             dy20             = _mm_sub_pd(iy2,jy0);
496             dz20             = _mm_sub_pd(iz2,jz0);
497             dx30             = _mm_sub_pd(ix3,jx0);
498             dy30             = _mm_sub_pd(iy3,jy0);
499             dz30             = _mm_sub_pd(iz3,jz0);
500
501             /* Calculate squared distance and things based on it */
502             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
503             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
504             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
505             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
506
507             rinv00           = avx128fma_invsqrt_d(rsq00);
508             rinv10           = avx128fma_invsqrt_d(rsq10);
509             rinv20           = avx128fma_invsqrt_d(rsq20);
510             rinv30           = avx128fma_invsqrt_d(rsq30);
511
512             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
513             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
514             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
515             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
516
517             /* Load parameters for j particles */
518             jq0              = _mm_load_sd(charge+jnrA+0);
519             vdwjidx0A        = 2*vdwtype[jnrA+0];
520
521             fjx0             = _mm_setzero_pd();
522             fjy0             = _mm_setzero_pd();
523             fjz0             = _mm_setzero_pd();
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             if (gmx_mm_any_lt(rsq00,rcutoff2))
530             {
531
532             r00              = _mm_mul_pd(rsq00,rinv00);
533
534             /* Compute parameters for interactions between i and j atoms */
535             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
536             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
537
538             /* Analytical LJ-PME */
539             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
540             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
541             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
542             exponent         = avx128fma_exp_d(ewcljrsq);
543             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
544             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
545             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
546             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
547             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
548             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
549                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
550             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
551             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
552
553             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
554
555             /* Update potential sum for this i atom from the interaction with this j atom. */
556             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
557             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
558             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
559
560             fscal            = fvdw;
561
562             fscal            = _mm_and_pd(fscal,cutoff_mask);
563
564             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
565
566             /* Update vectorial force */
567             fix0             = _mm_macc_pd(dx00,fscal,fix0);
568             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
569             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
570             
571             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
572             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
573             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
574
575             }
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             if (gmx_mm_any_lt(rsq10,rcutoff2))
582             {
583
584             r10              = _mm_mul_pd(rsq10,rinv10);
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq10             = _mm_mul_pd(iq1,jq0);
588
589             /* EWALD ELECTROSTATICS */
590
591             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
592             ewrt             = _mm_mul_pd(r10,ewtabscale);
593             ewitab           = _mm_cvttpd_epi32(ewrt);
594 #ifdef __XOP__
595             eweps            = _mm_frcz_pd(ewrt);
596 #else
597             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
598 #endif
599             twoeweps         = _mm_add_pd(eweps,eweps);
600             ewitab           = _mm_slli_epi32(ewitab,2);
601             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
602             ewtabD           = _mm_setzero_pd();
603             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
604             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
605             ewtabFn          = _mm_setzero_pd();
606             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
607             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
608             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
609             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
610             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
611
612             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             velec            = _mm_and_pd(velec,cutoff_mask);
616             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
617             velecsum         = _mm_add_pd(velecsum,velec);
618
619             fscal            = felec;
620
621             fscal            = _mm_and_pd(fscal,cutoff_mask);
622
623             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
624
625             /* Update vectorial force */
626             fix1             = _mm_macc_pd(dx10,fscal,fix1);
627             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
628             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
629             
630             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
631             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
632             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
633
634             }
635
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             if (gmx_mm_any_lt(rsq20,rcutoff2))
641             {
642
643             r20              = _mm_mul_pd(rsq20,rinv20);
644
645             /* Compute parameters for interactions between i and j atoms */
646             qq20             = _mm_mul_pd(iq2,jq0);
647
648             /* EWALD ELECTROSTATICS */
649
650             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
651             ewrt             = _mm_mul_pd(r20,ewtabscale);
652             ewitab           = _mm_cvttpd_epi32(ewrt);
653 #ifdef __XOP__
654             eweps            = _mm_frcz_pd(ewrt);
655 #else
656             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
657 #endif
658             twoeweps         = _mm_add_pd(eweps,eweps);
659             ewitab           = _mm_slli_epi32(ewitab,2);
660             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
661             ewtabD           = _mm_setzero_pd();
662             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
663             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
664             ewtabFn          = _mm_setzero_pd();
665             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
666             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
667             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
668             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
669             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
670
671             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
672
673             /* Update potential sum for this i atom from the interaction with this j atom. */
674             velec            = _mm_and_pd(velec,cutoff_mask);
675             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
676             velecsum         = _mm_add_pd(velecsum,velec);
677
678             fscal            = felec;
679
680             fscal            = _mm_and_pd(fscal,cutoff_mask);
681
682             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
683
684             /* Update vectorial force */
685             fix2             = _mm_macc_pd(dx20,fscal,fix2);
686             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
687             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
688             
689             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
690             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
691             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
692
693             }
694
695             /**************************
696              * CALCULATE INTERACTIONS *
697              **************************/
698
699             if (gmx_mm_any_lt(rsq30,rcutoff2))
700             {
701
702             r30              = _mm_mul_pd(rsq30,rinv30);
703
704             /* Compute parameters for interactions between i and j atoms */
705             qq30             = _mm_mul_pd(iq3,jq0);
706
707             /* EWALD ELECTROSTATICS */
708
709             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
710             ewrt             = _mm_mul_pd(r30,ewtabscale);
711             ewitab           = _mm_cvttpd_epi32(ewrt);
712 #ifdef __XOP__
713             eweps            = _mm_frcz_pd(ewrt);
714 #else
715             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
716 #endif
717             twoeweps         = _mm_add_pd(eweps,eweps);
718             ewitab           = _mm_slli_epi32(ewitab,2);
719             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
720             ewtabD           = _mm_setzero_pd();
721             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
722             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
723             ewtabFn          = _mm_setzero_pd();
724             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
725             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
726             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
727             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
728             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
729
730             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
731
732             /* Update potential sum for this i atom from the interaction with this j atom. */
733             velec            = _mm_and_pd(velec,cutoff_mask);
734             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
735             velecsum         = _mm_add_pd(velecsum,velec);
736
737             fscal            = felec;
738
739             fscal            = _mm_and_pd(fscal,cutoff_mask);
740
741             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
742
743             /* Update vectorial force */
744             fix3             = _mm_macc_pd(dx30,fscal,fix3);
745             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
746             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
747             
748             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
749             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
750             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
751
752             }
753
754             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
755
756             /* Inner loop uses 208 flops */
757         }
758
759         /* End of innermost loop */
760
761         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
762                                               f+i_coord_offset,fshift+i_shift_offset);
763
764         ggid                        = gid[iidx];
765         /* Update potential energies */
766         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
767         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
768
769         /* Increment number of inner iterations */
770         inneriter                  += j_index_end - j_index_start;
771
772         /* Outer loop uses 26 flops */
773     }
774
775     /* Increment number of outer iterations */
776     outeriter        += nri;
777
778     /* Update outer/inner flops */
779
780     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*208);
781 }
782 /*
783  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_avx_128_fma_double
784  * Electrostatics interaction: Ewald
785  * VdW interaction:            LJEwald
786  * Geometry:                   Water4-Particle
787  * Calculate force/pot:        Force
788  */
789 void
790 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_avx_128_fma_double
791                     (t_nblist                    * gmx_restrict       nlist,
792                      rvec                        * gmx_restrict          xx,
793                      rvec                        * gmx_restrict          ff,
794                      struct t_forcerec           * gmx_restrict          fr,
795                      t_mdatoms                   * gmx_restrict     mdatoms,
796                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
797                      t_nrnb                      * gmx_restrict        nrnb)
798 {
799     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
800      * just 0 for non-waters.
801      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
802      * jnr indices corresponding to data put in the four positions in the SIMD register.
803      */
804     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
805     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
806     int              jnrA,jnrB;
807     int              j_coord_offsetA,j_coord_offsetB;
808     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
809     real             rcutoff_scalar;
810     real             *shiftvec,*fshift,*x,*f;
811     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
812     int              vdwioffset0;
813     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
814     int              vdwioffset1;
815     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
816     int              vdwioffset2;
817     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
818     int              vdwioffset3;
819     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
820     int              vdwjidx0A,vdwjidx0B;
821     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
822     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
823     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
824     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
825     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
826     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
827     real             *charge;
828     int              nvdwtype;
829     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
830     int              *vdwtype;
831     real             *vdwparam;
832     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
833     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
834     __m128d           c6grid_00;
835     __m128d           c6grid_10;
836     __m128d           c6grid_20;
837     __m128d           c6grid_30;
838     real             *vdwgridparam;
839     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
840     __m128d           one_half  = _mm_set1_pd(0.5);
841     __m128d           minus_one = _mm_set1_pd(-1.0);
842     __m128i          ewitab;
843     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
844     real             *ewtab;
845     __m128d          dummy_mask,cutoff_mask;
846     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
847     __m128d          one     = _mm_set1_pd(1.0);
848     __m128d          two     = _mm_set1_pd(2.0);
849     x                = xx[0];
850     f                = ff[0];
851
852     nri              = nlist->nri;
853     iinr             = nlist->iinr;
854     jindex           = nlist->jindex;
855     jjnr             = nlist->jjnr;
856     shiftidx         = nlist->shift;
857     gid              = nlist->gid;
858     shiftvec         = fr->shift_vec[0];
859     fshift           = fr->fshift[0];
860     facel            = _mm_set1_pd(fr->ic->epsfac);
861     charge           = mdatoms->chargeA;
862     nvdwtype         = fr->ntype;
863     vdwparam         = fr->nbfp;
864     vdwtype          = mdatoms->typeA;
865     vdwgridparam     = fr->ljpme_c6grid;
866     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
867     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
868     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
869
870     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
871     ewtab            = fr->ic->tabq_coul_F;
872     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
873     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
874
875     /* Setup water-specific parameters */
876     inr              = nlist->iinr[0];
877     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
878     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
879     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
880     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
881
882     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
883     rcutoff_scalar   = fr->ic->rcoulomb;
884     rcutoff          = _mm_set1_pd(rcutoff_scalar);
885     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
886
887     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
888     rvdw             = _mm_set1_pd(fr->ic->rvdw);
889
890     /* Avoid stupid compiler warnings */
891     jnrA = jnrB = 0;
892     j_coord_offsetA = 0;
893     j_coord_offsetB = 0;
894
895     outeriter        = 0;
896     inneriter        = 0;
897
898     /* Start outer loop over neighborlists */
899     for(iidx=0; iidx<nri; iidx++)
900     {
901         /* Load shift vector for this list */
902         i_shift_offset   = DIM*shiftidx[iidx];
903
904         /* Load limits for loop over neighbors */
905         j_index_start    = jindex[iidx];
906         j_index_end      = jindex[iidx+1];
907
908         /* Get outer coordinate index */
909         inr              = iinr[iidx];
910         i_coord_offset   = DIM*inr;
911
912         /* Load i particle coords and add shift vector */
913         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
914                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
915
916         fix0             = _mm_setzero_pd();
917         fiy0             = _mm_setzero_pd();
918         fiz0             = _mm_setzero_pd();
919         fix1             = _mm_setzero_pd();
920         fiy1             = _mm_setzero_pd();
921         fiz1             = _mm_setzero_pd();
922         fix2             = _mm_setzero_pd();
923         fiy2             = _mm_setzero_pd();
924         fiz2             = _mm_setzero_pd();
925         fix3             = _mm_setzero_pd();
926         fiy3             = _mm_setzero_pd();
927         fiz3             = _mm_setzero_pd();
928
929         /* Start inner kernel loop */
930         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
931         {
932
933             /* Get j neighbor index, and coordinate index */
934             jnrA             = jjnr[jidx];
935             jnrB             = jjnr[jidx+1];
936             j_coord_offsetA  = DIM*jnrA;
937             j_coord_offsetB  = DIM*jnrB;
938
939             /* load j atom coordinates */
940             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
941                                               &jx0,&jy0,&jz0);
942
943             /* Calculate displacement vector */
944             dx00             = _mm_sub_pd(ix0,jx0);
945             dy00             = _mm_sub_pd(iy0,jy0);
946             dz00             = _mm_sub_pd(iz0,jz0);
947             dx10             = _mm_sub_pd(ix1,jx0);
948             dy10             = _mm_sub_pd(iy1,jy0);
949             dz10             = _mm_sub_pd(iz1,jz0);
950             dx20             = _mm_sub_pd(ix2,jx0);
951             dy20             = _mm_sub_pd(iy2,jy0);
952             dz20             = _mm_sub_pd(iz2,jz0);
953             dx30             = _mm_sub_pd(ix3,jx0);
954             dy30             = _mm_sub_pd(iy3,jy0);
955             dz30             = _mm_sub_pd(iz3,jz0);
956
957             /* Calculate squared distance and things based on it */
958             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
959             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
960             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
961             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
962
963             rinv00           = avx128fma_invsqrt_d(rsq00);
964             rinv10           = avx128fma_invsqrt_d(rsq10);
965             rinv20           = avx128fma_invsqrt_d(rsq20);
966             rinv30           = avx128fma_invsqrt_d(rsq30);
967
968             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
969             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
970             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
971             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
972
973             /* Load parameters for j particles */
974             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
975             vdwjidx0A        = 2*vdwtype[jnrA+0];
976             vdwjidx0B        = 2*vdwtype[jnrB+0];
977
978             fjx0             = _mm_setzero_pd();
979             fjy0             = _mm_setzero_pd();
980             fjz0             = _mm_setzero_pd();
981
982             /**************************
983              * CALCULATE INTERACTIONS *
984              **************************/
985
986             if (gmx_mm_any_lt(rsq00,rcutoff2))
987             {
988
989             r00              = _mm_mul_pd(rsq00,rinv00);
990
991             /* Compute parameters for interactions between i and j atoms */
992             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
993                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
994             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
995                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
996
997             /* Analytical LJ-PME */
998             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
999             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1000             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1001             exponent         = avx128fma_exp_d(ewcljrsq);
1002             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1003             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1004             /* f6A = 6 * C6grid * (1 - poly) */
1005             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1006             /* f6B = C6grid * exponent * beta^6 */
1007             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1008             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1009             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1010
1011             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1012
1013             fscal            = fvdw;
1014
1015             fscal            = _mm_and_pd(fscal,cutoff_mask);
1016
1017             /* Update vectorial force */
1018             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1019             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1020             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1021             
1022             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1023             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1024             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1025
1026             }
1027
1028             /**************************
1029              * CALCULATE INTERACTIONS *
1030              **************************/
1031
1032             if (gmx_mm_any_lt(rsq10,rcutoff2))
1033             {
1034
1035             r10              = _mm_mul_pd(rsq10,rinv10);
1036
1037             /* Compute parameters for interactions between i and j atoms */
1038             qq10             = _mm_mul_pd(iq1,jq0);
1039
1040             /* EWALD ELECTROSTATICS */
1041
1042             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1043             ewrt             = _mm_mul_pd(r10,ewtabscale);
1044             ewitab           = _mm_cvttpd_epi32(ewrt);
1045 #ifdef __XOP__
1046             eweps            = _mm_frcz_pd(ewrt);
1047 #else
1048             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1049 #endif
1050             twoeweps         = _mm_add_pd(eweps,eweps);
1051             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1052                                          &ewtabF,&ewtabFn);
1053             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1054             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1055
1056             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1057
1058             fscal            = felec;
1059
1060             fscal            = _mm_and_pd(fscal,cutoff_mask);
1061
1062             /* Update vectorial force */
1063             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1064             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1065             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1066             
1067             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1068             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1069             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1070
1071             }
1072
1073             /**************************
1074              * CALCULATE INTERACTIONS *
1075              **************************/
1076
1077             if (gmx_mm_any_lt(rsq20,rcutoff2))
1078             {
1079
1080             r20              = _mm_mul_pd(rsq20,rinv20);
1081
1082             /* Compute parameters for interactions between i and j atoms */
1083             qq20             = _mm_mul_pd(iq2,jq0);
1084
1085             /* EWALD ELECTROSTATICS */
1086
1087             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1088             ewrt             = _mm_mul_pd(r20,ewtabscale);
1089             ewitab           = _mm_cvttpd_epi32(ewrt);
1090 #ifdef __XOP__
1091             eweps            = _mm_frcz_pd(ewrt);
1092 #else
1093             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1094 #endif
1095             twoeweps         = _mm_add_pd(eweps,eweps);
1096             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1097                                          &ewtabF,&ewtabFn);
1098             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1099             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1100
1101             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1102
1103             fscal            = felec;
1104
1105             fscal            = _mm_and_pd(fscal,cutoff_mask);
1106
1107             /* Update vectorial force */
1108             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1109             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1110             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1111             
1112             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1113             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1114             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1115
1116             }
1117
1118             /**************************
1119              * CALCULATE INTERACTIONS *
1120              **************************/
1121
1122             if (gmx_mm_any_lt(rsq30,rcutoff2))
1123             {
1124
1125             r30              = _mm_mul_pd(rsq30,rinv30);
1126
1127             /* Compute parameters for interactions between i and j atoms */
1128             qq30             = _mm_mul_pd(iq3,jq0);
1129
1130             /* EWALD ELECTROSTATICS */
1131
1132             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1133             ewrt             = _mm_mul_pd(r30,ewtabscale);
1134             ewitab           = _mm_cvttpd_epi32(ewrt);
1135 #ifdef __XOP__
1136             eweps            = _mm_frcz_pd(ewrt);
1137 #else
1138             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1139 #endif
1140             twoeweps         = _mm_add_pd(eweps,eweps);
1141             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1142                                          &ewtabF,&ewtabFn);
1143             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1144             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1145
1146             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1147
1148             fscal            = felec;
1149
1150             fscal            = _mm_and_pd(fscal,cutoff_mask);
1151
1152             /* Update vectorial force */
1153             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1154             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1155             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1156             
1157             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1158             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1159             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1160
1161             }
1162
1163             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1164
1165             /* Inner loop uses 179 flops */
1166         }
1167
1168         if(jidx<j_index_end)
1169         {
1170
1171             jnrA             = jjnr[jidx];
1172             j_coord_offsetA  = DIM*jnrA;
1173
1174             /* load j atom coordinates */
1175             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1176                                               &jx0,&jy0,&jz0);
1177
1178             /* Calculate displacement vector */
1179             dx00             = _mm_sub_pd(ix0,jx0);
1180             dy00             = _mm_sub_pd(iy0,jy0);
1181             dz00             = _mm_sub_pd(iz0,jz0);
1182             dx10             = _mm_sub_pd(ix1,jx0);
1183             dy10             = _mm_sub_pd(iy1,jy0);
1184             dz10             = _mm_sub_pd(iz1,jz0);
1185             dx20             = _mm_sub_pd(ix2,jx0);
1186             dy20             = _mm_sub_pd(iy2,jy0);
1187             dz20             = _mm_sub_pd(iz2,jz0);
1188             dx30             = _mm_sub_pd(ix3,jx0);
1189             dy30             = _mm_sub_pd(iy3,jy0);
1190             dz30             = _mm_sub_pd(iz3,jz0);
1191
1192             /* Calculate squared distance and things based on it */
1193             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1194             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1195             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1196             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1197
1198             rinv00           = avx128fma_invsqrt_d(rsq00);
1199             rinv10           = avx128fma_invsqrt_d(rsq10);
1200             rinv20           = avx128fma_invsqrt_d(rsq20);
1201             rinv30           = avx128fma_invsqrt_d(rsq30);
1202
1203             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1204             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1205             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1206             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1207
1208             /* Load parameters for j particles */
1209             jq0              = _mm_load_sd(charge+jnrA+0);
1210             vdwjidx0A        = 2*vdwtype[jnrA+0];
1211
1212             fjx0             = _mm_setzero_pd();
1213             fjy0             = _mm_setzero_pd();
1214             fjz0             = _mm_setzero_pd();
1215
1216             /**************************
1217              * CALCULATE INTERACTIONS *
1218              **************************/
1219
1220             if (gmx_mm_any_lt(rsq00,rcutoff2))
1221             {
1222
1223             r00              = _mm_mul_pd(rsq00,rinv00);
1224
1225             /* Compute parameters for interactions between i and j atoms */
1226             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1227             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1228
1229             /* Analytical LJ-PME */
1230             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1231             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1232             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1233             exponent         = avx128fma_exp_d(ewcljrsq);
1234             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1235             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1236             /* f6A = 6 * C6grid * (1 - poly) */
1237             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1238             /* f6B = C6grid * exponent * beta^6 */
1239             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1240             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1241             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1242
1243             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1244
1245             fscal            = fvdw;
1246
1247             fscal            = _mm_and_pd(fscal,cutoff_mask);
1248
1249             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1250
1251             /* Update vectorial force */
1252             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1253             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1254             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1255             
1256             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1257             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1258             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1259
1260             }
1261
1262             /**************************
1263              * CALCULATE INTERACTIONS *
1264              **************************/
1265
1266             if (gmx_mm_any_lt(rsq10,rcutoff2))
1267             {
1268
1269             r10              = _mm_mul_pd(rsq10,rinv10);
1270
1271             /* Compute parameters for interactions between i and j atoms */
1272             qq10             = _mm_mul_pd(iq1,jq0);
1273
1274             /* EWALD ELECTROSTATICS */
1275
1276             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1277             ewrt             = _mm_mul_pd(r10,ewtabscale);
1278             ewitab           = _mm_cvttpd_epi32(ewrt);
1279 #ifdef __XOP__
1280             eweps            = _mm_frcz_pd(ewrt);
1281 #else
1282             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1283 #endif
1284             twoeweps         = _mm_add_pd(eweps,eweps);
1285             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1286             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1287             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1288
1289             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1290
1291             fscal            = felec;
1292
1293             fscal            = _mm_and_pd(fscal,cutoff_mask);
1294
1295             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1296
1297             /* Update vectorial force */
1298             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1299             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1300             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1301             
1302             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1303             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1304             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1305
1306             }
1307
1308             /**************************
1309              * CALCULATE INTERACTIONS *
1310              **************************/
1311
1312             if (gmx_mm_any_lt(rsq20,rcutoff2))
1313             {
1314
1315             r20              = _mm_mul_pd(rsq20,rinv20);
1316
1317             /* Compute parameters for interactions between i and j atoms */
1318             qq20             = _mm_mul_pd(iq2,jq0);
1319
1320             /* EWALD ELECTROSTATICS */
1321
1322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1323             ewrt             = _mm_mul_pd(r20,ewtabscale);
1324             ewitab           = _mm_cvttpd_epi32(ewrt);
1325 #ifdef __XOP__
1326             eweps            = _mm_frcz_pd(ewrt);
1327 #else
1328             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1329 #endif
1330             twoeweps         = _mm_add_pd(eweps,eweps);
1331             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1332             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1333             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1334
1335             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1336
1337             fscal            = felec;
1338
1339             fscal            = _mm_and_pd(fscal,cutoff_mask);
1340
1341             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1342
1343             /* Update vectorial force */
1344             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1345             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1346             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1347             
1348             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1349             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1350             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1351
1352             }
1353
1354             /**************************
1355              * CALCULATE INTERACTIONS *
1356              **************************/
1357
1358             if (gmx_mm_any_lt(rsq30,rcutoff2))
1359             {
1360
1361             r30              = _mm_mul_pd(rsq30,rinv30);
1362
1363             /* Compute parameters for interactions between i and j atoms */
1364             qq30             = _mm_mul_pd(iq3,jq0);
1365
1366             /* EWALD ELECTROSTATICS */
1367
1368             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1369             ewrt             = _mm_mul_pd(r30,ewtabscale);
1370             ewitab           = _mm_cvttpd_epi32(ewrt);
1371 #ifdef __XOP__
1372             eweps            = _mm_frcz_pd(ewrt);
1373 #else
1374             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1375 #endif
1376             twoeweps         = _mm_add_pd(eweps,eweps);
1377             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1378             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1379             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1380
1381             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1382
1383             fscal            = felec;
1384
1385             fscal            = _mm_and_pd(fscal,cutoff_mask);
1386
1387             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1388
1389             /* Update vectorial force */
1390             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1391             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1392             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1393             
1394             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1395             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1396             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1397
1398             }
1399
1400             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1401
1402             /* Inner loop uses 179 flops */
1403         }
1404
1405         /* End of innermost loop */
1406
1407         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1408                                               f+i_coord_offset,fshift+i_shift_offset);
1409
1410         /* Increment number of inner iterations */
1411         inneriter                  += j_index_end - j_index_start;
1412
1413         /* Outer loop uses 24 flops */
1414     }
1415
1416     /* Increment number of outer iterations */
1417     outeriter        += nri;
1418
1419     /* Update outer/inner flops */
1420
1421     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*179);
1422 }