Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128d           c6grid_00;
105     __m128d           c6grid_10;
106     __m128d           c6grid_20;
107     __m128d           c6grid_30;
108     real             *vdwgridparam;
109     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
110     __m128d           one_half  = _mm_set1_pd(0.5);
111     __m128d           minus_one = _mm_set1_pd(-1.0);
112     __m128i          ewitab;
113     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     real             *ewtab;
115     __m128d          dummy_mask,cutoff_mask;
116     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
117     __m128d          one     = _mm_set1_pd(1.0);
118     __m128d          two     = _mm_set1_pd(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm_set1_pd(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
137     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
138     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
139
140     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
148     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
149     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
153     rcutoff_scalar   = fr->rcoulomb;
154     rcutoff          = _mm_set1_pd(rcutoff_scalar);
155     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
156
157     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
158     rvdw             = _mm_set1_pd(fr->rvdw);
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164
165     outeriter        = 0;
166     inneriter        = 0;
167
168     /* Start outer loop over neighborlists */
169     for(iidx=0; iidx<nri; iidx++)
170     {
171         /* Load shift vector for this list */
172         i_shift_offset   = DIM*shiftidx[iidx];
173
174         /* Load limits for loop over neighbors */
175         j_index_start    = jindex[iidx];
176         j_index_end      = jindex[iidx+1];
177
178         /* Get outer coordinate index */
179         inr              = iinr[iidx];
180         i_coord_offset   = DIM*inr;
181
182         /* Load i particle coords and add shift vector */
183         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
184                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
185
186         fix0             = _mm_setzero_pd();
187         fiy0             = _mm_setzero_pd();
188         fiz0             = _mm_setzero_pd();
189         fix1             = _mm_setzero_pd();
190         fiy1             = _mm_setzero_pd();
191         fiz1             = _mm_setzero_pd();
192         fix2             = _mm_setzero_pd();
193         fiy2             = _mm_setzero_pd();
194         fiz2             = _mm_setzero_pd();
195         fix3             = _mm_setzero_pd();
196         fiy3             = _mm_setzero_pd();
197         fiz3             = _mm_setzero_pd();
198
199         /* Reset potential sums */
200         velecsum         = _mm_setzero_pd();
201         vvdwsum          = _mm_setzero_pd();
202
203         /* Start inner kernel loop */
204         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
205         {
206
207             /* Get j neighbor index, and coordinate index */
208             jnrA             = jjnr[jidx];
209             jnrB             = jjnr[jidx+1];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212
213             /* load j atom coordinates */
214             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_pd(ix0,jx0);
219             dy00             = _mm_sub_pd(iy0,jy0);
220             dz00             = _mm_sub_pd(iz0,jz0);
221             dx10             = _mm_sub_pd(ix1,jx0);
222             dy10             = _mm_sub_pd(iy1,jy0);
223             dz10             = _mm_sub_pd(iz1,jz0);
224             dx20             = _mm_sub_pd(ix2,jx0);
225             dy20             = _mm_sub_pd(iy2,jy0);
226             dz20             = _mm_sub_pd(iz2,jz0);
227             dx30             = _mm_sub_pd(ix3,jx0);
228             dy30             = _mm_sub_pd(iy3,jy0);
229             dz30             = _mm_sub_pd(iz3,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
233             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
234             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
235             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
236
237             rinv00           = gmx_mm_invsqrt_pd(rsq00);
238             rinv10           = gmx_mm_invsqrt_pd(rsq10);
239             rinv20           = gmx_mm_invsqrt_pd(rsq20);
240             rinv30           = gmx_mm_invsqrt_pd(rsq30);
241
242             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
243             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
244             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
245             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251
252             fjx0             = _mm_setzero_pd();
253             fjy0             = _mm_setzero_pd();
254             fjz0             = _mm_setzero_pd();
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_mm_any_lt(rsq00,rcutoff2))
261             {
262
263             r00              = _mm_mul_pd(rsq00,rinv00);
264
265             /* Compute parameters for interactions between i and j atoms */
266             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
267                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
268             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
269                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
270
271             /* Analytical LJ-PME */
272             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
273             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
274             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
275             exponent         = gmx_simd_exp_d(ewcljrsq);
276             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
277             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
278             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
279             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
280             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
281             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
282                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
283             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
284             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
285
286             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
290             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
291
292             fscal            = fvdw;
293
294             fscal            = _mm_and_pd(fscal,cutoff_mask);
295
296             /* Update vectorial force */
297             fix0             = _mm_macc_pd(dx00,fscal,fix0);
298             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
299             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
300             
301             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
302             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
303             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
304
305             }
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             if (gmx_mm_any_lt(rsq10,rcutoff2))
312             {
313
314             r10              = _mm_mul_pd(rsq10,rinv10);
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq10             = _mm_mul_pd(iq1,jq0);
318
319             /* EWALD ELECTROSTATICS */
320
321             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
322             ewrt             = _mm_mul_pd(r10,ewtabscale);
323             ewitab           = _mm_cvttpd_epi32(ewrt);
324 #ifdef __XOP__
325             eweps            = _mm_frcz_pd(ewrt);
326 #else
327             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
328 #endif
329             twoeweps         = _mm_add_pd(eweps,eweps);
330             ewitab           = _mm_slli_epi32(ewitab,2);
331             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
332             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
333             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
334             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
335             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
336             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
337             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
338             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
339             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
340             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
341
342             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velec            = _mm_and_pd(velec,cutoff_mask);
346             velecsum         = _mm_add_pd(velecsum,velec);
347
348             fscal            = felec;
349
350             fscal            = _mm_and_pd(fscal,cutoff_mask);
351
352             /* Update vectorial force */
353             fix1             = _mm_macc_pd(dx10,fscal,fix1);
354             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
355             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
356             
357             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
358             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
359             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
360
361             }
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             if (gmx_mm_any_lt(rsq20,rcutoff2))
368             {
369
370             r20              = _mm_mul_pd(rsq20,rinv20);
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq20             = _mm_mul_pd(iq2,jq0);
374
375             /* EWALD ELECTROSTATICS */
376
377             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
378             ewrt             = _mm_mul_pd(r20,ewtabscale);
379             ewitab           = _mm_cvttpd_epi32(ewrt);
380 #ifdef __XOP__
381             eweps            = _mm_frcz_pd(ewrt);
382 #else
383             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
384 #endif
385             twoeweps         = _mm_add_pd(eweps,eweps);
386             ewitab           = _mm_slli_epi32(ewitab,2);
387             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
388             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
389             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
390             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
391             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
392             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
393             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
394             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
395             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
396             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
397
398             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
399
400             /* Update potential sum for this i atom from the interaction with this j atom. */
401             velec            = _mm_and_pd(velec,cutoff_mask);
402             velecsum         = _mm_add_pd(velecsum,velec);
403
404             fscal            = felec;
405
406             fscal            = _mm_and_pd(fscal,cutoff_mask);
407
408             /* Update vectorial force */
409             fix2             = _mm_macc_pd(dx20,fscal,fix2);
410             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
411             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
412             
413             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
414             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
415             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
416
417             }
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             if (gmx_mm_any_lt(rsq30,rcutoff2))
424             {
425
426             r30              = _mm_mul_pd(rsq30,rinv30);
427
428             /* Compute parameters for interactions between i and j atoms */
429             qq30             = _mm_mul_pd(iq3,jq0);
430
431             /* EWALD ELECTROSTATICS */
432
433             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
434             ewrt             = _mm_mul_pd(r30,ewtabscale);
435             ewitab           = _mm_cvttpd_epi32(ewrt);
436 #ifdef __XOP__
437             eweps            = _mm_frcz_pd(ewrt);
438 #else
439             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
440 #endif
441             twoeweps         = _mm_add_pd(eweps,eweps);
442             ewitab           = _mm_slli_epi32(ewitab,2);
443             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
444             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
445             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
446             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
447             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
448             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
449             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
450             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
451             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
452             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
453
454             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
455
456             /* Update potential sum for this i atom from the interaction with this j atom. */
457             velec            = _mm_and_pd(velec,cutoff_mask);
458             velecsum         = _mm_add_pd(velecsum,velec);
459
460             fscal            = felec;
461
462             fscal            = _mm_and_pd(fscal,cutoff_mask);
463
464             /* Update vectorial force */
465             fix3             = _mm_macc_pd(dx30,fscal,fix3);
466             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
467             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
468             
469             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
470             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
471             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
472
473             }
474
475             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
476
477             /* Inner loop uses 208 flops */
478         }
479
480         if(jidx<j_index_end)
481         {
482
483             jnrA             = jjnr[jidx];
484             j_coord_offsetA  = DIM*jnrA;
485
486             /* load j atom coordinates */
487             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
488                                               &jx0,&jy0,&jz0);
489
490             /* Calculate displacement vector */
491             dx00             = _mm_sub_pd(ix0,jx0);
492             dy00             = _mm_sub_pd(iy0,jy0);
493             dz00             = _mm_sub_pd(iz0,jz0);
494             dx10             = _mm_sub_pd(ix1,jx0);
495             dy10             = _mm_sub_pd(iy1,jy0);
496             dz10             = _mm_sub_pd(iz1,jz0);
497             dx20             = _mm_sub_pd(ix2,jx0);
498             dy20             = _mm_sub_pd(iy2,jy0);
499             dz20             = _mm_sub_pd(iz2,jz0);
500             dx30             = _mm_sub_pd(ix3,jx0);
501             dy30             = _mm_sub_pd(iy3,jy0);
502             dz30             = _mm_sub_pd(iz3,jz0);
503
504             /* Calculate squared distance and things based on it */
505             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
506             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
507             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
508             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
509
510             rinv00           = gmx_mm_invsqrt_pd(rsq00);
511             rinv10           = gmx_mm_invsqrt_pd(rsq10);
512             rinv20           = gmx_mm_invsqrt_pd(rsq20);
513             rinv30           = gmx_mm_invsqrt_pd(rsq30);
514
515             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
516             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
517             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
518             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
519
520             /* Load parameters for j particles */
521             jq0              = _mm_load_sd(charge+jnrA+0);
522             vdwjidx0A        = 2*vdwtype[jnrA+0];
523
524             fjx0             = _mm_setzero_pd();
525             fjy0             = _mm_setzero_pd();
526             fjz0             = _mm_setzero_pd();
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             if (gmx_mm_any_lt(rsq00,rcutoff2))
533             {
534
535             r00              = _mm_mul_pd(rsq00,rinv00);
536
537             /* Compute parameters for interactions between i and j atoms */
538             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
539             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
540
541             /* Analytical LJ-PME */
542             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
543             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
544             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
545             exponent         = gmx_simd_exp_d(ewcljrsq);
546             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
547             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
548             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
549             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
550             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
551             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
552                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
553             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
554             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
555
556             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
560             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
561             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
562
563             fscal            = fvdw;
564
565             fscal            = _mm_and_pd(fscal,cutoff_mask);
566
567             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
568
569             /* Update vectorial force */
570             fix0             = _mm_macc_pd(dx00,fscal,fix0);
571             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
572             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
573             
574             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
575             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
576             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
577
578             }
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             if (gmx_mm_any_lt(rsq10,rcutoff2))
585             {
586
587             r10              = _mm_mul_pd(rsq10,rinv10);
588
589             /* Compute parameters for interactions between i and j atoms */
590             qq10             = _mm_mul_pd(iq1,jq0);
591
592             /* EWALD ELECTROSTATICS */
593
594             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
595             ewrt             = _mm_mul_pd(r10,ewtabscale);
596             ewitab           = _mm_cvttpd_epi32(ewrt);
597 #ifdef __XOP__
598             eweps            = _mm_frcz_pd(ewrt);
599 #else
600             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
601 #endif
602             twoeweps         = _mm_add_pd(eweps,eweps);
603             ewitab           = _mm_slli_epi32(ewitab,2);
604             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
605             ewtabD           = _mm_setzero_pd();
606             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
607             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
608             ewtabFn          = _mm_setzero_pd();
609             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
610             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
611             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
612             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
613             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
614
615             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             velec            = _mm_and_pd(velec,cutoff_mask);
619             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
620             velecsum         = _mm_add_pd(velecsum,velec);
621
622             fscal            = felec;
623
624             fscal            = _mm_and_pd(fscal,cutoff_mask);
625
626             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
627
628             /* Update vectorial force */
629             fix1             = _mm_macc_pd(dx10,fscal,fix1);
630             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
631             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
632             
633             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
634             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
635             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
636
637             }
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             if (gmx_mm_any_lt(rsq20,rcutoff2))
644             {
645
646             r20              = _mm_mul_pd(rsq20,rinv20);
647
648             /* Compute parameters for interactions between i and j atoms */
649             qq20             = _mm_mul_pd(iq2,jq0);
650
651             /* EWALD ELECTROSTATICS */
652
653             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
654             ewrt             = _mm_mul_pd(r20,ewtabscale);
655             ewitab           = _mm_cvttpd_epi32(ewrt);
656 #ifdef __XOP__
657             eweps            = _mm_frcz_pd(ewrt);
658 #else
659             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
660 #endif
661             twoeweps         = _mm_add_pd(eweps,eweps);
662             ewitab           = _mm_slli_epi32(ewitab,2);
663             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
664             ewtabD           = _mm_setzero_pd();
665             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
666             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
667             ewtabFn          = _mm_setzero_pd();
668             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
669             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
670             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
671             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
672             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
673
674             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
675
676             /* Update potential sum for this i atom from the interaction with this j atom. */
677             velec            = _mm_and_pd(velec,cutoff_mask);
678             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
679             velecsum         = _mm_add_pd(velecsum,velec);
680
681             fscal            = felec;
682
683             fscal            = _mm_and_pd(fscal,cutoff_mask);
684
685             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
686
687             /* Update vectorial force */
688             fix2             = _mm_macc_pd(dx20,fscal,fix2);
689             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
690             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
691             
692             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
693             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
694             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
695
696             }
697
698             /**************************
699              * CALCULATE INTERACTIONS *
700              **************************/
701
702             if (gmx_mm_any_lt(rsq30,rcutoff2))
703             {
704
705             r30              = _mm_mul_pd(rsq30,rinv30);
706
707             /* Compute parameters for interactions between i and j atoms */
708             qq30             = _mm_mul_pd(iq3,jq0);
709
710             /* EWALD ELECTROSTATICS */
711
712             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
713             ewrt             = _mm_mul_pd(r30,ewtabscale);
714             ewitab           = _mm_cvttpd_epi32(ewrt);
715 #ifdef __XOP__
716             eweps            = _mm_frcz_pd(ewrt);
717 #else
718             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
719 #endif
720             twoeweps         = _mm_add_pd(eweps,eweps);
721             ewitab           = _mm_slli_epi32(ewitab,2);
722             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
723             ewtabD           = _mm_setzero_pd();
724             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
725             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
726             ewtabFn          = _mm_setzero_pd();
727             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
728             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
729             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
730             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
731             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
732
733             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
734
735             /* Update potential sum for this i atom from the interaction with this j atom. */
736             velec            = _mm_and_pd(velec,cutoff_mask);
737             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
738             velecsum         = _mm_add_pd(velecsum,velec);
739
740             fscal            = felec;
741
742             fscal            = _mm_and_pd(fscal,cutoff_mask);
743
744             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
745
746             /* Update vectorial force */
747             fix3             = _mm_macc_pd(dx30,fscal,fix3);
748             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
749             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
750             
751             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
752             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
753             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
754
755             }
756
757             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
758
759             /* Inner loop uses 208 flops */
760         }
761
762         /* End of innermost loop */
763
764         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
765                                               f+i_coord_offset,fshift+i_shift_offset);
766
767         ggid                        = gid[iidx];
768         /* Update potential energies */
769         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
770         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
771
772         /* Increment number of inner iterations */
773         inneriter                  += j_index_end - j_index_start;
774
775         /* Outer loop uses 26 flops */
776     }
777
778     /* Increment number of outer iterations */
779     outeriter        += nri;
780
781     /* Update outer/inner flops */
782
783     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*208);
784 }
785 /*
786  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_avx_128_fma_double
787  * Electrostatics interaction: Ewald
788  * VdW interaction:            LJEwald
789  * Geometry:                   Water4-Particle
790  * Calculate force/pot:        Force
791  */
792 void
793 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_avx_128_fma_double
794                     (t_nblist                    * gmx_restrict       nlist,
795                      rvec                        * gmx_restrict          xx,
796                      rvec                        * gmx_restrict          ff,
797                      t_forcerec                  * gmx_restrict          fr,
798                      t_mdatoms                   * gmx_restrict     mdatoms,
799                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
800                      t_nrnb                      * gmx_restrict        nrnb)
801 {
802     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
803      * just 0 for non-waters.
804      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
805      * jnr indices corresponding to data put in the four positions in the SIMD register.
806      */
807     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
808     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
809     int              jnrA,jnrB;
810     int              j_coord_offsetA,j_coord_offsetB;
811     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
812     real             rcutoff_scalar;
813     real             *shiftvec,*fshift,*x,*f;
814     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
815     int              vdwioffset0;
816     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
817     int              vdwioffset1;
818     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
819     int              vdwioffset2;
820     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
821     int              vdwioffset3;
822     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
823     int              vdwjidx0A,vdwjidx0B;
824     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
825     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
826     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
827     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
828     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
829     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
830     real             *charge;
831     int              nvdwtype;
832     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
833     int              *vdwtype;
834     real             *vdwparam;
835     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
836     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
837     __m128d           c6grid_00;
838     __m128d           c6grid_10;
839     __m128d           c6grid_20;
840     __m128d           c6grid_30;
841     real             *vdwgridparam;
842     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
843     __m128d           one_half  = _mm_set1_pd(0.5);
844     __m128d           minus_one = _mm_set1_pd(-1.0);
845     __m128i          ewitab;
846     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
847     real             *ewtab;
848     __m128d          dummy_mask,cutoff_mask;
849     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
850     __m128d          one     = _mm_set1_pd(1.0);
851     __m128d          two     = _mm_set1_pd(2.0);
852     x                = xx[0];
853     f                = ff[0];
854
855     nri              = nlist->nri;
856     iinr             = nlist->iinr;
857     jindex           = nlist->jindex;
858     jjnr             = nlist->jjnr;
859     shiftidx         = nlist->shift;
860     gid              = nlist->gid;
861     shiftvec         = fr->shift_vec[0];
862     fshift           = fr->fshift[0];
863     facel            = _mm_set1_pd(fr->epsfac);
864     charge           = mdatoms->chargeA;
865     nvdwtype         = fr->ntype;
866     vdwparam         = fr->nbfp;
867     vdwtype          = mdatoms->typeA;
868     vdwgridparam     = fr->ljpme_c6grid;
869     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
870     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
871     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
872
873     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
874     ewtab            = fr->ic->tabq_coul_F;
875     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
876     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
877
878     /* Setup water-specific parameters */
879     inr              = nlist->iinr[0];
880     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
881     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
882     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
883     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
884
885     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
886     rcutoff_scalar   = fr->rcoulomb;
887     rcutoff          = _mm_set1_pd(rcutoff_scalar);
888     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
889
890     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
891     rvdw             = _mm_set1_pd(fr->rvdw);
892
893     /* Avoid stupid compiler warnings */
894     jnrA = jnrB = 0;
895     j_coord_offsetA = 0;
896     j_coord_offsetB = 0;
897
898     outeriter        = 0;
899     inneriter        = 0;
900
901     /* Start outer loop over neighborlists */
902     for(iidx=0; iidx<nri; iidx++)
903     {
904         /* Load shift vector for this list */
905         i_shift_offset   = DIM*shiftidx[iidx];
906
907         /* Load limits for loop over neighbors */
908         j_index_start    = jindex[iidx];
909         j_index_end      = jindex[iidx+1];
910
911         /* Get outer coordinate index */
912         inr              = iinr[iidx];
913         i_coord_offset   = DIM*inr;
914
915         /* Load i particle coords and add shift vector */
916         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
917                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
918
919         fix0             = _mm_setzero_pd();
920         fiy0             = _mm_setzero_pd();
921         fiz0             = _mm_setzero_pd();
922         fix1             = _mm_setzero_pd();
923         fiy1             = _mm_setzero_pd();
924         fiz1             = _mm_setzero_pd();
925         fix2             = _mm_setzero_pd();
926         fiy2             = _mm_setzero_pd();
927         fiz2             = _mm_setzero_pd();
928         fix3             = _mm_setzero_pd();
929         fiy3             = _mm_setzero_pd();
930         fiz3             = _mm_setzero_pd();
931
932         /* Start inner kernel loop */
933         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
934         {
935
936             /* Get j neighbor index, and coordinate index */
937             jnrA             = jjnr[jidx];
938             jnrB             = jjnr[jidx+1];
939             j_coord_offsetA  = DIM*jnrA;
940             j_coord_offsetB  = DIM*jnrB;
941
942             /* load j atom coordinates */
943             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
944                                               &jx0,&jy0,&jz0);
945
946             /* Calculate displacement vector */
947             dx00             = _mm_sub_pd(ix0,jx0);
948             dy00             = _mm_sub_pd(iy0,jy0);
949             dz00             = _mm_sub_pd(iz0,jz0);
950             dx10             = _mm_sub_pd(ix1,jx0);
951             dy10             = _mm_sub_pd(iy1,jy0);
952             dz10             = _mm_sub_pd(iz1,jz0);
953             dx20             = _mm_sub_pd(ix2,jx0);
954             dy20             = _mm_sub_pd(iy2,jy0);
955             dz20             = _mm_sub_pd(iz2,jz0);
956             dx30             = _mm_sub_pd(ix3,jx0);
957             dy30             = _mm_sub_pd(iy3,jy0);
958             dz30             = _mm_sub_pd(iz3,jz0);
959
960             /* Calculate squared distance and things based on it */
961             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
962             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
963             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
964             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
965
966             rinv00           = gmx_mm_invsqrt_pd(rsq00);
967             rinv10           = gmx_mm_invsqrt_pd(rsq10);
968             rinv20           = gmx_mm_invsqrt_pd(rsq20);
969             rinv30           = gmx_mm_invsqrt_pd(rsq30);
970
971             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
972             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
973             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
974             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
975
976             /* Load parameters for j particles */
977             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
978             vdwjidx0A        = 2*vdwtype[jnrA+0];
979             vdwjidx0B        = 2*vdwtype[jnrB+0];
980
981             fjx0             = _mm_setzero_pd();
982             fjy0             = _mm_setzero_pd();
983             fjz0             = _mm_setzero_pd();
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             if (gmx_mm_any_lt(rsq00,rcutoff2))
990             {
991
992             r00              = _mm_mul_pd(rsq00,rinv00);
993
994             /* Compute parameters for interactions between i and j atoms */
995             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
996                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
997             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
998                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
999
1000             /* Analytical LJ-PME */
1001             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1002             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1003             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1004             exponent         = gmx_simd_exp_d(ewcljrsq);
1005             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1006             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1007             /* f6A = 6 * C6grid * (1 - poly) */
1008             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1009             /* f6B = C6grid * exponent * beta^6 */
1010             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1011             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1012             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1013
1014             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1015
1016             fscal            = fvdw;
1017
1018             fscal            = _mm_and_pd(fscal,cutoff_mask);
1019
1020             /* Update vectorial force */
1021             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1022             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1023             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1024             
1025             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1026             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1027             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1028
1029             }
1030
1031             /**************************
1032              * CALCULATE INTERACTIONS *
1033              **************************/
1034
1035             if (gmx_mm_any_lt(rsq10,rcutoff2))
1036             {
1037
1038             r10              = _mm_mul_pd(rsq10,rinv10);
1039
1040             /* Compute parameters for interactions between i and j atoms */
1041             qq10             = _mm_mul_pd(iq1,jq0);
1042
1043             /* EWALD ELECTROSTATICS */
1044
1045             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1046             ewrt             = _mm_mul_pd(r10,ewtabscale);
1047             ewitab           = _mm_cvttpd_epi32(ewrt);
1048 #ifdef __XOP__
1049             eweps            = _mm_frcz_pd(ewrt);
1050 #else
1051             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1052 #endif
1053             twoeweps         = _mm_add_pd(eweps,eweps);
1054             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1055                                          &ewtabF,&ewtabFn);
1056             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1057             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1058
1059             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1060
1061             fscal            = felec;
1062
1063             fscal            = _mm_and_pd(fscal,cutoff_mask);
1064
1065             /* Update vectorial force */
1066             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1067             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1068             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1069             
1070             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1071             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1072             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1073
1074             }
1075
1076             /**************************
1077              * CALCULATE INTERACTIONS *
1078              **************************/
1079
1080             if (gmx_mm_any_lt(rsq20,rcutoff2))
1081             {
1082
1083             r20              = _mm_mul_pd(rsq20,rinv20);
1084
1085             /* Compute parameters for interactions between i and j atoms */
1086             qq20             = _mm_mul_pd(iq2,jq0);
1087
1088             /* EWALD ELECTROSTATICS */
1089
1090             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1091             ewrt             = _mm_mul_pd(r20,ewtabscale);
1092             ewitab           = _mm_cvttpd_epi32(ewrt);
1093 #ifdef __XOP__
1094             eweps            = _mm_frcz_pd(ewrt);
1095 #else
1096             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1097 #endif
1098             twoeweps         = _mm_add_pd(eweps,eweps);
1099             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1100                                          &ewtabF,&ewtabFn);
1101             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1102             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1103
1104             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1105
1106             fscal            = felec;
1107
1108             fscal            = _mm_and_pd(fscal,cutoff_mask);
1109
1110             /* Update vectorial force */
1111             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1112             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1113             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1114             
1115             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1116             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1117             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1118
1119             }
1120
1121             /**************************
1122              * CALCULATE INTERACTIONS *
1123              **************************/
1124
1125             if (gmx_mm_any_lt(rsq30,rcutoff2))
1126             {
1127
1128             r30              = _mm_mul_pd(rsq30,rinv30);
1129
1130             /* Compute parameters for interactions between i and j atoms */
1131             qq30             = _mm_mul_pd(iq3,jq0);
1132
1133             /* EWALD ELECTROSTATICS */
1134
1135             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1136             ewrt             = _mm_mul_pd(r30,ewtabscale);
1137             ewitab           = _mm_cvttpd_epi32(ewrt);
1138 #ifdef __XOP__
1139             eweps            = _mm_frcz_pd(ewrt);
1140 #else
1141             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1142 #endif
1143             twoeweps         = _mm_add_pd(eweps,eweps);
1144             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1145                                          &ewtabF,&ewtabFn);
1146             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1147             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1148
1149             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1150
1151             fscal            = felec;
1152
1153             fscal            = _mm_and_pd(fscal,cutoff_mask);
1154
1155             /* Update vectorial force */
1156             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1157             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1158             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1159             
1160             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1161             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1162             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1163
1164             }
1165
1166             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1167
1168             /* Inner loop uses 179 flops */
1169         }
1170
1171         if(jidx<j_index_end)
1172         {
1173
1174             jnrA             = jjnr[jidx];
1175             j_coord_offsetA  = DIM*jnrA;
1176
1177             /* load j atom coordinates */
1178             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1179                                               &jx0,&jy0,&jz0);
1180
1181             /* Calculate displacement vector */
1182             dx00             = _mm_sub_pd(ix0,jx0);
1183             dy00             = _mm_sub_pd(iy0,jy0);
1184             dz00             = _mm_sub_pd(iz0,jz0);
1185             dx10             = _mm_sub_pd(ix1,jx0);
1186             dy10             = _mm_sub_pd(iy1,jy0);
1187             dz10             = _mm_sub_pd(iz1,jz0);
1188             dx20             = _mm_sub_pd(ix2,jx0);
1189             dy20             = _mm_sub_pd(iy2,jy0);
1190             dz20             = _mm_sub_pd(iz2,jz0);
1191             dx30             = _mm_sub_pd(ix3,jx0);
1192             dy30             = _mm_sub_pd(iy3,jy0);
1193             dz30             = _mm_sub_pd(iz3,jz0);
1194
1195             /* Calculate squared distance and things based on it */
1196             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1197             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1198             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1199             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1200
1201             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1202             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1203             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1204             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1205
1206             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1207             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1208             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1209             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1210
1211             /* Load parameters for j particles */
1212             jq0              = _mm_load_sd(charge+jnrA+0);
1213             vdwjidx0A        = 2*vdwtype[jnrA+0];
1214
1215             fjx0             = _mm_setzero_pd();
1216             fjy0             = _mm_setzero_pd();
1217             fjz0             = _mm_setzero_pd();
1218
1219             /**************************
1220              * CALCULATE INTERACTIONS *
1221              **************************/
1222
1223             if (gmx_mm_any_lt(rsq00,rcutoff2))
1224             {
1225
1226             r00              = _mm_mul_pd(rsq00,rinv00);
1227
1228             /* Compute parameters for interactions between i and j atoms */
1229             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1230             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1231
1232             /* Analytical LJ-PME */
1233             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1234             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1235             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1236             exponent         = gmx_simd_exp_d(ewcljrsq);
1237             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1238             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1239             /* f6A = 6 * C6grid * (1 - poly) */
1240             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1241             /* f6B = C6grid * exponent * beta^6 */
1242             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1243             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1244             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1245
1246             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1247
1248             fscal            = fvdw;
1249
1250             fscal            = _mm_and_pd(fscal,cutoff_mask);
1251
1252             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1253
1254             /* Update vectorial force */
1255             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1256             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1257             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1258             
1259             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1260             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1261             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1262
1263             }
1264
1265             /**************************
1266              * CALCULATE INTERACTIONS *
1267              **************************/
1268
1269             if (gmx_mm_any_lt(rsq10,rcutoff2))
1270             {
1271
1272             r10              = _mm_mul_pd(rsq10,rinv10);
1273
1274             /* Compute parameters for interactions between i and j atoms */
1275             qq10             = _mm_mul_pd(iq1,jq0);
1276
1277             /* EWALD ELECTROSTATICS */
1278
1279             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1280             ewrt             = _mm_mul_pd(r10,ewtabscale);
1281             ewitab           = _mm_cvttpd_epi32(ewrt);
1282 #ifdef __XOP__
1283             eweps            = _mm_frcz_pd(ewrt);
1284 #else
1285             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1286 #endif
1287             twoeweps         = _mm_add_pd(eweps,eweps);
1288             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1289             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1290             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1291
1292             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1293
1294             fscal            = felec;
1295
1296             fscal            = _mm_and_pd(fscal,cutoff_mask);
1297
1298             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1299
1300             /* Update vectorial force */
1301             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1302             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1303             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1304             
1305             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1306             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1307             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1308
1309             }
1310
1311             /**************************
1312              * CALCULATE INTERACTIONS *
1313              **************************/
1314
1315             if (gmx_mm_any_lt(rsq20,rcutoff2))
1316             {
1317
1318             r20              = _mm_mul_pd(rsq20,rinv20);
1319
1320             /* Compute parameters for interactions between i and j atoms */
1321             qq20             = _mm_mul_pd(iq2,jq0);
1322
1323             /* EWALD ELECTROSTATICS */
1324
1325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1326             ewrt             = _mm_mul_pd(r20,ewtabscale);
1327             ewitab           = _mm_cvttpd_epi32(ewrt);
1328 #ifdef __XOP__
1329             eweps            = _mm_frcz_pd(ewrt);
1330 #else
1331             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1332 #endif
1333             twoeweps         = _mm_add_pd(eweps,eweps);
1334             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1335             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1336             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1337
1338             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1339
1340             fscal            = felec;
1341
1342             fscal            = _mm_and_pd(fscal,cutoff_mask);
1343
1344             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1345
1346             /* Update vectorial force */
1347             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1348             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1349             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1350             
1351             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1352             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1353             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1354
1355             }
1356
1357             /**************************
1358              * CALCULATE INTERACTIONS *
1359              **************************/
1360
1361             if (gmx_mm_any_lt(rsq30,rcutoff2))
1362             {
1363
1364             r30              = _mm_mul_pd(rsq30,rinv30);
1365
1366             /* Compute parameters for interactions between i and j atoms */
1367             qq30             = _mm_mul_pd(iq3,jq0);
1368
1369             /* EWALD ELECTROSTATICS */
1370
1371             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1372             ewrt             = _mm_mul_pd(r30,ewtabscale);
1373             ewitab           = _mm_cvttpd_epi32(ewrt);
1374 #ifdef __XOP__
1375             eweps            = _mm_frcz_pd(ewrt);
1376 #else
1377             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1378 #endif
1379             twoeweps         = _mm_add_pd(eweps,eweps);
1380             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1381             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1382             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1383
1384             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1385
1386             fscal            = felec;
1387
1388             fscal            = _mm_and_pd(fscal,cutoff_mask);
1389
1390             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1391
1392             /* Update vectorial force */
1393             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1394             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1395             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1396             
1397             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1398             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1399             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1400
1401             }
1402
1403             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1404
1405             /* Inner loop uses 179 flops */
1406         }
1407
1408         /* End of innermost loop */
1409
1410         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1411                                               f+i_coord_offset,fshift+i_shift_offset);
1412
1413         /* Increment number of inner iterations */
1414         inneriter                  += j_index_end - j_index_start;
1415
1416         /* Outer loop uses 24 flops */
1417     }
1418
1419     /* Increment number of outer iterations */
1420     outeriter        += nri;
1421
1422     /* Update outer/inner flops */
1423
1424     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*179);
1425 }