6b393ff81ea2432594fa964d10b36d98c6be127b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128d           c6grid_00;
103     __m128d           c6grid_10;
104     __m128d           c6grid_20;
105     __m128d           c6grid_30;
106     real             *vdwgridparam;
107     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
108     __m128d           one_half  = _mm_set1_pd(0.5);
109     __m128d           minus_one = _mm_set1_pd(-1.0);
110     __m128i          ewitab;
111     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
112     real             *ewtab;
113     __m128d          dummy_mask,cutoff_mask;
114     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
115     __m128d          one     = _mm_set1_pd(1.0);
116     __m128d          two     = _mm_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133     vdwgridparam     = fr->ljpme_c6grid;
134     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
135     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
136     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
137
138     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
146     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
147     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
148     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
151     rcutoff_scalar   = fr->rcoulomb;
152     rcutoff          = _mm_set1_pd(rcutoff_scalar);
153     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
154
155     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
156     rvdw             = _mm_set1_pd(fr->rvdw);
157
158     /* Avoid stupid compiler warnings */
159     jnrA = jnrB = 0;
160     j_coord_offsetA = 0;
161     j_coord_offsetB = 0;
162
163     outeriter        = 0;
164     inneriter        = 0;
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
183
184         fix0             = _mm_setzero_pd();
185         fiy0             = _mm_setzero_pd();
186         fiz0             = _mm_setzero_pd();
187         fix1             = _mm_setzero_pd();
188         fiy1             = _mm_setzero_pd();
189         fiz1             = _mm_setzero_pd();
190         fix2             = _mm_setzero_pd();
191         fiy2             = _mm_setzero_pd();
192         fiz2             = _mm_setzero_pd();
193         fix3             = _mm_setzero_pd();
194         fiy3             = _mm_setzero_pd();
195         fiz3             = _mm_setzero_pd();
196
197         /* Reset potential sums */
198         velecsum         = _mm_setzero_pd();
199         vvdwsum          = _mm_setzero_pd();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             j_coord_offsetA  = DIM*jnrA;
209             j_coord_offsetB  = DIM*jnrB;
210
211             /* load j atom coordinates */
212             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
213                                               &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm_sub_pd(ix0,jx0);
217             dy00             = _mm_sub_pd(iy0,jy0);
218             dz00             = _mm_sub_pd(iz0,jz0);
219             dx10             = _mm_sub_pd(ix1,jx0);
220             dy10             = _mm_sub_pd(iy1,jy0);
221             dz10             = _mm_sub_pd(iz1,jz0);
222             dx20             = _mm_sub_pd(ix2,jx0);
223             dy20             = _mm_sub_pd(iy2,jy0);
224             dz20             = _mm_sub_pd(iz2,jz0);
225             dx30             = _mm_sub_pd(ix3,jx0);
226             dy30             = _mm_sub_pd(iy3,jy0);
227             dz30             = _mm_sub_pd(iz3,jz0);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
231             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
232             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
233             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
234
235             rinv00           = gmx_mm_invsqrt_pd(rsq00);
236             rinv10           = gmx_mm_invsqrt_pd(rsq10);
237             rinv20           = gmx_mm_invsqrt_pd(rsq20);
238             rinv30           = gmx_mm_invsqrt_pd(rsq30);
239
240             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
241             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
242             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
243             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249
250             fjx0             = _mm_setzero_pd();
251             fjy0             = _mm_setzero_pd();
252             fjz0             = _mm_setzero_pd();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             if (gmx_mm_any_lt(rsq00,rcutoff2))
259             {
260
261             r00              = _mm_mul_pd(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
265                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
266             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
267                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
268
269             /* Analytical LJ-PME */
270             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
271             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
272             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
273             exponent         = gmx_simd_exp_d(ewcljrsq);
274             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
275             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
276             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
277             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
278             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
279             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
280                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
281             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
282             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
283
284             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
288             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
289
290             fscal            = fvdw;
291
292             fscal            = _mm_and_pd(fscal,cutoff_mask);
293
294             /* Update vectorial force */
295             fix0             = _mm_macc_pd(dx00,fscal,fix0);
296             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
297             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
298             
299             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
300             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
301             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
302
303             }
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             if (gmx_mm_any_lt(rsq10,rcutoff2))
310             {
311
312             r10              = _mm_mul_pd(rsq10,rinv10);
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq10             = _mm_mul_pd(iq1,jq0);
316
317             /* EWALD ELECTROSTATICS */
318
319             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
320             ewrt             = _mm_mul_pd(r10,ewtabscale);
321             ewitab           = _mm_cvttpd_epi32(ewrt);
322 #ifdef __XOP__
323             eweps            = _mm_frcz_pd(ewrt);
324 #else
325             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
326 #endif
327             twoeweps         = _mm_add_pd(eweps,eweps);
328             ewitab           = _mm_slli_epi32(ewitab,2);
329             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
330             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
331             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
332             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
333             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
334             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
335             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
336             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
337             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
338             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
339
340             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velec            = _mm_and_pd(velec,cutoff_mask);
344             velecsum         = _mm_add_pd(velecsum,velec);
345
346             fscal            = felec;
347
348             fscal            = _mm_and_pd(fscal,cutoff_mask);
349
350             /* Update vectorial force */
351             fix1             = _mm_macc_pd(dx10,fscal,fix1);
352             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
353             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
354             
355             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
356             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
357             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
358
359             }
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             if (gmx_mm_any_lt(rsq20,rcutoff2))
366             {
367
368             r20              = _mm_mul_pd(rsq20,rinv20);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq20             = _mm_mul_pd(iq2,jq0);
372
373             /* EWALD ELECTROSTATICS */
374
375             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
376             ewrt             = _mm_mul_pd(r20,ewtabscale);
377             ewitab           = _mm_cvttpd_epi32(ewrt);
378 #ifdef __XOP__
379             eweps            = _mm_frcz_pd(ewrt);
380 #else
381             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
382 #endif
383             twoeweps         = _mm_add_pd(eweps,eweps);
384             ewitab           = _mm_slli_epi32(ewitab,2);
385             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
386             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
387             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
388             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
389             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
390             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
391             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
392             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
393             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
394             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
395
396             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velec            = _mm_and_pd(velec,cutoff_mask);
400             velecsum         = _mm_add_pd(velecsum,velec);
401
402             fscal            = felec;
403
404             fscal            = _mm_and_pd(fscal,cutoff_mask);
405
406             /* Update vectorial force */
407             fix2             = _mm_macc_pd(dx20,fscal,fix2);
408             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
409             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
410             
411             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
412             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
413             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
414
415             }
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             if (gmx_mm_any_lt(rsq30,rcutoff2))
422             {
423
424             r30              = _mm_mul_pd(rsq30,rinv30);
425
426             /* Compute parameters for interactions between i and j atoms */
427             qq30             = _mm_mul_pd(iq3,jq0);
428
429             /* EWALD ELECTROSTATICS */
430
431             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
432             ewrt             = _mm_mul_pd(r30,ewtabscale);
433             ewitab           = _mm_cvttpd_epi32(ewrt);
434 #ifdef __XOP__
435             eweps            = _mm_frcz_pd(ewrt);
436 #else
437             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
438 #endif
439             twoeweps         = _mm_add_pd(eweps,eweps);
440             ewitab           = _mm_slli_epi32(ewitab,2);
441             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
442             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
443             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
444             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
445             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
446             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
447             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
448             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
449             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
450             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
451
452             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
453
454             /* Update potential sum for this i atom from the interaction with this j atom. */
455             velec            = _mm_and_pd(velec,cutoff_mask);
456             velecsum         = _mm_add_pd(velecsum,velec);
457
458             fscal            = felec;
459
460             fscal            = _mm_and_pd(fscal,cutoff_mask);
461
462             /* Update vectorial force */
463             fix3             = _mm_macc_pd(dx30,fscal,fix3);
464             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
465             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
466             
467             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
468             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
469             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
470
471             }
472
473             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
474
475             /* Inner loop uses 208 flops */
476         }
477
478         if(jidx<j_index_end)
479         {
480
481             jnrA             = jjnr[jidx];
482             j_coord_offsetA  = DIM*jnrA;
483
484             /* load j atom coordinates */
485             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
486                                               &jx0,&jy0,&jz0);
487
488             /* Calculate displacement vector */
489             dx00             = _mm_sub_pd(ix0,jx0);
490             dy00             = _mm_sub_pd(iy0,jy0);
491             dz00             = _mm_sub_pd(iz0,jz0);
492             dx10             = _mm_sub_pd(ix1,jx0);
493             dy10             = _mm_sub_pd(iy1,jy0);
494             dz10             = _mm_sub_pd(iz1,jz0);
495             dx20             = _mm_sub_pd(ix2,jx0);
496             dy20             = _mm_sub_pd(iy2,jy0);
497             dz20             = _mm_sub_pd(iz2,jz0);
498             dx30             = _mm_sub_pd(ix3,jx0);
499             dy30             = _mm_sub_pd(iy3,jy0);
500             dz30             = _mm_sub_pd(iz3,jz0);
501
502             /* Calculate squared distance and things based on it */
503             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
504             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
505             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
506             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
507
508             rinv00           = gmx_mm_invsqrt_pd(rsq00);
509             rinv10           = gmx_mm_invsqrt_pd(rsq10);
510             rinv20           = gmx_mm_invsqrt_pd(rsq20);
511             rinv30           = gmx_mm_invsqrt_pd(rsq30);
512
513             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
514             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
515             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
516             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
517
518             /* Load parameters for j particles */
519             jq0              = _mm_load_sd(charge+jnrA+0);
520             vdwjidx0A        = 2*vdwtype[jnrA+0];
521
522             fjx0             = _mm_setzero_pd();
523             fjy0             = _mm_setzero_pd();
524             fjz0             = _mm_setzero_pd();
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             if (gmx_mm_any_lt(rsq00,rcutoff2))
531             {
532
533             r00              = _mm_mul_pd(rsq00,rinv00);
534
535             /* Compute parameters for interactions between i and j atoms */
536             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
537             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
538
539             /* Analytical LJ-PME */
540             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
541             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
542             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
543             exponent         = gmx_simd_exp_d(ewcljrsq);
544             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
545             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
546             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
547             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
548             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
549             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
550                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
551             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
552             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
553
554             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
555
556             /* Update potential sum for this i atom from the interaction with this j atom. */
557             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
558             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
559             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
560
561             fscal            = fvdw;
562
563             fscal            = _mm_and_pd(fscal,cutoff_mask);
564
565             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
566
567             /* Update vectorial force */
568             fix0             = _mm_macc_pd(dx00,fscal,fix0);
569             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
570             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
571             
572             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
573             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
574             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
575
576             }
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             if (gmx_mm_any_lt(rsq10,rcutoff2))
583             {
584
585             r10              = _mm_mul_pd(rsq10,rinv10);
586
587             /* Compute parameters for interactions between i and j atoms */
588             qq10             = _mm_mul_pd(iq1,jq0);
589
590             /* EWALD ELECTROSTATICS */
591
592             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
593             ewrt             = _mm_mul_pd(r10,ewtabscale);
594             ewitab           = _mm_cvttpd_epi32(ewrt);
595 #ifdef __XOP__
596             eweps            = _mm_frcz_pd(ewrt);
597 #else
598             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
599 #endif
600             twoeweps         = _mm_add_pd(eweps,eweps);
601             ewitab           = _mm_slli_epi32(ewitab,2);
602             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
603             ewtabD           = _mm_setzero_pd();
604             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
605             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
606             ewtabFn          = _mm_setzero_pd();
607             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
608             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
609             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
610             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
611             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
612
613             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
614
615             /* Update potential sum for this i atom from the interaction with this j atom. */
616             velec            = _mm_and_pd(velec,cutoff_mask);
617             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
618             velecsum         = _mm_add_pd(velecsum,velec);
619
620             fscal            = felec;
621
622             fscal            = _mm_and_pd(fscal,cutoff_mask);
623
624             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
625
626             /* Update vectorial force */
627             fix1             = _mm_macc_pd(dx10,fscal,fix1);
628             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
629             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
630             
631             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
632             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
633             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
634
635             }
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             if (gmx_mm_any_lt(rsq20,rcutoff2))
642             {
643
644             r20              = _mm_mul_pd(rsq20,rinv20);
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq20             = _mm_mul_pd(iq2,jq0);
648
649             /* EWALD ELECTROSTATICS */
650
651             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
652             ewrt             = _mm_mul_pd(r20,ewtabscale);
653             ewitab           = _mm_cvttpd_epi32(ewrt);
654 #ifdef __XOP__
655             eweps            = _mm_frcz_pd(ewrt);
656 #else
657             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
658 #endif
659             twoeweps         = _mm_add_pd(eweps,eweps);
660             ewitab           = _mm_slli_epi32(ewitab,2);
661             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
662             ewtabD           = _mm_setzero_pd();
663             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
664             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
665             ewtabFn          = _mm_setzero_pd();
666             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
667             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
668             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
669             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
670             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
671
672             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
673
674             /* Update potential sum for this i atom from the interaction with this j atom. */
675             velec            = _mm_and_pd(velec,cutoff_mask);
676             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
677             velecsum         = _mm_add_pd(velecsum,velec);
678
679             fscal            = felec;
680
681             fscal            = _mm_and_pd(fscal,cutoff_mask);
682
683             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
684
685             /* Update vectorial force */
686             fix2             = _mm_macc_pd(dx20,fscal,fix2);
687             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
688             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
689             
690             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
691             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
692             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
693
694             }
695
696             /**************************
697              * CALCULATE INTERACTIONS *
698              **************************/
699
700             if (gmx_mm_any_lt(rsq30,rcutoff2))
701             {
702
703             r30              = _mm_mul_pd(rsq30,rinv30);
704
705             /* Compute parameters for interactions between i and j atoms */
706             qq30             = _mm_mul_pd(iq3,jq0);
707
708             /* EWALD ELECTROSTATICS */
709
710             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
711             ewrt             = _mm_mul_pd(r30,ewtabscale);
712             ewitab           = _mm_cvttpd_epi32(ewrt);
713 #ifdef __XOP__
714             eweps            = _mm_frcz_pd(ewrt);
715 #else
716             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
717 #endif
718             twoeweps         = _mm_add_pd(eweps,eweps);
719             ewitab           = _mm_slli_epi32(ewitab,2);
720             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
721             ewtabD           = _mm_setzero_pd();
722             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
723             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
724             ewtabFn          = _mm_setzero_pd();
725             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
726             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
727             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
728             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_sub_pd(rinv30,sh_ewald),velec));
729             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
730
731             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
732
733             /* Update potential sum for this i atom from the interaction with this j atom. */
734             velec            = _mm_and_pd(velec,cutoff_mask);
735             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
736             velecsum         = _mm_add_pd(velecsum,velec);
737
738             fscal            = felec;
739
740             fscal            = _mm_and_pd(fscal,cutoff_mask);
741
742             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
743
744             /* Update vectorial force */
745             fix3             = _mm_macc_pd(dx30,fscal,fix3);
746             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
747             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
748             
749             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
750             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
751             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
752
753             }
754
755             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
756
757             /* Inner loop uses 208 flops */
758         }
759
760         /* End of innermost loop */
761
762         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
763                                               f+i_coord_offset,fshift+i_shift_offset);
764
765         ggid                        = gid[iidx];
766         /* Update potential energies */
767         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
768         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
769
770         /* Increment number of inner iterations */
771         inneriter                  += j_index_end - j_index_start;
772
773         /* Outer loop uses 26 flops */
774     }
775
776     /* Increment number of outer iterations */
777     outeriter        += nri;
778
779     /* Update outer/inner flops */
780
781     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*208);
782 }
783 /*
784  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_avx_128_fma_double
785  * Electrostatics interaction: Ewald
786  * VdW interaction:            LJEwald
787  * Geometry:                   Water4-Particle
788  * Calculate force/pot:        Force
789  */
790 void
791 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_avx_128_fma_double
792                     (t_nblist                    * gmx_restrict       nlist,
793                      rvec                        * gmx_restrict          xx,
794                      rvec                        * gmx_restrict          ff,
795                      t_forcerec                  * gmx_restrict          fr,
796                      t_mdatoms                   * gmx_restrict     mdatoms,
797                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
798                      t_nrnb                      * gmx_restrict        nrnb)
799 {
800     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
801      * just 0 for non-waters.
802      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
803      * jnr indices corresponding to data put in the four positions in the SIMD register.
804      */
805     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
806     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
807     int              jnrA,jnrB;
808     int              j_coord_offsetA,j_coord_offsetB;
809     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
810     real             rcutoff_scalar;
811     real             *shiftvec,*fshift,*x,*f;
812     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
813     int              vdwioffset0;
814     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
815     int              vdwioffset1;
816     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
817     int              vdwioffset2;
818     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
819     int              vdwioffset3;
820     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
821     int              vdwjidx0A,vdwjidx0B;
822     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
823     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
824     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
825     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
826     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
827     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
828     real             *charge;
829     int              nvdwtype;
830     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
831     int              *vdwtype;
832     real             *vdwparam;
833     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
834     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
835     __m128d           c6grid_00;
836     __m128d           c6grid_10;
837     __m128d           c6grid_20;
838     __m128d           c6grid_30;
839     real             *vdwgridparam;
840     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
841     __m128d           one_half  = _mm_set1_pd(0.5);
842     __m128d           minus_one = _mm_set1_pd(-1.0);
843     __m128i          ewitab;
844     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
845     real             *ewtab;
846     __m128d          dummy_mask,cutoff_mask;
847     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
848     __m128d          one     = _mm_set1_pd(1.0);
849     __m128d          two     = _mm_set1_pd(2.0);
850     x                = xx[0];
851     f                = ff[0];
852
853     nri              = nlist->nri;
854     iinr             = nlist->iinr;
855     jindex           = nlist->jindex;
856     jjnr             = nlist->jjnr;
857     shiftidx         = nlist->shift;
858     gid              = nlist->gid;
859     shiftvec         = fr->shift_vec[0];
860     fshift           = fr->fshift[0];
861     facel            = _mm_set1_pd(fr->epsfac);
862     charge           = mdatoms->chargeA;
863     nvdwtype         = fr->ntype;
864     vdwparam         = fr->nbfp;
865     vdwtype          = mdatoms->typeA;
866     vdwgridparam     = fr->ljpme_c6grid;
867     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
868     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
869     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
870
871     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
872     ewtab            = fr->ic->tabq_coul_F;
873     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
874     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
875
876     /* Setup water-specific parameters */
877     inr              = nlist->iinr[0];
878     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
879     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
880     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
881     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
882
883     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
884     rcutoff_scalar   = fr->rcoulomb;
885     rcutoff          = _mm_set1_pd(rcutoff_scalar);
886     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
887
888     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
889     rvdw             = _mm_set1_pd(fr->rvdw);
890
891     /* Avoid stupid compiler warnings */
892     jnrA = jnrB = 0;
893     j_coord_offsetA = 0;
894     j_coord_offsetB = 0;
895
896     outeriter        = 0;
897     inneriter        = 0;
898
899     /* Start outer loop over neighborlists */
900     for(iidx=0; iidx<nri; iidx++)
901     {
902         /* Load shift vector for this list */
903         i_shift_offset   = DIM*shiftidx[iidx];
904
905         /* Load limits for loop over neighbors */
906         j_index_start    = jindex[iidx];
907         j_index_end      = jindex[iidx+1];
908
909         /* Get outer coordinate index */
910         inr              = iinr[iidx];
911         i_coord_offset   = DIM*inr;
912
913         /* Load i particle coords and add shift vector */
914         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
915                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
916
917         fix0             = _mm_setzero_pd();
918         fiy0             = _mm_setzero_pd();
919         fiz0             = _mm_setzero_pd();
920         fix1             = _mm_setzero_pd();
921         fiy1             = _mm_setzero_pd();
922         fiz1             = _mm_setzero_pd();
923         fix2             = _mm_setzero_pd();
924         fiy2             = _mm_setzero_pd();
925         fiz2             = _mm_setzero_pd();
926         fix3             = _mm_setzero_pd();
927         fiy3             = _mm_setzero_pd();
928         fiz3             = _mm_setzero_pd();
929
930         /* Start inner kernel loop */
931         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
932         {
933
934             /* Get j neighbor index, and coordinate index */
935             jnrA             = jjnr[jidx];
936             jnrB             = jjnr[jidx+1];
937             j_coord_offsetA  = DIM*jnrA;
938             j_coord_offsetB  = DIM*jnrB;
939
940             /* load j atom coordinates */
941             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
942                                               &jx0,&jy0,&jz0);
943
944             /* Calculate displacement vector */
945             dx00             = _mm_sub_pd(ix0,jx0);
946             dy00             = _mm_sub_pd(iy0,jy0);
947             dz00             = _mm_sub_pd(iz0,jz0);
948             dx10             = _mm_sub_pd(ix1,jx0);
949             dy10             = _mm_sub_pd(iy1,jy0);
950             dz10             = _mm_sub_pd(iz1,jz0);
951             dx20             = _mm_sub_pd(ix2,jx0);
952             dy20             = _mm_sub_pd(iy2,jy0);
953             dz20             = _mm_sub_pd(iz2,jz0);
954             dx30             = _mm_sub_pd(ix3,jx0);
955             dy30             = _mm_sub_pd(iy3,jy0);
956             dz30             = _mm_sub_pd(iz3,jz0);
957
958             /* Calculate squared distance and things based on it */
959             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
960             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
961             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
962             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
963
964             rinv00           = gmx_mm_invsqrt_pd(rsq00);
965             rinv10           = gmx_mm_invsqrt_pd(rsq10);
966             rinv20           = gmx_mm_invsqrt_pd(rsq20);
967             rinv30           = gmx_mm_invsqrt_pd(rsq30);
968
969             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
970             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
971             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
972             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
973
974             /* Load parameters for j particles */
975             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
976             vdwjidx0A        = 2*vdwtype[jnrA+0];
977             vdwjidx0B        = 2*vdwtype[jnrB+0];
978
979             fjx0             = _mm_setzero_pd();
980             fjy0             = _mm_setzero_pd();
981             fjz0             = _mm_setzero_pd();
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             if (gmx_mm_any_lt(rsq00,rcutoff2))
988             {
989
990             r00              = _mm_mul_pd(rsq00,rinv00);
991
992             /* Compute parameters for interactions between i and j atoms */
993             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
994                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
995             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
996                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
997
998             /* Analytical LJ-PME */
999             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1000             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1001             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1002             exponent         = gmx_simd_exp_d(ewcljrsq);
1003             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1004             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1005             /* f6A = 6 * C6grid * (1 - poly) */
1006             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1007             /* f6B = C6grid * exponent * beta^6 */
1008             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1009             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1010             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1011
1012             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1013
1014             fscal            = fvdw;
1015
1016             fscal            = _mm_and_pd(fscal,cutoff_mask);
1017
1018             /* Update vectorial force */
1019             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1020             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1021             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1022             
1023             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1024             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1025             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1026
1027             }
1028
1029             /**************************
1030              * CALCULATE INTERACTIONS *
1031              **************************/
1032
1033             if (gmx_mm_any_lt(rsq10,rcutoff2))
1034             {
1035
1036             r10              = _mm_mul_pd(rsq10,rinv10);
1037
1038             /* Compute parameters for interactions between i and j atoms */
1039             qq10             = _mm_mul_pd(iq1,jq0);
1040
1041             /* EWALD ELECTROSTATICS */
1042
1043             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1044             ewrt             = _mm_mul_pd(r10,ewtabscale);
1045             ewitab           = _mm_cvttpd_epi32(ewrt);
1046 #ifdef __XOP__
1047             eweps            = _mm_frcz_pd(ewrt);
1048 #else
1049             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1050 #endif
1051             twoeweps         = _mm_add_pd(eweps,eweps);
1052             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1053                                          &ewtabF,&ewtabFn);
1054             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1055             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1056
1057             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1058
1059             fscal            = felec;
1060
1061             fscal            = _mm_and_pd(fscal,cutoff_mask);
1062
1063             /* Update vectorial force */
1064             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1065             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1066             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1067             
1068             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1069             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1070             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1071
1072             }
1073
1074             /**************************
1075              * CALCULATE INTERACTIONS *
1076              **************************/
1077
1078             if (gmx_mm_any_lt(rsq20,rcutoff2))
1079             {
1080
1081             r20              = _mm_mul_pd(rsq20,rinv20);
1082
1083             /* Compute parameters for interactions between i and j atoms */
1084             qq20             = _mm_mul_pd(iq2,jq0);
1085
1086             /* EWALD ELECTROSTATICS */
1087
1088             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1089             ewrt             = _mm_mul_pd(r20,ewtabscale);
1090             ewitab           = _mm_cvttpd_epi32(ewrt);
1091 #ifdef __XOP__
1092             eweps            = _mm_frcz_pd(ewrt);
1093 #else
1094             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1095 #endif
1096             twoeweps         = _mm_add_pd(eweps,eweps);
1097             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1098                                          &ewtabF,&ewtabFn);
1099             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1100             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1101
1102             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1103
1104             fscal            = felec;
1105
1106             fscal            = _mm_and_pd(fscal,cutoff_mask);
1107
1108             /* Update vectorial force */
1109             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1110             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1111             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1112             
1113             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1114             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1115             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1116
1117             }
1118
1119             /**************************
1120              * CALCULATE INTERACTIONS *
1121              **************************/
1122
1123             if (gmx_mm_any_lt(rsq30,rcutoff2))
1124             {
1125
1126             r30              = _mm_mul_pd(rsq30,rinv30);
1127
1128             /* Compute parameters for interactions between i and j atoms */
1129             qq30             = _mm_mul_pd(iq3,jq0);
1130
1131             /* EWALD ELECTROSTATICS */
1132
1133             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1134             ewrt             = _mm_mul_pd(r30,ewtabscale);
1135             ewitab           = _mm_cvttpd_epi32(ewrt);
1136 #ifdef __XOP__
1137             eweps            = _mm_frcz_pd(ewrt);
1138 #else
1139             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1140 #endif
1141             twoeweps         = _mm_add_pd(eweps,eweps);
1142             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1143                                          &ewtabF,&ewtabFn);
1144             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1145             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1146
1147             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1148
1149             fscal            = felec;
1150
1151             fscal            = _mm_and_pd(fscal,cutoff_mask);
1152
1153             /* Update vectorial force */
1154             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1155             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1156             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1157             
1158             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1159             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1160             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1161
1162             }
1163
1164             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1165
1166             /* Inner loop uses 179 flops */
1167         }
1168
1169         if(jidx<j_index_end)
1170         {
1171
1172             jnrA             = jjnr[jidx];
1173             j_coord_offsetA  = DIM*jnrA;
1174
1175             /* load j atom coordinates */
1176             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1177                                               &jx0,&jy0,&jz0);
1178
1179             /* Calculate displacement vector */
1180             dx00             = _mm_sub_pd(ix0,jx0);
1181             dy00             = _mm_sub_pd(iy0,jy0);
1182             dz00             = _mm_sub_pd(iz0,jz0);
1183             dx10             = _mm_sub_pd(ix1,jx0);
1184             dy10             = _mm_sub_pd(iy1,jy0);
1185             dz10             = _mm_sub_pd(iz1,jz0);
1186             dx20             = _mm_sub_pd(ix2,jx0);
1187             dy20             = _mm_sub_pd(iy2,jy0);
1188             dz20             = _mm_sub_pd(iz2,jz0);
1189             dx30             = _mm_sub_pd(ix3,jx0);
1190             dy30             = _mm_sub_pd(iy3,jy0);
1191             dz30             = _mm_sub_pd(iz3,jz0);
1192
1193             /* Calculate squared distance and things based on it */
1194             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1195             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1196             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1197             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1198
1199             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1200             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1201             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1202             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1203
1204             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1205             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1206             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1207             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1208
1209             /* Load parameters for j particles */
1210             jq0              = _mm_load_sd(charge+jnrA+0);
1211             vdwjidx0A        = 2*vdwtype[jnrA+0];
1212
1213             fjx0             = _mm_setzero_pd();
1214             fjy0             = _mm_setzero_pd();
1215             fjz0             = _mm_setzero_pd();
1216
1217             /**************************
1218              * CALCULATE INTERACTIONS *
1219              **************************/
1220
1221             if (gmx_mm_any_lt(rsq00,rcutoff2))
1222             {
1223
1224             r00              = _mm_mul_pd(rsq00,rinv00);
1225
1226             /* Compute parameters for interactions between i and j atoms */
1227             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1228             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1229
1230             /* Analytical LJ-PME */
1231             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1232             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1233             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1234             exponent         = gmx_simd_exp_d(ewcljrsq);
1235             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1236             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1237             /* f6A = 6 * C6grid * (1 - poly) */
1238             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1239             /* f6B = C6grid * exponent * beta^6 */
1240             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1241             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1242             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1243
1244             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1245
1246             fscal            = fvdw;
1247
1248             fscal            = _mm_and_pd(fscal,cutoff_mask);
1249
1250             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1251
1252             /* Update vectorial force */
1253             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1254             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1255             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1256             
1257             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1258             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1259             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1260
1261             }
1262
1263             /**************************
1264              * CALCULATE INTERACTIONS *
1265              **************************/
1266
1267             if (gmx_mm_any_lt(rsq10,rcutoff2))
1268             {
1269
1270             r10              = _mm_mul_pd(rsq10,rinv10);
1271
1272             /* Compute parameters for interactions between i and j atoms */
1273             qq10             = _mm_mul_pd(iq1,jq0);
1274
1275             /* EWALD ELECTROSTATICS */
1276
1277             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1278             ewrt             = _mm_mul_pd(r10,ewtabscale);
1279             ewitab           = _mm_cvttpd_epi32(ewrt);
1280 #ifdef __XOP__
1281             eweps            = _mm_frcz_pd(ewrt);
1282 #else
1283             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1284 #endif
1285             twoeweps         = _mm_add_pd(eweps,eweps);
1286             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1287             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1288             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1289
1290             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1291
1292             fscal            = felec;
1293
1294             fscal            = _mm_and_pd(fscal,cutoff_mask);
1295
1296             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1297
1298             /* Update vectorial force */
1299             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1300             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1301             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1302             
1303             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1304             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1305             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1306
1307             }
1308
1309             /**************************
1310              * CALCULATE INTERACTIONS *
1311              **************************/
1312
1313             if (gmx_mm_any_lt(rsq20,rcutoff2))
1314             {
1315
1316             r20              = _mm_mul_pd(rsq20,rinv20);
1317
1318             /* Compute parameters for interactions between i and j atoms */
1319             qq20             = _mm_mul_pd(iq2,jq0);
1320
1321             /* EWALD ELECTROSTATICS */
1322
1323             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1324             ewrt             = _mm_mul_pd(r20,ewtabscale);
1325             ewitab           = _mm_cvttpd_epi32(ewrt);
1326 #ifdef __XOP__
1327             eweps            = _mm_frcz_pd(ewrt);
1328 #else
1329             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1330 #endif
1331             twoeweps         = _mm_add_pd(eweps,eweps);
1332             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1333             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1334             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1335
1336             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1337
1338             fscal            = felec;
1339
1340             fscal            = _mm_and_pd(fscal,cutoff_mask);
1341
1342             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1343
1344             /* Update vectorial force */
1345             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1346             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1347             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1348             
1349             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1350             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1351             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1352
1353             }
1354
1355             /**************************
1356              * CALCULATE INTERACTIONS *
1357              **************************/
1358
1359             if (gmx_mm_any_lt(rsq30,rcutoff2))
1360             {
1361
1362             r30              = _mm_mul_pd(rsq30,rinv30);
1363
1364             /* Compute parameters for interactions between i and j atoms */
1365             qq30             = _mm_mul_pd(iq3,jq0);
1366
1367             /* EWALD ELECTROSTATICS */
1368
1369             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1370             ewrt             = _mm_mul_pd(r30,ewtabscale);
1371             ewitab           = _mm_cvttpd_epi32(ewrt);
1372 #ifdef __XOP__
1373             eweps            = _mm_frcz_pd(ewrt);
1374 #else
1375             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1376 #endif
1377             twoeweps         = _mm_add_pd(eweps,eweps);
1378             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1379             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1380             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1381
1382             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1383
1384             fscal            = felec;
1385
1386             fscal            = _mm_and_pd(fscal,cutoff_mask);
1387
1388             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1389
1390             /* Update vectorial force */
1391             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1392             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1393             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1394             
1395             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1396             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1397             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1398
1399             }
1400
1401             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1402
1403             /* Inner loop uses 179 flops */
1404         }
1405
1406         /* End of innermost loop */
1407
1408         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1409                                               f+i_coord_offset,fshift+i_shift_offset);
1410
1411         /* Increment number of inner iterations */
1412         inneriter                  += j_index_end - j_index_start;
1413
1414         /* Outer loop uses 24 flops */
1415     }
1416
1417     /* Increment number of outer iterations */
1418     outeriter        += nri;
1419
1420     /* Update outer/inner flops */
1421
1422     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*179);
1423 }