Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128d           c6grid_00;
100     __m128d           c6grid_10;
101     __m128d           c6grid_20;
102     real             *vdwgridparam;
103     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
104     __m128d           one_half  = _mm_set1_pd(0.5);
105     __m128d           minus_one = _mm_set1_pd(-1.0);
106     __m128i          ewitab;
107     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     __m128d          dummy_mask,cutoff_mask;
110     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
111     __m128d          one     = _mm_set1_pd(1.0);
112     __m128d          two     = _mm_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129     vdwgridparam     = fr->ljpme_c6grid;
130     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
131     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
132     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
133
134     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
137     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
142     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
143     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
144     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
147     rcutoff_scalar   = fr->rcoulomb;
148     rcutoff          = _mm_set1_pd(rcutoff_scalar);
149     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
150
151     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
152     rvdw             = _mm_set1_pd(fr->rvdw);
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm_setzero_pd();
181         fiy0             = _mm_setzero_pd();
182         fiz0             = _mm_setzero_pd();
183         fix1             = _mm_setzero_pd();
184         fiy1             = _mm_setzero_pd();
185         fiz1             = _mm_setzero_pd();
186         fix2             = _mm_setzero_pd();
187         fiy2             = _mm_setzero_pd();
188         fiz2             = _mm_setzero_pd();
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_pd();
192         vvdwsum          = _mm_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_pd(ix0,jx0);
210             dy00             = _mm_sub_pd(iy0,jy0);
211             dz00             = _mm_sub_pd(iz0,jz0);
212             dx10             = _mm_sub_pd(ix1,jx0);
213             dy10             = _mm_sub_pd(iy1,jy0);
214             dz10             = _mm_sub_pd(iz1,jz0);
215             dx20             = _mm_sub_pd(ix2,jx0);
216             dy20             = _mm_sub_pd(iy2,jy0);
217             dz20             = _mm_sub_pd(iz2,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
221             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
222             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
223
224             rinv00           = gmx_mm_invsqrt_pd(rsq00);
225             rinv10           = gmx_mm_invsqrt_pd(rsq10);
226             rinv20           = gmx_mm_invsqrt_pd(rsq20);
227
228             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
229             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
230             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236
237             fjx0             = _mm_setzero_pd();
238             fjy0             = _mm_setzero_pd();
239             fjz0             = _mm_setzero_pd();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_mm_any_lt(rsq00,rcutoff2))
246             {
247
248             r00              = _mm_mul_pd(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm_mul_pd(iq0,jq0);
252             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
254             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
255                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
256
257             /* EWALD ELECTROSTATICS */
258
259             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
260             ewrt             = _mm_mul_pd(r00,ewtabscale);
261             ewitab           = _mm_cvttpd_epi32(ewrt);
262 #ifdef __XOP__
263             eweps            = _mm_frcz_pd(ewrt);
264 #else
265             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
266 #endif
267             twoeweps         = _mm_add_pd(eweps,eweps);
268             ewitab           = _mm_slli_epi32(ewitab,2);
269             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
270             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
271             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
272             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
273             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
274             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
275             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
276             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
277             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
278             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
279
280             /* Analytical LJ-PME */
281             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
282             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
283             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
284             exponent         = gmx_simd_exp_d(ewcljrsq);
285             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
286             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
287             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
288             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
289             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
290             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
291                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
292             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
293             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
294
295             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velec            = _mm_and_pd(velec,cutoff_mask);
299             velecsum         = _mm_add_pd(velecsum,velec);
300             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
301             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
302
303             fscal            = _mm_add_pd(felec,fvdw);
304
305             fscal            = _mm_and_pd(fscal,cutoff_mask);
306
307             /* Update vectorial force */
308             fix0             = _mm_macc_pd(dx00,fscal,fix0);
309             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
310             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
311             
312             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
313             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
314             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
315
316             }
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             if (gmx_mm_any_lt(rsq10,rcutoff2))
323             {
324
325             r10              = _mm_mul_pd(rsq10,rinv10);
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq10             = _mm_mul_pd(iq1,jq0);
329
330             /* EWALD ELECTROSTATICS */
331
332             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
333             ewrt             = _mm_mul_pd(r10,ewtabscale);
334             ewitab           = _mm_cvttpd_epi32(ewrt);
335 #ifdef __XOP__
336             eweps            = _mm_frcz_pd(ewrt);
337 #else
338             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
339 #endif
340             twoeweps         = _mm_add_pd(eweps,eweps);
341             ewitab           = _mm_slli_epi32(ewitab,2);
342             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
343             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
344             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
345             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
346             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
347             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
348             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
349             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
350             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
351             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
352
353             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velec            = _mm_and_pd(velec,cutoff_mask);
357             velecsum         = _mm_add_pd(velecsum,velec);
358
359             fscal            = felec;
360
361             fscal            = _mm_and_pd(fscal,cutoff_mask);
362
363             /* Update vectorial force */
364             fix1             = _mm_macc_pd(dx10,fscal,fix1);
365             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
366             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
367             
368             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
369             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
370             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
371
372             }
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             if (gmx_mm_any_lt(rsq20,rcutoff2))
379             {
380
381             r20              = _mm_mul_pd(rsq20,rinv20);
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq20             = _mm_mul_pd(iq2,jq0);
385
386             /* EWALD ELECTROSTATICS */
387
388             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
389             ewrt             = _mm_mul_pd(r20,ewtabscale);
390             ewitab           = _mm_cvttpd_epi32(ewrt);
391 #ifdef __XOP__
392             eweps            = _mm_frcz_pd(ewrt);
393 #else
394             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
395 #endif
396             twoeweps         = _mm_add_pd(eweps,eweps);
397             ewitab           = _mm_slli_epi32(ewitab,2);
398             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
399             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
400             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
401             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
402             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
403             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
404             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
405             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
406             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
407             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
408
409             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velec            = _mm_and_pd(velec,cutoff_mask);
413             velecsum         = _mm_add_pd(velecsum,velec);
414
415             fscal            = felec;
416
417             fscal            = _mm_and_pd(fscal,cutoff_mask);
418
419             /* Update vectorial force */
420             fix2             = _mm_macc_pd(dx20,fscal,fix2);
421             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
422             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
423             
424             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
425             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
426             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
427
428             }
429
430             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
431
432             /* Inner loop uses 179 flops */
433         }
434
435         if(jidx<j_index_end)
436         {
437
438             jnrA             = jjnr[jidx];
439             j_coord_offsetA  = DIM*jnrA;
440
441             /* load j atom coordinates */
442             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
443                                               &jx0,&jy0,&jz0);
444
445             /* Calculate displacement vector */
446             dx00             = _mm_sub_pd(ix0,jx0);
447             dy00             = _mm_sub_pd(iy0,jy0);
448             dz00             = _mm_sub_pd(iz0,jz0);
449             dx10             = _mm_sub_pd(ix1,jx0);
450             dy10             = _mm_sub_pd(iy1,jy0);
451             dz10             = _mm_sub_pd(iz1,jz0);
452             dx20             = _mm_sub_pd(ix2,jx0);
453             dy20             = _mm_sub_pd(iy2,jy0);
454             dz20             = _mm_sub_pd(iz2,jz0);
455
456             /* Calculate squared distance and things based on it */
457             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
458             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
459             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
460
461             rinv00           = gmx_mm_invsqrt_pd(rsq00);
462             rinv10           = gmx_mm_invsqrt_pd(rsq10);
463             rinv20           = gmx_mm_invsqrt_pd(rsq20);
464
465             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
466             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
467             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
468
469             /* Load parameters for j particles */
470             jq0              = _mm_load_sd(charge+jnrA+0);
471             vdwjidx0A        = 2*vdwtype[jnrA+0];
472
473             fjx0             = _mm_setzero_pd();
474             fjy0             = _mm_setzero_pd();
475             fjz0             = _mm_setzero_pd();
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             if (gmx_mm_any_lt(rsq00,rcutoff2))
482             {
483
484             r00              = _mm_mul_pd(rsq00,rinv00);
485
486             /* Compute parameters for interactions between i and j atoms */
487             qq00             = _mm_mul_pd(iq0,jq0);
488             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
489             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
490
491             /* EWALD ELECTROSTATICS */
492
493             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
494             ewrt             = _mm_mul_pd(r00,ewtabscale);
495             ewitab           = _mm_cvttpd_epi32(ewrt);
496 #ifdef __XOP__
497             eweps            = _mm_frcz_pd(ewrt);
498 #else
499             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
500 #endif
501             twoeweps         = _mm_add_pd(eweps,eweps);
502             ewitab           = _mm_slli_epi32(ewitab,2);
503             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
504             ewtabD           = _mm_setzero_pd();
505             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
506             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
507             ewtabFn          = _mm_setzero_pd();
508             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
509             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
510             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
511             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
512             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
513
514             /* Analytical LJ-PME */
515             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
516             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
517             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
518             exponent         = gmx_simd_exp_d(ewcljrsq);
519             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
520             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
521             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
522             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
523             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
524             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
525                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
526             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
527             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
528
529             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
530
531             /* Update potential sum for this i atom from the interaction with this j atom. */
532             velec            = _mm_and_pd(velec,cutoff_mask);
533             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
534             velecsum         = _mm_add_pd(velecsum,velec);
535             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
536             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
537             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
538
539             fscal            = _mm_add_pd(felec,fvdw);
540
541             fscal            = _mm_and_pd(fscal,cutoff_mask);
542
543             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
544
545             /* Update vectorial force */
546             fix0             = _mm_macc_pd(dx00,fscal,fix0);
547             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
548             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
549             
550             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
551             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
552             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
553
554             }
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             if (gmx_mm_any_lt(rsq10,rcutoff2))
561             {
562
563             r10              = _mm_mul_pd(rsq10,rinv10);
564
565             /* Compute parameters for interactions between i and j atoms */
566             qq10             = _mm_mul_pd(iq1,jq0);
567
568             /* EWALD ELECTROSTATICS */
569
570             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
571             ewrt             = _mm_mul_pd(r10,ewtabscale);
572             ewitab           = _mm_cvttpd_epi32(ewrt);
573 #ifdef __XOP__
574             eweps            = _mm_frcz_pd(ewrt);
575 #else
576             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
577 #endif
578             twoeweps         = _mm_add_pd(eweps,eweps);
579             ewitab           = _mm_slli_epi32(ewitab,2);
580             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
581             ewtabD           = _mm_setzero_pd();
582             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
583             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
584             ewtabFn          = _mm_setzero_pd();
585             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
586             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
587             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
588             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
589             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
590
591             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm_and_pd(velec,cutoff_mask);
595             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
596             velecsum         = _mm_add_pd(velecsum,velec);
597
598             fscal            = felec;
599
600             fscal            = _mm_and_pd(fscal,cutoff_mask);
601
602             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
603
604             /* Update vectorial force */
605             fix1             = _mm_macc_pd(dx10,fscal,fix1);
606             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
607             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
608             
609             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
610             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
611             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
612
613             }
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             if (gmx_mm_any_lt(rsq20,rcutoff2))
620             {
621
622             r20              = _mm_mul_pd(rsq20,rinv20);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq20             = _mm_mul_pd(iq2,jq0);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm_mul_pd(r20,ewtabscale);
631             ewitab           = _mm_cvttpd_epi32(ewrt);
632 #ifdef __XOP__
633             eweps            = _mm_frcz_pd(ewrt);
634 #else
635             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
636 #endif
637             twoeweps         = _mm_add_pd(eweps,eweps);
638             ewitab           = _mm_slli_epi32(ewitab,2);
639             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
640             ewtabD           = _mm_setzero_pd();
641             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
642             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
643             ewtabFn          = _mm_setzero_pd();
644             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
645             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
646             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
647             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
648             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
649
650             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
651
652             /* Update potential sum for this i atom from the interaction with this j atom. */
653             velec            = _mm_and_pd(velec,cutoff_mask);
654             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
655             velecsum         = _mm_add_pd(velecsum,velec);
656
657             fscal            = felec;
658
659             fscal            = _mm_and_pd(fscal,cutoff_mask);
660
661             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
662
663             /* Update vectorial force */
664             fix2             = _mm_macc_pd(dx20,fscal,fix2);
665             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
666             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
667             
668             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
669             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
670             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
671
672             }
673
674             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
675
676             /* Inner loop uses 179 flops */
677         }
678
679         /* End of innermost loop */
680
681         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
682                                               f+i_coord_offset,fshift+i_shift_offset);
683
684         ggid                        = gid[iidx];
685         /* Update potential energies */
686         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
687         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
688
689         /* Increment number of inner iterations */
690         inneriter                  += j_index_end - j_index_start;
691
692         /* Outer loop uses 20 flops */
693     }
694
695     /* Increment number of outer iterations */
696     outeriter        += nri;
697
698     /* Update outer/inner flops */
699
700     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*179);
701 }
702 /*
703  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_128_fma_double
704  * Electrostatics interaction: Ewald
705  * VdW interaction:            LJEwald
706  * Geometry:                   Water3-Particle
707  * Calculate force/pot:        Force
708  */
709 void
710 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_128_fma_double
711                     (t_nblist                    * gmx_restrict       nlist,
712                      rvec                        * gmx_restrict          xx,
713                      rvec                        * gmx_restrict          ff,
714                      t_forcerec                  * gmx_restrict          fr,
715                      t_mdatoms                   * gmx_restrict     mdatoms,
716                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
717                      t_nrnb                      * gmx_restrict        nrnb)
718 {
719     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
720      * just 0 for non-waters.
721      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
722      * jnr indices corresponding to data put in the four positions in the SIMD register.
723      */
724     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
725     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
726     int              jnrA,jnrB;
727     int              j_coord_offsetA,j_coord_offsetB;
728     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
729     real             rcutoff_scalar;
730     real             *shiftvec,*fshift,*x,*f;
731     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
732     int              vdwioffset0;
733     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
734     int              vdwioffset1;
735     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
736     int              vdwioffset2;
737     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
738     int              vdwjidx0A,vdwjidx0B;
739     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
740     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
741     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
742     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
743     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
744     real             *charge;
745     int              nvdwtype;
746     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
747     int              *vdwtype;
748     real             *vdwparam;
749     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
750     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
751     __m128d           c6grid_00;
752     __m128d           c6grid_10;
753     __m128d           c6grid_20;
754     real             *vdwgridparam;
755     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
756     __m128d           one_half  = _mm_set1_pd(0.5);
757     __m128d           minus_one = _mm_set1_pd(-1.0);
758     __m128i          ewitab;
759     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
760     real             *ewtab;
761     __m128d          dummy_mask,cutoff_mask;
762     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
763     __m128d          one     = _mm_set1_pd(1.0);
764     __m128d          two     = _mm_set1_pd(2.0);
765     x                = xx[0];
766     f                = ff[0];
767
768     nri              = nlist->nri;
769     iinr             = nlist->iinr;
770     jindex           = nlist->jindex;
771     jjnr             = nlist->jjnr;
772     shiftidx         = nlist->shift;
773     gid              = nlist->gid;
774     shiftvec         = fr->shift_vec[0];
775     fshift           = fr->fshift[0];
776     facel            = _mm_set1_pd(fr->epsfac);
777     charge           = mdatoms->chargeA;
778     nvdwtype         = fr->ntype;
779     vdwparam         = fr->nbfp;
780     vdwtype          = mdatoms->typeA;
781     vdwgridparam     = fr->ljpme_c6grid;
782     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
783     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
784     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
785
786     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
787     ewtab            = fr->ic->tabq_coul_F;
788     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
789     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
790
791     /* Setup water-specific parameters */
792     inr              = nlist->iinr[0];
793     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
794     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
795     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
796     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
797
798     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
799     rcutoff_scalar   = fr->rcoulomb;
800     rcutoff          = _mm_set1_pd(rcutoff_scalar);
801     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
802
803     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
804     rvdw             = _mm_set1_pd(fr->rvdw);
805
806     /* Avoid stupid compiler warnings */
807     jnrA = jnrB = 0;
808     j_coord_offsetA = 0;
809     j_coord_offsetB = 0;
810
811     outeriter        = 0;
812     inneriter        = 0;
813
814     /* Start outer loop over neighborlists */
815     for(iidx=0; iidx<nri; iidx++)
816     {
817         /* Load shift vector for this list */
818         i_shift_offset   = DIM*shiftidx[iidx];
819
820         /* Load limits for loop over neighbors */
821         j_index_start    = jindex[iidx];
822         j_index_end      = jindex[iidx+1];
823
824         /* Get outer coordinate index */
825         inr              = iinr[iidx];
826         i_coord_offset   = DIM*inr;
827
828         /* Load i particle coords and add shift vector */
829         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
830                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
831
832         fix0             = _mm_setzero_pd();
833         fiy0             = _mm_setzero_pd();
834         fiz0             = _mm_setzero_pd();
835         fix1             = _mm_setzero_pd();
836         fiy1             = _mm_setzero_pd();
837         fiz1             = _mm_setzero_pd();
838         fix2             = _mm_setzero_pd();
839         fiy2             = _mm_setzero_pd();
840         fiz2             = _mm_setzero_pd();
841
842         /* Start inner kernel loop */
843         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
844         {
845
846             /* Get j neighbor index, and coordinate index */
847             jnrA             = jjnr[jidx];
848             jnrB             = jjnr[jidx+1];
849             j_coord_offsetA  = DIM*jnrA;
850             j_coord_offsetB  = DIM*jnrB;
851
852             /* load j atom coordinates */
853             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
854                                               &jx0,&jy0,&jz0);
855
856             /* Calculate displacement vector */
857             dx00             = _mm_sub_pd(ix0,jx0);
858             dy00             = _mm_sub_pd(iy0,jy0);
859             dz00             = _mm_sub_pd(iz0,jz0);
860             dx10             = _mm_sub_pd(ix1,jx0);
861             dy10             = _mm_sub_pd(iy1,jy0);
862             dz10             = _mm_sub_pd(iz1,jz0);
863             dx20             = _mm_sub_pd(ix2,jx0);
864             dy20             = _mm_sub_pd(iy2,jy0);
865             dz20             = _mm_sub_pd(iz2,jz0);
866
867             /* Calculate squared distance and things based on it */
868             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
869             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
870             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
871
872             rinv00           = gmx_mm_invsqrt_pd(rsq00);
873             rinv10           = gmx_mm_invsqrt_pd(rsq10);
874             rinv20           = gmx_mm_invsqrt_pd(rsq20);
875
876             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
877             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
878             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
879
880             /* Load parameters for j particles */
881             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
882             vdwjidx0A        = 2*vdwtype[jnrA+0];
883             vdwjidx0B        = 2*vdwtype[jnrB+0];
884
885             fjx0             = _mm_setzero_pd();
886             fjy0             = _mm_setzero_pd();
887             fjz0             = _mm_setzero_pd();
888
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             if (gmx_mm_any_lt(rsq00,rcutoff2))
894             {
895
896             r00              = _mm_mul_pd(rsq00,rinv00);
897
898             /* Compute parameters for interactions between i and j atoms */
899             qq00             = _mm_mul_pd(iq0,jq0);
900             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
901                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
902             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
903                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
904
905             /* EWALD ELECTROSTATICS */
906
907             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
908             ewrt             = _mm_mul_pd(r00,ewtabscale);
909             ewitab           = _mm_cvttpd_epi32(ewrt);
910 #ifdef __XOP__
911             eweps            = _mm_frcz_pd(ewrt);
912 #else
913             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
914 #endif
915             twoeweps         = _mm_add_pd(eweps,eweps);
916             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
917                                          &ewtabF,&ewtabFn);
918             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
919             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
920
921             /* Analytical LJ-PME */
922             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
923             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
924             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
925             exponent         = gmx_simd_exp_d(ewcljrsq);
926             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
927             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
928             /* f6A = 6 * C6grid * (1 - poly) */
929             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
930             /* f6B = C6grid * exponent * beta^6 */
931             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
932             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
933             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
934
935             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
936
937             fscal            = _mm_add_pd(felec,fvdw);
938
939             fscal            = _mm_and_pd(fscal,cutoff_mask);
940
941             /* Update vectorial force */
942             fix0             = _mm_macc_pd(dx00,fscal,fix0);
943             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
944             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
945             
946             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
947             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
948             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
949
950             }
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             if (gmx_mm_any_lt(rsq10,rcutoff2))
957             {
958
959             r10              = _mm_mul_pd(rsq10,rinv10);
960
961             /* Compute parameters for interactions between i and j atoms */
962             qq10             = _mm_mul_pd(iq1,jq0);
963
964             /* EWALD ELECTROSTATICS */
965
966             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
967             ewrt             = _mm_mul_pd(r10,ewtabscale);
968             ewitab           = _mm_cvttpd_epi32(ewrt);
969 #ifdef __XOP__
970             eweps            = _mm_frcz_pd(ewrt);
971 #else
972             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
973 #endif
974             twoeweps         = _mm_add_pd(eweps,eweps);
975             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
976                                          &ewtabF,&ewtabFn);
977             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
978             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
979
980             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
981
982             fscal            = felec;
983
984             fscal            = _mm_and_pd(fscal,cutoff_mask);
985
986             /* Update vectorial force */
987             fix1             = _mm_macc_pd(dx10,fscal,fix1);
988             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
989             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
990             
991             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
992             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
993             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
994
995             }
996
997             /**************************
998              * CALCULATE INTERACTIONS *
999              **************************/
1000
1001             if (gmx_mm_any_lt(rsq20,rcutoff2))
1002             {
1003
1004             r20              = _mm_mul_pd(rsq20,rinv20);
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq20             = _mm_mul_pd(iq2,jq0);
1008
1009             /* EWALD ELECTROSTATICS */
1010
1011             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1012             ewrt             = _mm_mul_pd(r20,ewtabscale);
1013             ewitab           = _mm_cvttpd_epi32(ewrt);
1014 #ifdef __XOP__
1015             eweps            = _mm_frcz_pd(ewrt);
1016 #else
1017             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1018 #endif
1019             twoeweps         = _mm_add_pd(eweps,eweps);
1020             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1021                                          &ewtabF,&ewtabFn);
1022             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1023             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1024
1025             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1026
1027             fscal            = felec;
1028
1029             fscal            = _mm_and_pd(fscal,cutoff_mask);
1030
1031             /* Update vectorial force */
1032             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1033             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1034             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1035             
1036             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1037             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1038             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1039
1040             }
1041
1042             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1043
1044             /* Inner loop uses 150 flops */
1045         }
1046
1047         if(jidx<j_index_end)
1048         {
1049
1050             jnrA             = jjnr[jidx];
1051             j_coord_offsetA  = DIM*jnrA;
1052
1053             /* load j atom coordinates */
1054             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1055                                               &jx0,&jy0,&jz0);
1056
1057             /* Calculate displacement vector */
1058             dx00             = _mm_sub_pd(ix0,jx0);
1059             dy00             = _mm_sub_pd(iy0,jy0);
1060             dz00             = _mm_sub_pd(iz0,jz0);
1061             dx10             = _mm_sub_pd(ix1,jx0);
1062             dy10             = _mm_sub_pd(iy1,jy0);
1063             dz10             = _mm_sub_pd(iz1,jz0);
1064             dx20             = _mm_sub_pd(ix2,jx0);
1065             dy20             = _mm_sub_pd(iy2,jy0);
1066             dz20             = _mm_sub_pd(iz2,jz0);
1067
1068             /* Calculate squared distance and things based on it */
1069             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1070             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1071             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1072
1073             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1074             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1075             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1076
1077             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1078             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1079             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1080
1081             /* Load parameters for j particles */
1082             jq0              = _mm_load_sd(charge+jnrA+0);
1083             vdwjidx0A        = 2*vdwtype[jnrA+0];
1084
1085             fjx0             = _mm_setzero_pd();
1086             fjy0             = _mm_setzero_pd();
1087             fjz0             = _mm_setzero_pd();
1088
1089             /**************************
1090              * CALCULATE INTERACTIONS *
1091              **************************/
1092
1093             if (gmx_mm_any_lt(rsq00,rcutoff2))
1094             {
1095
1096             r00              = _mm_mul_pd(rsq00,rinv00);
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq00             = _mm_mul_pd(iq0,jq0);
1100             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1101             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1102
1103             /* EWALD ELECTROSTATICS */
1104
1105             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1106             ewrt             = _mm_mul_pd(r00,ewtabscale);
1107             ewitab           = _mm_cvttpd_epi32(ewrt);
1108 #ifdef __XOP__
1109             eweps            = _mm_frcz_pd(ewrt);
1110 #else
1111             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1112 #endif
1113             twoeweps         = _mm_add_pd(eweps,eweps);
1114             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1115             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1116             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1117
1118             /* Analytical LJ-PME */
1119             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1120             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1121             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1122             exponent         = gmx_simd_exp_d(ewcljrsq);
1123             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1124             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1125             /* f6A = 6 * C6grid * (1 - poly) */
1126             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1127             /* f6B = C6grid * exponent * beta^6 */
1128             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1129             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1130             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1131
1132             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1133
1134             fscal            = _mm_add_pd(felec,fvdw);
1135
1136             fscal            = _mm_and_pd(fscal,cutoff_mask);
1137
1138             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1139
1140             /* Update vectorial force */
1141             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1142             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1143             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1144             
1145             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1146             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1147             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1148
1149             }
1150
1151             /**************************
1152              * CALCULATE INTERACTIONS *
1153              **************************/
1154
1155             if (gmx_mm_any_lt(rsq10,rcutoff2))
1156             {
1157
1158             r10              = _mm_mul_pd(rsq10,rinv10);
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq10             = _mm_mul_pd(iq1,jq0);
1162
1163             /* EWALD ELECTROSTATICS */
1164
1165             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1166             ewrt             = _mm_mul_pd(r10,ewtabscale);
1167             ewitab           = _mm_cvttpd_epi32(ewrt);
1168 #ifdef __XOP__
1169             eweps            = _mm_frcz_pd(ewrt);
1170 #else
1171             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1172 #endif
1173             twoeweps         = _mm_add_pd(eweps,eweps);
1174             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1175             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1176             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1177
1178             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1179
1180             fscal            = felec;
1181
1182             fscal            = _mm_and_pd(fscal,cutoff_mask);
1183
1184             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1185
1186             /* Update vectorial force */
1187             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1188             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1189             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1190             
1191             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1192             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1193             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1194
1195             }
1196
1197             /**************************
1198              * CALCULATE INTERACTIONS *
1199              **************************/
1200
1201             if (gmx_mm_any_lt(rsq20,rcutoff2))
1202             {
1203
1204             r20              = _mm_mul_pd(rsq20,rinv20);
1205
1206             /* Compute parameters for interactions between i and j atoms */
1207             qq20             = _mm_mul_pd(iq2,jq0);
1208
1209             /* EWALD ELECTROSTATICS */
1210
1211             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1212             ewrt             = _mm_mul_pd(r20,ewtabscale);
1213             ewitab           = _mm_cvttpd_epi32(ewrt);
1214 #ifdef __XOP__
1215             eweps            = _mm_frcz_pd(ewrt);
1216 #else
1217             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1218 #endif
1219             twoeweps         = _mm_add_pd(eweps,eweps);
1220             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1221             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1222             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1223
1224             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1225
1226             fscal            = felec;
1227
1228             fscal            = _mm_and_pd(fscal,cutoff_mask);
1229
1230             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1231
1232             /* Update vectorial force */
1233             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1234             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1235             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1236             
1237             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1238             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1239             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1240
1241             }
1242
1243             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1244
1245             /* Inner loop uses 150 flops */
1246         }
1247
1248         /* End of innermost loop */
1249
1250         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1251                                               f+i_coord_offset,fshift+i_shift_offset);
1252
1253         /* Increment number of inner iterations */
1254         inneriter                  += j_index_end - j_index_start;
1255
1256         /* Outer loop uses 18 flops */
1257     }
1258
1259     /* Increment number of outer iterations */
1260     outeriter        += nri;
1261
1262     /* Update outer/inner flops */
1263
1264     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*150);
1265 }