Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d           c6grid_00;
102     __m128d           c6grid_10;
103     __m128d           c6grid_20;
104     real             *vdwgridparam;
105     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
106     __m128d           one_half  = _mm_set1_pd(0.5);
107     __m128d           minus_one = _mm_set1_pd(-1.0);
108     __m128i          ewitab;
109     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128d          dummy_mask,cutoff_mask;
112     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
113     __m128d          one     = _mm_set1_pd(1.0);
114     __m128d          two     = _mm_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
133     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
134     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
135
136     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
144     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
149     rcutoff_scalar   = fr->rcoulomb;
150     rcutoff          = _mm_set1_pd(rcutoff_scalar);
151     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
152
153     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
154     rvdw             = _mm_set1_pd(fr->rvdw);
155
156     /* Avoid stupid compiler warnings */
157     jnrA = jnrB = 0;
158     j_coord_offsetA = 0;
159     j_coord_offsetB = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181
182         fix0             = _mm_setzero_pd();
183         fiy0             = _mm_setzero_pd();
184         fiz0             = _mm_setzero_pd();
185         fix1             = _mm_setzero_pd();
186         fiy1             = _mm_setzero_pd();
187         fiz1             = _mm_setzero_pd();
188         fix2             = _mm_setzero_pd();
189         fiy2             = _mm_setzero_pd();
190         fiz2             = _mm_setzero_pd();
191
192         /* Reset potential sums */
193         velecsum         = _mm_setzero_pd();
194         vvdwsum          = _mm_setzero_pd();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm_sub_pd(ix0,jx0);
212             dy00             = _mm_sub_pd(iy0,jy0);
213             dz00             = _mm_sub_pd(iz0,jz0);
214             dx10             = _mm_sub_pd(ix1,jx0);
215             dy10             = _mm_sub_pd(iy1,jy0);
216             dz10             = _mm_sub_pd(iz1,jz0);
217             dx20             = _mm_sub_pd(ix2,jx0);
218             dy20             = _mm_sub_pd(iy2,jy0);
219             dz20             = _mm_sub_pd(iz2,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
223             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
224             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
225
226             rinv00           = gmx_mm_invsqrt_pd(rsq00);
227             rinv10           = gmx_mm_invsqrt_pd(rsq10);
228             rinv20           = gmx_mm_invsqrt_pd(rsq20);
229
230             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
231             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
232             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238
239             fjx0             = _mm_setzero_pd();
240             fjy0             = _mm_setzero_pd();
241             fjz0             = _mm_setzero_pd();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_mm_any_lt(rsq00,rcutoff2))
248             {
249
250             r00              = _mm_mul_pd(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm_mul_pd(iq0,jq0);
254             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
256             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
257                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
258
259             /* EWALD ELECTROSTATICS */
260
261             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
262             ewrt             = _mm_mul_pd(r00,ewtabscale);
263             ewitab           = _mm_cvttpd_epi32(ewrt);
264 #ifdef __XOP__
265             eweps            = _mm_frcz_pd(ewrt);
266 #else
267             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
268 #endif
269             twoeweps         = _mm_add_pd(eweps,eweps);
270             ewitab           = _mm_slli_epi32(ewitab,2);
271             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
272             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
273             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
274             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
275             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
276             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
277             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
278             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
279             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
280             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
281
282             /* Analytical LJ-PME */
283             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
284             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
285             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
286             exponent         = gmx_simd_exp_d(ewcljrsq);
287             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
288             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
289             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
290             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
291             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
292             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
293                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
294             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
295             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
296
297             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _mm_and_pd(velec,cutoff_mask);
301             velecsum         = _mm_add_pd(velecsum,velec);
302             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
303             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
304
305             fscal            = _mm_add_pd(felec,fvdw);
306
307             fscal            = _mm_and_pd(fscal,cutoff_mask);
308
309             /* Update vectorial force */
310             fix0             = _mm_macc_pd(dx00,fscal,fix0);
311             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
312             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
313             
314             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
315             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
316             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
317
318             }
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             if (gmx_mm_any_lt(rsq10,rcutoff2))
325             {
326
327             r10              = _mm_mul_pd(rsq10,rinv10);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq10             = _mm_mul_pd(iq1,jq0);
331
332             /* EWALD ELECTROSTATICS */
333
334             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335             ewrt             = _mm_mul_pd(r10,ewtabscale);
336             ewitab           = _mm_cvttpd_epi32(ewrt);
337 #ifdef __XOP__
338             eweps            = _mm_frcz_pd(ewrt);
339 #else
340             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
341 #endif
342             twoeweps         = _mm_add_pd(eweps,eweps);
343             ewitab           = _mm_slli_epi32(ewitab,2);
344             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
345             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
346             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
347             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
348             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
349             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
350             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
351             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
352             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
353             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
354
355             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm_and_pd(velec,cutoff_mask);
359             velecsum         = _mm_add_pd(velecsum,velec);
360
361             fscal            = felec;
362
363             fscal            = _mm_and_pd(fscal,cutoff_mask);
364
365             /* Update vectorial force */
366             fix1             = _mm_macc_pd(dx10,fscal,fix1);
367             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
368             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
369             
370             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
371             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
372             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
373
374             }
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             if (gmx_mm_any_lt(rsq20,rcutoff2))
381             {
382
383             r20              = _mm_mul_pd(rsq20,rinv20);
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq20             = _mm_mul_pd(iq2,jq0);
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = _mm_mul_pd(r20,ewtabscale);
392             ewitab           = _mm_cvttpd_epi32(ewrt);
393 #ifdef __XOP__
394             eweps            = _mm_frcz_pd(ewrt);
395 #else
396             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
397 #endif
398             twoeweps         = _mm_add_pd(eweps,eweps);
399             ewitab           = _mm_slli_epi32(ewitab,2);
400             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
401             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
402             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
403             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
404             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
405             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
406             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
407             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
408             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
409             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
410
411             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
412
413             /* Update potential sum for this i atom from the interaction with this j atom. */
414             velec            = _mm_and_pd(velec,cutoff_mask);
415             velecsum         = _mm_add_pd(velecsum,velec);
416
417             fscal            = felec;
418
419             fscal            = _mm_and_pd(fscal,cutoff_mask);
420
421             /* Update vectorial force */
422             fix2             = _mm_macc_pd(dx20,fscal,fix2);
423             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
424             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
425             
426             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
427             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
428             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
429
430             }
431
432             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
433
434             /* Inner loop uses 179 flops */
435         }
436
437         if(jidx<j_index_end)
438         {
439
440             jnrA             = jjnr[jidx];
441             j_coord_offsetA  = DIM*jnrA;
442
443             /* load j atom coordinates */
444             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
445                                               &jx0,&jy0,&jz0);
446
447             /* Calculate displacement vector */
448             dx00             = _mm_sub_pd(ix0,jx0);
449             dy00             = _mm_sub_pd(iy0,jy0);
450             dz00             = _mm_sub_pd(iz0,jz0);
451             dx10             = _mm_sub_pd(ix1,jx0);
452             dy10             = _mm_sub_pd(iy1,jy0);
453             dz10             = _mm_sub_pd(iz1,jz0);
454             dx20             = _mm_sub_pd(ix2,jx0);
455             dy20             = _mm_sub_pd(iy2,jy0);
456             dz20             = _mm_sub_pd(iz2,jz0);
457
458             /* Calculate squared distance and things based on it */
459             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
460             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
461             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
462
463             rinv00           = gmx_mm_invsqrt_pd(rsq00);
464             rinv10           = gmx_mm_invsqrt_pd(rsq10);
465             rinv20           = gmx_mm_invsqrt_pd(rsq20);
466
467             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
468             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
469             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
470
471             /* Load parameters for j particles */
472             jq0              = _mm_load_sd(charge+jnrA+0);
473             vdwjidx0A        = 2*vdwtype[jnrA+0];
474
475             fjx0             = _mm_setzero_pd();
476             fjy0             = _mm_setzero_pd();
477             fjz0             = _mm_setzero_pd();
478
479             /**************************
480              * CALCULATE INTERACTIONS *
481              **************************/
482
483             if (gmx_mm_any_lt(rsq00,rcutoff2))
484             {
485
486             r00              = _mm_mul_pd(rsq00,rinv00);
487
488             /* Compute parameters for interactions between i and j atoms */
489             qq00             = _mm_mul_pd(iq0,jq0);
490             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
491             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
492
493             /* EWALD ELECTROSTATICS */
494
495             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
496             ewrt             = _mm_mul_pd(r00,ewtabscale);
497             ewitab           = _mm_cvttpd_epi32(ewrt);
498 #ifdef __XOP__
499             eweps            = _mm_frcz_pd(ewrt);
500 #else
501             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
502 #endif
503             twoeweps         = _mm_add_pd(eweps,eweps);
504             ewitab           = _mm_slli_epi32(ewitab,2);
505             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
506             ewtabD           = _mm_setzero_pd();
507             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
508             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
509             ewtabFn          = _mm_setzero_pd();
510             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
511             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
512             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
513             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
514             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
515
516             /* Analytical LJ-PME */
517             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
518             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
519             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
520             exponent         = gmx_simd_exp_d(ewcljrsq);
521             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
522             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
523             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
524             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
525             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
526             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
527                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
528             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
529             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
530
531             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
532
533             /* Update potential sum for this i atom from the interaction with this j atom. */
534             velec            = _mm_and_pd(velec,cutoff_mask);
535             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
536             velecsum         = _mm_add_pd(velecsum,velec);
537             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
538             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
539             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
540
541             fscal            = _mm_add_pd(felec,fvdw);
542
543             fscal            = _mm_and_pd(fscal,cutoff_mask);
544
545             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
546
547             /* Update vectorial force */
548             fix0             = _mm_macc_pd(dx00,fscal,fix0);
549             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
550             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
551             
552             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
553             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
554             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
555
556             }
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             if (gmx_mm_any_lt(rsq10,rcutoff2))
563             {
564
565             r10              = _mm_mul_pd(rsq10,rinv10);
566
567             /* Compute parameters for interactions between i and j atoms */
568             qq10             = _mm_mul_pd(iq1,jq0);
569
570             /* EWALD ELECTROSTATICS */
571
572             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
573             ewrt             = _mm_mul_pd(r10,ewtabscale);
574             ewitab           = _mm_cvttpd_epi32(ewrt);
575 #ifdef __XOP__
576             eweps            = _mm_frcz_pd(ewrt);
577 #else
578             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
579 #endif
580             twoeweps         = _mm_add_pd(eweps,eweps);
581             ewitab           = _mm_slli_epi32(ewitab,2);
582             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
583             ewtabD           = _mm_setzero_pd();
584             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
585             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
586             ewtabFn          = _mm_setzero_pd();
587             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
588             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
589             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
590             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
591             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
592
593             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
594
595             /* Update potential sum for this i atom from the interaction with this j atom. */
596             velec            = _mm_and_pd(velec,cutoff_mask);
597             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
598             velecsum         = _mm_add_pd(velecsum,velec);
599
600             fscal            = felec;
601
602             fscal            = _mm_and_pd(fscal,cutoff_mask);
603
604             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
605
606             /* Update vectorial force */
607             fix1             = _mm_macc_pd(dx10,fscal,fix1);
608             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
609             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
610             
611             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
612             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
613             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
614
615             }
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             if (gmx_mm_any_lt(rsq20,rcutoff2))
622             {
623
624             r20              = _mm_mul_pd(rsq20,rinv20);
625
626             /* Compute parameters for interactions between i and j atoms */
627             qq20             = _mm_mul_pd(iq2,jq0);
628
629             /* EWALD ELECTROSTATICS */
630
631             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
632             ewrt             = _mm_mul_pd(r20,ewtabscale);
633             ewitab           = _mm_cvttpd_epi32(ewrt);
634 #ifdef __XOP__
635             eweps            = _mm_frcz_pd(ewrt);
636 #else
637             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
638 #endif
639             twoeweps         = _mm_add_pd(eweps,eweps);
640             ewitab           = _mm_slli_epi32(ewitab,2);
641             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
642             ewtabD           = _mm_setzero_pd();
643             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
644             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
645             ewtabFn          = _mm_setzero_pd();
646             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
647             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
648             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
649             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
650             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
651
652             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
653
654             /* Update potential sum for this i atom from the interaction with this j atom. */
655             velec            = _mm_and_pd(velec,cutoff_mask);
656             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
657             velecsum         = _mm_add_pd(velecsum,velec);
658
659             fscal            = felec;
660
661             fscal            = _mm_and_pd(fscal,cutoff_mask);
662
663             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
664
665             /* Update vectorial force */
666             fix2             = _mm_macc_pd(dx20,fscal,fix2);
667             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
668             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
669             
670             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
671             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
672             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
673
674             }
675
676             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
677
678             /* Inner loop uses 179 flops */
679         }
680
681         /* End of innermost loop */
682
683         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
684                                               f+i_coord_offset,fshift+i_shift_offset);
685
686         ggid                        = gid[iidx];
687         /* Update potential energies */
688         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
689         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
690
691         /* Increment number of inner iterations */
692         inneriter                  += j_index_end - j_index_start;
693
694         /* Outer loop uses 20 flops */
695     }
696
697     /* Increment number of outer iterations */
698     outeriter        += nri;
699
700     /* Update outer/inner flops */
701
702     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*179);
703 }
704 /*
705  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_128_fma_double
706  * Electrostatics interaction: Ewald
707  * VdW interaction:            LJEwald
708  * Geometry:                   Water3-Particle
709  * Calculate force/pot:        Force
710  */
711 void
712 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_avx_128_fma_double
713                     (t_nblist                    * gmx_restrict       nlist,
714                      rvec                        * gmx_restrict          xx,
715                      rvec                        * gmx_restrict          ff,
716                      t_forcerec                  * gmx_restrict          fr,
717                      t_mdatoms                   * gmx_restrict     mdatoms,
718                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
719                      t_nrnb                      * gmx_restrict        nrnb)
720 {
721     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
722      * just 0 for non-waters.
723      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
724      * jnr indices corresponding to data put in the four positions in the SIMD register.
725      */
726     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
727     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
728     int              jnrA,jnrB;
729     int              j_coord_offsetA,j_coord_offsetB;
730     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
731     real             rcutoff_scalar;
732     real             *shiftvec,*fshift,*x,*f;
733     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
734     int              vdwioffset0;
735     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
736     int              vdwioffset1;
737     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
738     int              vdwioffset2;
739     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
740     int              vdwjidx0A,vdwjidx0B;
741     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
742     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
743     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
744     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
745     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
746     real             *charge;
747     int              nvdwtype;
748     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
749     int              *vdwtype;
750     real             *vdwparam;
751     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
752     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
753     __m128d           c6grid_00;
754     __m128d           c6grid_10;
755     __m128d           c6grid_20;
756     real             *vdwgridparam;
757     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
758     __m128d           one_half  = _mm_set1_pd(0.5);
759     __m128d           minus_one = _mm_set1_pd(-1.0);
760     __m128i          ewitab;
761     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
762     real             *ewtab;
763     __m128d          dummy_mask,cutoff_mask;
764     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
765     __m128d          one     = _mm_set1_pd(1.0);
766     __m128d          two     = _mm_set1_pd(2.0);
767     x                = xx[0];
768     f                = ff[0];
769
770     nri              = nlist->nri;
771     iinr             = nlist->iinr;
772     jindex           = nlist->jindex;
773     jjnr             = nlist->jjnr;
774     shiftidx         = nlist->shift;
775     gid              = nlist->gid;
776     shiftvec         = fr->shift_vec[0];
777     fshift           = fr->fshift[0];
778     facel            = _mm_set1_pd(fr->epsfac);
779     charge           = mdatoms->chargeA;
780     nvdwtype         = fr->ntype;
781     vdwparam         = fr->nbfp;
782     vdwtype          = mdatoms->typeA;
783     vdwgridparam     = fr->ljpme_c6grid;
784     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
785     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
786     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
787
788     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
789     ewtab            = fr->ic->tabq_coul_F;
790     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
791     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
792
793     /* Setup water-specific parameters */
794     inr              = nlist->iinr[0];
795     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
796     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
797     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
798     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
799
800     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
801     rcutoff_scalar   = fr->rcoulomb;
802     rcutoff          = _mm_set1_pd(rcutoff_scalar);
803     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
804
805     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
806     rvdw             = _mm_set1_pd(fr->rvdw);
807
808     /* Avoid stupid compiler warnings */
809     jnrA = jnrB = 0;
810     j_coord_offsetA = 0;
811     j_coord_offsetB = 0;
812
813     outeriter        = 0;
814     inneriter        = 0;
815
816     /* Start outer loop over neighborlists */
817     for(iidx=0; iidx<nri; iidx++)
818     {
819         /* Load shift vector for this list */
820         i_shift_offset   = DIM*shiftidx[iidx];
821
822         /* Load limits for loop over neighbors */
823         j_index_start    = jindex[iidx];
824         j_index_end      = jindex[iidx+1];
825
826         /* Get outer coordinate index */
827         inr              = iinr[iidx];
828         i_coord_offset   = DIM*inr;
829
830         /* Load i particle coords and add shift vector */
831         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
832                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
833
834         fix0             = _mm_setzero_pd();
835         fiy0             = _mm_setzero_pd();
836         fiz0             = _mm_setzero_pd();
837         fix1             = _mm_setzero_pd();
838         fiy1             = _mm_setzero_pd();
839         fiz1             = _mm_setzero_pd();
840         fix2             = _mm_setzero_pd();
841         fiy2             = _mm_setzero_pd();
842         fiz2             = _mm_setzero_pd();
843
844         /* Start inner kernel loop */
845         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
846         {
847
848             /* Get j neighbor index, and coordinate index */
849             jnrA             = jjnr[jidx];
850             jnrB             = jjnr[jidx+1];
851             j_coord_offsetA  = DIM*jnrA;
852             j_coord_offsetB  = DIM*jnrB;
853
854             /* load j atom coordinates */
855             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
856                                               &jx0,&jy0,&jz0);
857
858             /* Calculate displacement vector */
859             dx00             = _mm_sub_pd(ix0,jx0);
860             dy00             = _mm_sub_pd(iy0,jy0);
861             dz00             = _mm_sub_pd(iz0,jz0);
862             dx10             = _mm_sub_pd(ix1,jx0);
863             dy10             = _mm_sub_pd(iy1,jy0);
864             dz10             = _mm_sub_pd(iz1,jz0);
865             dx20             = _mm_sub_pd(ix2,jx0);
866             dy20             = _mm_sub_pd(iy2,jy0);
867             dz20             = _mm_sub_pd(iz2,jz0);
868
869             /* Calculate squared distance and things based on it */
870             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
871             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
872             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
873
874             rinv00           = gmx_mm_invsqrt_pd(rsq00);
875             rinv10           = gmx_mm_invsqrt_pd(rsq10);
876             rinv20           = gmx_mm_invsqrt_pd(rsq20);
877
878             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
879             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
880             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
881
882             /* Load parameters for j particles */
883             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
884             vdwjidx0A        = 2*vdwtype[jnrA+0];
885             vdwjidx0B        = 2*vdwtype[jnrB+0];
886
887             fjx0             = _mm_setzero_pd();
888             fjy0             = _mm_setzero_pd();
889             fjz0             = _mm_setzero_pd();
890
891             /**************************
892              * CALCULATE INTERACTIONS *
893              **************************/
894
895             if (gmx_mm_any_lt(rsq00,rcutoff2))
896             {
897
898             r00              = _mm_mul_pd(rsq00,rinv00);
899
900             /* Compute parameters for interactions between i and j atoms */
901             qq00             = _mm_mul_pd(iq0,jq0);
902             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
903                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
904             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
905                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
906
907             /* EWALD ELECTROSTATICS */
908
909             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
910             ewrt             = _mm_mul_pd(r00,ewtabscale);
911             ewitab           = _mm_cvttpd_epi32(ewrt);
912 #ifdef __XOP__
913             eweps            = _mm_frcz_pd(ewrt);
914 #else
915             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
916 #endif
917             twoeweps         = _mm_add_pd(eweps,eweps);
918             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
919                                          &ewtabF,&ewtabFn);
920             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
921             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
922
923             /* Analytical LJ-PME */
924             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
925             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
926             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
927             exponent         = gmx_simd_exp_d(ewcljrsq);
928             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
929             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
930             /* f6A = 6 * C6grid * (1 - poly) */
931             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
932             /* f6B = C6grid * exponent * beta^6 */
933             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
934             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
935             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
936
937             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
938
939             fscal            = _mm_add_pd(felec,fvdw);
940
941             fscal            = _mm_and_pd(fscal,cutoff_mask);
942
943             /* Update vectorial force */
944             fix0             = _mm_macc_pd(dx00,fscal,fix0);
945             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
946             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
947             
948             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
949             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
950             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
951
952             }
953
954             /**************************
955              * CALCULATE INTERACTIONS *
956              **************************/
957
958             if (gmx_mm_any_lt(rsq10,rcutoff2))
959             {
960
961             r10              = _mm_mul_pd(rsq10,rinv10);
962
963             /* Compute parameters for interactions between i and j atoms */
964             qq10             = _mm_mul_pd(iq1,jq0);
965
966             /* EWALD ELECTROSTATICS */
967
968             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
969             ewrt             = _mm_mul_pd(r10,ewtabscale);
970             ewitab           = _mm_cvttpd_epi32(ewrt);
971 #ifdef __XOP__
972             eweps            = _mm_frcz_pd(ewrt);
973 #else
974             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
975 #endif
976             twoeweps         = _mm_add_pd(eweps,eweps);
977             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
978                                          &ewtabF,&ewtabFn);
979             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
980             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
981
982             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
983
984             fscal            = felec;
985
986             fscal            = _mm_and_pd(fscal,cutoff_mask);
987
988             /* Update vectorial force */
989             fix1             = _mm_macc_pd(dx10,fscal,fix1);
990             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
991             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
992             
993             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
994             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
995             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
996
997             }
998
999             /**************************
1000              * CALCULATE INTERACTIONS *
1001              **************************/
1002
1003             if (gmx_mm_any_lt(rsq20,rcutoff2))
1004             {
1005
1006             r20              = _mm_mul_pd(rsq20,rinv20);
1007
1008             /* Compute parameters for interactions between i and j atoms */
1009             qq20             = _mm_mul_pd(iq2,jq0);
1010
1011             /* EWALD ELECTROSTATICS */
1012
1013             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1014             ewrt             = _mm_mul_pd(r20,ewtabscale);
1015             ewitab           = _mm_cvttpd_epi32(ewrt);
1016 #ifdef __XOP__
1017             eweps            = _mm_frcz_pd(ewrt);
1018 #else
1019             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1020 #endif
1021             twoeweps         = _mm_add_pd(eweps,eweps);
1022             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1023                                          &ewtabF,&ewtabFn);
1024             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1025             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1026
1027             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1028
1029             fscal            = felec;
1030
1031             fscal            = _mm_and_pd(fscal,cutoff_mask);
1032
1033             /* Update vectorial force */
1034             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1035             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1036             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1037             
1038             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1039             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1040             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1041
1042             }
1043
1044             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1045
1046             /* Inner loop uses 150 flops */
1047         }
1048
1049         if(jidx<j_index_end)
1050         {
1051
1052             jnrA             = jjnr[jidx];
1053             j_coord_offsetA  = DIM*jnrA;
1054
1055             /* load j atom coordinates */
1056             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1057                                               &jx0,&jy0,&jz0);
1058
1059             /* Calculate displacement vector */
1060             dx00             = _mm_sub_pd(ix0,jx0);
1061             dy00             = _mm_sub_pd(iy0,jy0);
1062             dz00             = _mm_sub_pd(iz0,jz0);
1063             dx10             = _mm_sub_pd(ix1,jx0);
1064             dy10             = _mm_sub_pd(iy1,jy0);
1065             dz10             = _mm_sub_pd(iz1,jz0);
1066             dx20             = _mm_sub_pd(ix2,jx0);
1067             dy20             = _mm_sub_pd(iy2,jy0);
1068             dz20             = _mm_sub_pd(iz2,jz0);
1069
1070             /* Calculate squared distance and things based on it */
1071             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1072             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1073             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1074
1075             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1076             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1077             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1078
1079             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1080             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1081             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1082
1083             /* Load parameters for j particles */
1084             jq0              = _mm_load_sd(charge+jnrA+0);
1085             vdwjidx0A        = 2*vdwtype[jnrA+0];
1086
1087             fjx0             = _mm_setzero_pd();
1088             fjy0             = _mm_setzero_pd();
1089             fjz0             = _mm_setzero_pd();
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             if (gmx_mm_any_lt(rsq00,rcutoff2))
1096             {
1097
1098             r00              = _mm_mul_pd(rsq00,rinv00);
1099
1100             /* Compute parameters for interactions between i and j atoms */
1101             qq00             = _mm_mul_pd(iq0,jq0);
1102             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1103             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1104
1105             /* EWALD ELECTROSTATICS */
1106
1107             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1108             ewrt             = _mm_mul_pd(r00,ewtabscale);
1109             ewitab           = _mm_cvttpd_epi32(ewrt);
1110 #ifdef __XOP__
1111             eweps            = _mm_frcz_pd(ewrt);
1112 #else
1113             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1114 #endif
1115             twoeweps         = _mm_add_pd(eweps,eweps);
1116             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1117             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1118             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1119
1120             /* Analytical LJ-PME */
1121             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1122             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1123             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1124             exponent         = gmx_simd_exp_d(ewcljrsq);
1125             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1126             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1127             /* f6A = 6 * C6grid * (1 - poly) */
1128             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1129             /* f6B = C6grid * exponent * beta^6 */
1130             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1131             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1132             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1133
1134             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1135
1136             fscal            = _mm_add_pd(felec,fvdw);
1137
1138             fscal            = _mm_and_pd(fscal,cutoff_mask);
1139
1140             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1141
1142             /* Update vectorial force */
1143             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1144             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1145             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1146             
1147             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1148             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1149             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1150
1151             }
1152
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             if (gmx_mm_any_lt(rsq10,rcutoff2))
1158             {
1159
1160             r10              = _mm_mul_pd(rsq10,rinv10);
1161
1162             /* Compute parameters for interactions between i and j atoms */
1163             qq10             = _mm_mul_pd(iq1,jq0);
1164
1165             /* EWALD ELECTROSTATICS */
1166
1167             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1168             ewrt             = _mm_mul_pd(r10,ewtabscale);
1169             ewitab           = _mm_cvttpd_epi32(ewrt);
1170 #ifdef __XOP__
1171             eweps            = _mm_frcz_pd(ewrt);
1172 #else
1173             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1174 #endif
1175             twoeweps         = _mm_add_pd(eweps,eweps);
1176             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1177             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1178             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1179
1180             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1181
1182             fscal            = felec;
1183
1184             fscal            = _mm_and_pd(fscal,cutoff_mask);
1185
1186             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1187
1188             /* Update vectorial force */
1189             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1190             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1191             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1192             
1193             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1194             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1195             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1196
1197             }
1198
1199             /**************************
1200              * CALCULATE INTERACTIONS *
1201              **************************/
1202
1203             if (gmx_mm_any_lt(rsq20,rcutoff2))
1204             {
1205
1206             r20              = _mm_mul_pd(rsq20,rinv20);
1207
1208             /* Compute parameters for interactions between i and j atoms */
1209             qq20             = _mm_mul_pd(iq2,jq0);
1210
1211             /* EWALD ELECTROSTATICS */
1212
1213             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1214             ewrt             = _mm_mul_pd(r20,ewtabscale);
1215             ewitab           = _mm_cvttpd_epi32(ewrt);
1216 #ifdef __XOP__
1217             eweps            = _mm_frcz_pd(ewrt);
1218 #else
1219             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1220 #endif
1221             twoeweps         = _mm_add_pd(eweps,eweps);
1222             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1223             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1224             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1225
1226             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1227
1228             fscal            = felec;
1229
1230             fscal            = _mm_and_pd(fscal,cutoff_mask);
1231
1232             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1233
1234             /* Update vectorial force */
1235             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1236             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1237             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1238             
1239             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1240             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1241             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1242
1243             }
1244
1245             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1246
1247             /* Inner loop uses 150 flops */
1248         }
1249
1250         /* End of innermost loop */
1251
1252         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1253                                               f+i_coord_offset,fshift+i_shift_offset);
1254
1255         /* Increment number of inner iterations */
1256         inneriter                  += j_index_end - j_index_start;
1257
1258         /* Outer loop uses 18 flops */
1259     }
1260
1261     /* Increment number of outer iterations */
1262     outeriter        += nri;
1263
1264     /* Update outer/inner flops */
1265
1266     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*150);
1267 }