Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128d           c6grid_00;
93     real             *vdwgridparam;
94     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     __m128d           one_half  = _mm_set1_pd(0.5);
96     __m128d           minus_one = _mm_set1_pd(-1.0);
97     __m128i          ewitab;
98     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     real             *ewtab;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->ic->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120     vdwgridparam     = fr->ljpme_c6grid;
121     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
122     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
123     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
124
125     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
128     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
129
130     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
131     rcutoff_scalar   = fr->ic->rcoulomb;
132     rcutoff          = _mm_set1_pd(rcutoff_scalar);
133     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
134
135     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
136     rvdw             = _mm_set1_pd(fr->ic->rvdw);
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166
167         /* Load parameters for i particles */
168         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
169         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_pd();
173         vvdwsum          = _mm_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_pd(ix0,jx0);
191             dy00             = _mm_sub_pd(iy0,jy0);
192             dz00             = _mm_sub_pd(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
196
197             rinv00           = avx128fma_invsqrt_d(rsq00);
198
199             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             if (gmx_mm_any_lt(rsq00,rcutoff2))
211             {
212
213             r00              = _mm_mul_pd(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _mm_mul_pd(iq0,jq0);
217             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
218                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
219             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
220                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
221
222             /* EWALD ELECTROSTATICS */
223
224             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
225             ewrt             = _mm_mul_pd(r00,ewtabscale);
226             ewitab           = _mm_cvttpd_epi32(ewrt);
227 #ifdef __XOP__
228             eweps            = _mm_frcz_pd(ewrt);
229 #else
230             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
231 #endif
232             twoeweps         = _mm_add_pd(eweps,eweps);
233             ewitab           = _mm_slli_epi32(ewitab,2);
234             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
235             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
236             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
237             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
238             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
239             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
240             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
241             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
242             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
243             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
244
245             /* Analytical LJ-PME */
246             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
247             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
248             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
249             exponent         = avx128fma_exp_d(ewcljrsq);
250             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
251             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
252             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
253             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
254             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
255             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
256                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
257             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
258             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
259
260             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velec            = _mm_and_pd(velec,cutoff_mask);
264             velecsum         = _mm_add_pd(velecsum,velec);
265             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
266             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
267
268             fscal            = _mm_add_pd(felec,fvdw);
269
270             fscal            = _mm_and_pd(fscal,cutoff_mask);
271
272             /* Update vectorial force */
273             fix0             = _mm_macc_pd(dx00,fscal,fix0);
274             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
275             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
276             
277             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
278                                                    _mm_mul_pd(dx00,fscal),
279                                                    _mm_mul_pd(dy00,fscal),
280                                                    _mm_mul_pd(dz00,fscal));
281
282             }
283
284             /* Inner loop uses 78 flops */
285         }
286
287         if(jidx<j_index_end)
288         {
289
290             jnrA             = jjnr[jidx];
291             j_coord_offsetA  = DIM*jnrA;
292
293             /* load j atom coordinates */
294             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
295                                               &jx0,&jy0,&jz0);
296
297             /* Calculate displacement vector */
298             dx00             = _mm_sub_pd(ix0,jx0);
299             dy00             = _mm_sub_pd(iy0,jy0);
300             dz00             = _mm_sub_pd(iz0,jz0);
301
302             /* Calculate squared distance and things based on it */
303             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
304
305             rinv00           = avx128fma_invsqrt_d(rsq00);
306
307             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
308
309             /* Load parameters for j particles */
310             jq0              = _mm_load_sd(charge+jnrA+0);
311             vdwjidx0A        = 2*vdwtype[jnrA+0];
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             if (gmx_mm_any_lt(rsq00,rcutoff2))
318             {
319
320             r00              = _mm_mul_pd(rsq00,rinv00);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq00             = _mm_mul_pd(iq0,jq0);
324             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
325             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = _mm_mul_pd(r00,ewtabscale);
331             ewitab           = _mm_cvttpd_epi32(ewrt);
332 #ifdef __XOP__
333             eweps            = _mm_frcz_pd(ewrt);
334 #else
335             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
336 #endif
337             twoeweps         = _mm_add_pd(eweps,eweps);
338             ewitab           = _mm_slli_epi32(ewitab,2);
339             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
340             ewtabD           = _mm_setzero_pd();
341             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
342             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
343             ewtabFn          = _mm_setzero_pd();
344             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
345             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
346             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
347             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
348             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
349
350             /* Analytical LJ-PME */
351             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
352             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
353             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
354             exponent         = avx128fma_exp_d(ewcljrsq);
355             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
356             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
357             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
358             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
359             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
360             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
361                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
362             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
363             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
364
365             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velec            = _mm_and_pd(velec,cutoff_mask);
369             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
370             velecsum         = _mm_add_pd(velecsum,velec);
371             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
372             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
373             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
374
375             fscal            = _mm_add_pd(felec,fvdw);
376
377             fscal            = _mm_and_pd(fscal,cutoff_mask);
378
379             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
380
381             /* Update vectorial force */
382             fix0             = _mm_macc_pd(dx00,fscal,fix0);
383             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
384             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
385             
386             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
387                                                    _mm_mul_pd(dx00,fscal),
388                                                    _mm_mul_pd(dy00,fscal),
389                                                    _mm_mul_pd(dz00,fscal));
390
391             }
392
393             /* Inner loop uses 78 flops */
394         }
395
396         /* End of innermost loop */
397
398         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
399                                               f+i_coord_offset,fshift+i_shift_offset);
400
401         ggid                        = gid[iidx];
402         /* Update potential energies */
403         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
404         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
405
406         /* Increment number of inner iterations */
407         inneriter                  += j_index_end - j_index_start;
408
409         /* Outer loop uses 9 flops */
410     }
411
412     /* Increment number of outer iterations */
413     outeriter        += nri;
414
415     /* Update outer/inner flops */
416
417     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*78);
418 }
419 /*
420  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_double
421  * Electrostatics interaction: Ewald
422  * VdW interaction:            LJEwald
423  * Geometry:                   Particle-Particle
424  * Calculate force/pot:        Force
425  */
426 void
427 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_double
428                     (t_nblist                    * gmx_restrict       nlist,
429                      rvec                        * gmx_restrict          xx,
430                      rvec                        * gmx_restrict          ff,
431                      struct t_forcerec           * gmx_restrict          fr,
432                      t_mdatoms                   * gmx_restrict     mdatoms,
433                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
434                      t_nrnb                      * gmx_restrict        nrnb)
435 {
436     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
437      * just 0 for non-waters.
438      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
439      * jnr indices corresponding to data put in the four positions in the SIMD register.
440      */
441     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
442     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
443     int              jnrA,jnrB;
444     int              j_coord_offsetA,j_coord_offsetB;
445     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
446     real             rcutoff_scalar;
447     real             *shiftvec,*fshift,*x,*f;
448     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
449     int              vdwioffset0;
450     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
451     int              vdwjidx0A,vdwjidx0B;
452     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
453     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
454     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
455     real             *charge;
456     int              nvdwtype;
457     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
458     int              *vdwtype;
459     real             *vdwparam;
460     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
461     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
462     __m128d           c6grid_00;
463     real             *vdwgridparam;
464     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
465     __m128d           one_half  = _mm_set1_pd(0.5);
466     __m128d           minus_one = _mm_set1_pd(-1.0);
467     __m128i          ewitab;
468     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
469     real             *ewtab;
470     __m128d          dummy_mask,cutoff_mask;
471     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
472     __m128d          one     = _mm_set1_pd(1.0);
473     __m128d          two     = _mm_set1_pd(2.0);
474     x                = xx[0];
475     f                = ff[0];
476
477     nri              = nlist->nri;
478     iinr             = nlist->iinr;
479     jindex           = nlist->jindex;
480     jjnr             = nlist->jjnr;
481     shiftidx         = nlist->shift;
482     gid              = nlist->gid;
483     shiftvec         = fr->shift_vec[0];
484     fshift           = fr->fshift[0];
485     facel            = _mm_set1_pd(fr->ic->epsfac);
486     charge           = mdatoms->chargeA;
487     nvdwtype         = fr->ntype;
488     vdwparam         = fr->nbfp;
489     vdwtype          = mdatoms->typeA;
490     vdwgridparam     = fr->ljpme_c6grid;
491     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
492     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
493     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
494
495     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
496     ewtab            = fr->ic->tabq_coul_F;
497     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
498     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
499
500     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
501     rcutoff_scalar   = fr->ic->rcoulomb;
502     rcutoff          = _mm_set1_pd(rcutoff_scalar);
503     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
504
505     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
506     rvdw             = _mm_set1_pd(fr->ic->rvdw);
507
508     /* Avoid stupid compiler warnings */
509     jnrA = jnrB = 0;
510     j_coord_offsetA = 0;
511     j_coord_offsetB = 0;
512
513     outeriter        = 0;
514     inneriter        = 0;
515
516     /* Start outer loop over neighborlists */
517     for(iidx=0; iidx<nri; iidx++)
518     {
519         /* Load shift vector for this list */
520         i_shift_offset   = DIM*shiftidx[iidx];
521
522         /* Load limits for loop over neighbors */
523         j_index_start    = jindex[iidx];
524         j_index_end      = jindex[iidx+1];
525
526         /* Get outer coordinate index */
527         inr              = iinr[iidx];
528         i_coord_offset   = DIM*inr;
529
530         /* Load i particle coords and add shift vector */
531         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
532
533         fix0             = _mm_setzero_pd();
534         fiy0             = _mm_setzero_pd();
535         fiz0             = _mm_setzero_pd();
536
537         /* Load parameters for i particles */
538         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
539         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
540
541         /* Start inner kernel loop */
542         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
543         {
544
545             /* Get j neighbor index, and coordinate index */
546             jnrA             = jjnr[jidx];
547             jnrB             = jjnr[jidx+1];
548             j_coord_offsetA  = DIM*jnrA;
549             j_coord_offsetB  = DIM*jnrB;
550
551             /* load j atom coordinates */
552             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
553                                               &jx0,&jy0,&jz0);
554
555             /* Calculate displacement vector */
556             dx00             = _mm_sub_pd(ix0,jx0);
557             dy00             = _mm_sub_pd(iy0,jy0);
558             dz00             = _mm_sub_pd(iz0,jz0);
559
560             /* Calculate squared distance and things based on it */
561             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
562
563             rinv00           = avx128fma_invsqrt_d(rsq00);
564
565             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
566
567             /* Load parameters for j particles */
568             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
569             vdwjidx0A        = 2*vdwtype[jnrA+0];
570             vdwjidx0B        = 2*vdwtype[jnrB+0];
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             if (gmx_mm_any_lt(rsq00,rcutoff2))
577             {
578
579             r00              = _mm_mul_pd(rsq00,rinv00);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq00             = _mm_mul_pd(iq0,jq0);
583             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
584                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
585             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
586                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
587
588             /* EWALD ELECTROSTATICS */
589
590             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
591             ewrt             = _mm_mul_pd(r00,ewtabscale);
592             ewitab           = _mm_cvttpd_epi32(ewrt);
593 #ifdef __XOP__
594             eweps            = _mm_frcz_pd(ewrt);
595 #else
596             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
597 #endif
598             twoeweps         = _mm_add_pd(eweps,eweps);
599             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
600                                          &ewtabF,&ewtabFn);
601             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
602             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
603
604             /* Analytical LJ-PME */
605             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
606             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
607             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
608             exponent         = avx128fma_exp_d(ewcljrsq);
609             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
610             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
611             /* f6A = 6 * C6grid * (1 - poly) */
612             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
613             /* f6B = C6grid * exponent * beta^6 */
614             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
615             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
616             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
617
618             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
619
620             fscal            = _mm_add_pd(felec,fvdw);
621
622             fscal            = _mm_and_pd(fscal,cutoff_mask);
623
624             /* Update vectorial force */
625             fix0             = _mm_macc_pd(dx00,fscal,fix0);
626             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
627             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
628             
629             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
630                                                    _mm_mul_pd(dx00,fscal),
631                                                    _mm_mul_pd(dy00,fscal),
632                                                    _mm_mul_pd(dz00,fscal));
633
634             }
635
636             /* Inner loop uses 63 flops */
637         }
638
639         if(jidx<j_index_end)
640         {
641
642             jnrA             = jjnr[jidx];
643             j_coord_offsetA  = DIM*jnrA;
644
645             /* load j atom coordinates */
646             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
647                                               &jx0,&jy0,&jz0);
648
649             /* Calculate displacement vector */
650             dx00             = _mm_sub_pd(ix0,jx0);
651             dy00             = _mm_sub_pd(iy0,jy0);
652             dz00             = _mm_sub_pd(iz0,jz0);
653
654             /* Calculate squared distance and things based on it */
655             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
656
657             rinv00           = avx128fma_invsqrt_d(rsq00);
658
659             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
660
661             /* Load parameters for j particles */
662             jq0              = _mm_load_sd(charge+jnrA+0);
663             vdwjidx0A        = 2*vdwtype[jnrA+0];
664
665             /**************************
666              * CALCULATE INTERACTIONS *
667              **************************/
668
669             if (gmx_mm_any_lt(rsq00,rcutoff2))
670             {
671
672             r00              = _mm_mul_pd(rsq00,rinv00);
673
674             /* Compute parameters for interactions between i and j atoms */
675             qq00             = _mm_mul_pd(iq0,jq0);
676             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
677             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
678
679             /* EWALD ELECTROSTATICS */
680
681             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
682             ewrt             = _mm_mul_pd(r00,ewtabscale);
683             ewitab           = _mm_cvttpd_epi32(ewrt);
684 #ifdef __XOP__
685             eweps            = _mm_frcz_pd(ewrt);
686 #else
687             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
688 #endif
689             twoeweps         = _mm_add_pd(eweps,eweps);
690             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
691             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
692             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
693
694             /* Analytical LJ-PME */
695             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
696             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
697             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
698             exponent         = avx128fma_exp_d(ewcljrsq);
699             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
700             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
701             /* f6A = 6 * C6grid * (1 - poly) */
702             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
703             /* f6B = C6grid * exponent * beta^6 */
704             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
705             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
706             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
707
708             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
709
710             fscal            = _mm_add_pd(felec,fvdw);
711
712             fscal            = _mm_and_pd(fscal,cutoff_mask);
713
714             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
715
716             /* Update vectorial force */
717             fix0             = _mm_macc_pd(dx00,fscal,fix0);
718             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
719             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
720             
721             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
722                                                    _mm_mul_pd(dx00,fscal),
723                                                    _mm_mul_pd(dy00,fscal),
724                                                    _mm_mul_pd(dz00,fscal));
725
726             }
727
728             /* Inner loop uses 63 flops */
729         }
730
731         /* End of innermost loop */
732
733         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
734                                               f+i_coord_offset,fshift+i_shift_offset);
735
736         /* Increment number of inner iterations */
737         inneriter                  += j_index_end - j_index_start;
738
739         /* Outer loop uses 7 flops */
740     }
741
742     /* Increment number of outer iterations */
743     outeriter        += nri;
744
745     /* Update outer/inner flops */
746
747     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
748 }