Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128d           c6grid_00;
96     real             *vdwgridparam;
97     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98     __m128d           one_half  = _mm_set1_pd(0.5);
99     __m128d           minus_one = _mm_set1_pd(-1.0);
100     __m128i          ewitab;
101     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     real             *ewtab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123     vdwgridparam     = fr->ljpme_c6grid;
124     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
125     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
126     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = _mm_set1_pd(rcutoff_scalar);
136     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
137
138     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
139     rvdw             = _mm_set1_pd(fr->rvdw);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_pd();
176         vvdwsum          = _mm_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_pd(ix0,jx0);
194             dy00             = _mm_sub_pd(iy0,jy0);
195             dz00             = _mm_sub_pd(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
199
200             rinv00           = gmx_mm_invsqrt_pd(rsq00);
201
202             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             if (gmx_mm_any_lt(rsq00,rcutoff2))
214             {
215
216             r00              = _mm_mul_pd(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm_mul_pd(iq0,jq0);
220             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
222             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
223                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
224
225             /* EWALD ELECTROSTATICS */
226
227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
228             ewrt             = _mm_mul_pd(r00,ewtabscale);
229             ewitab           = _mm_cvttpd_epi32(ewrt);
230 #ifdef __XOP__
231             eweps            = _mm_frcz_pd(ewrt);
232 #else
233             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
234 #endif
235             twoeweps         = _mm_add_pd(eweps,eweps);
236             ewitab           = _mm_slli_epi32(ewitab,2);
237             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
238             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
239             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
240             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
241             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
242             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
243             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
244             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
245             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
246             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
247
248             /* Analytical LJ-PME */
249             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
250             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
251             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
252             exponent         = gmx_simd_exp_d(ewcljrsq);
253             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
254             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
255             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
256             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
257             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
258             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
259                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
260             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
261             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
262
263             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velec            = _mm_and_pd(velec,cutoff_mask);
267             velecsum         = _mm_add_pd(velecsum,velec);
268             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
269             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
270
271             fscal            = _mm_add_pd(felec,fvdw);
272
273             fscal            = _mm_and_pd(fscal,cutoff_mask);
274
275             /* Update vectorial force */
276             fix0             = _mm_macc_pd(dx00,fscal,fix0);
277             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
278             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
279             
280             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
281                                                    _mm_mul_pd(dx00,fscal),
282                                                    _mm_mul_pd(dy00,fscal),
283                                                    _mm_mul_pd(dz00,fscal));
284
285             }
286
287             /* Inner loop uses 78 flops */
288         }
289
290         if(jidx<j_index_end)
291         {
292
293             jnrA             = jjnr[jidx];
294             j_coord_offsetA  = DIM*jnrA;
295
296             /* load j atom coordinates */
297             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
298                                               &jx0,&jy0,&jz0);
299
300             /* Calculate displacement vector */
301             dx00             = _mm_sub_pd(ix0,jx0);
302             dy00             = _mm_sub_pd(iy0,jy0);
303             dz00             = _mm_sub_pd(iz0,jz0);
304
305             /* Calculate squared distance and things based on it */
306             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
307
308             rinv00           = gmx_mm_invsqrt_pd(rsq00);
309
310             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
311
312             /* Load parameters for j particles */
313             jq0              = _mm_load_sd(charge+jnrA+0);
314             vdwjidx0A        = 2*vdwtype[jnrA+0];
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             if (gmx_mm_any_lt(rsq00,rcutoff2))
321             {
322
323             r00              = _mm_mul_pd(rsq00,rinv00);
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq00             = _mm_mul_pd(iq0,jq0);
327             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
328             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
329
330             /* EWALD ELECTROSTATICS */
331
332             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
333             ewrt             = _mm_mul_pd(r00,ewtabscale);
334             ewitab           = _mm_cvttpd_epi32(ewrt);
335 #ifdef __XOP__
336             eweps            = _mm_frcz_pd(ewrt);
337 #else
338             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
339 #endif
340             twoeweps         = _mm_add_pd(eweps,eweps);
341             ewitab           = _mm_slli_epi32(ewitab,2);
342             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
343             ewtabD           = _mm_setzero_pd();
344             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
345             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
346             ewtabFn          = _mm_setzero_pd();
347             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
348             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
349             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
350             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
351             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
352
353             /* Analytical LJ-PME */
354             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
355             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
356             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
357             exponent         = gmx_simd_exp_d(ewcljrsq);
358             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
359             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
360             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
361             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
362             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
363             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
364                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
365             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
366             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
367
368             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm_and_pd(velec,cutoff_mask);
372             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
373             velecsum         = _mm_add_pd(velecsum,velec);
374             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
375             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
376             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
377
378             fscal            = _mm_add_pd(felec,fvdw);
379
380             fscal            = _mm_and_pd(fscal,cutoff_mask);
381
382             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
383
384             /* Update vectorial force */
385             fix0             = _mm_macc_pd(dx00,fscal,fix0);
386             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
387             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
388             
389             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
390                                                    _mm_mul_pd(dx00,fscal),
391                                                    _mm_mul_pd(dy00,fscal),
392                                                    _mm_mul_pd(dz00,fscal));
393
394             }
395
396             /* Inner loop uses 78 flops */
397         }
398
399         /* End of innermost loop */
400
401         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
402                                               f+i_coord_offset,fshift+i_shift_offset);
403
404         ggid                        = gid[iidx];
405         /* Update potential energies */
406         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
407         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
408
409         /* Increment number of inner iterations */
410         inneriter                  += j_index_end - j_index_start;
411
412         /* Outer loop uses 9 flops */
413     }
414
415     /* Increment number of outer iterations */
416     outeriter        += nri;
417
418     /* Update outer/inner flops */
419
420     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*78);
421 }
422 /*
423  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_double
424  * Electrostatics interaction: Ewald
425  * VdW interaction:            LJEwald
426  * Geometry:                   Particle-Particle
427  * Calculate force/pot:        Force
428  */
429 void
430 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_double
431                     (t_nblist                    * gmx_restrict       nlist,
432                      rvec                        * gmx_restrict          xx,
433                      rvec                        * gmx_restrict          ff,
434                      t_forcerec                  * gmx_restrict          fr,
435                      t_mdatoms                   * gmx_restrict     mdatoms,
436                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
437                      t_nrnb                      * gmx_restrict        nrnb)
438 {
439     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
440      * just 0 for non-waters.
441      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
442      * jnr indices corresponding to data put in the four positions in the SIMD register.
443      */
444     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
445     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
446     int              jnrA,jnrB;
447     int              j_coord_offsetA,j_coord_offsetB;
448     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
449     real             rcutoff_scalar;
450     real             *shiftvec,*fshift,*x,*f;
451     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
452     int              vdwioffset0;
453     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
454     int              vdwjidx0A,vdwjidx0B;
455     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
456     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
457     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
458     real             *charge;
459     int              nvdwtype;
460     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
461     int              *vdwtype;
462     real             *vdwparam;
463     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
464     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
465     __m128d           c6grid_00;
466     real             *vdwgridparam;
467     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
468     __m128d           one_half  = _mm_set1_pd(0.5);
469     __m128d           minus_one = _mm_set1_pd(-1.0);
470     __m128i          ewitab;
471     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
472     real             *ewtab;
473     __m128d          dummy_mask,cutoff_mask;
474     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
475     __m128d          one     = _mm_set1_pd(1.0);
476     __m128d          two     = _mm_set1_pd(2.0);
477     x                = xx[0];
478     f                = ff[0];
479
480     nri              = nlist->nri;
481     iinr             = nlist->iinr;
482     jindex           = nlist->jindex;
483     jjnr             = nlist->jjnr;
484     shiftidx         = nlist->shift;
485     gid              = nlist->gid;
486     shiftvec         = fr->shift_vec[0];
487     fshift           = fr->fshift[0];
488     facel            = _mm_set1_pd(fr->epsfac);
489     charge           = mdatoms->chargeA;
490     nvdwtype         = fr->ntype;
491     vdwparam         = fr->nbfp;
492     vdwtype          = mdatoms->typeA;
493     vdwgridparam     = fr->ljpme_c6grid;
494     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
495     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
496     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
497
498     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
499     ewtab            = fr->ic->tabq_coul_F;
500     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
501     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
502
503     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
504     rcutoff_scalar   = fr->rcoulomb;
505     rcutoff          = _mm_set1_pd(rcutoff_scalar);
506     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
507
508     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
509     rvdw             = _mm_set1_pd(fr->rvdw);
510
511     /* Avoid stupid compiler warnings */
512     jnrA = jnrB = 0;
513     j_coord_offsetA = 0;
514     j_coord_offsetB = 0;
515
516     outeriter        = 0;
517     inneriter        = 0;
518
519     /* Start outer loop over neighborlists */
520     for(iidx=0; iidx<nri; iidx++)
521     {
522         /* Load shift vector for this list */
523         i_shift_offset   = DIM*shiftidx[iidx];
524
525         /* Load limits for loop over neighbors */
526         j_index_start    = jindex[iidx];
527         j_index_end      = jindex[iidx+1];
528
529         /* Get outer coordinate index */
530         inr              = iinr[iidx];
531         i_coord_offset   = DIM*inr;
532
533         /* Load i particle coords and add shift vector */
534         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
535
536         fix0             = _mm_setzero_pd();
537         fiy0             = _mm_setzero_pd();
538         fiz0             = _mm_setzero_pd();
539
540         /* Load parameters for i particles */
541         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
542         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
543
544         /* Start inner kernel loop */
545         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
546         {
547
548             /* Get j neighbor index, and coordinate index */
549             jnrA             = jjnr[jidx];
550             jnrB             = jjnr[jidx+1];
551             j_coord_offsetA  = DIM*jnrA;
552             j_coord_offsetB  = DIM*jnrB;
553
554             /* load j atom coordinates */
555             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
556                                               &jx0,&jy0,&jz0);
557
558             /* Calculate displacement vector */
559             dx00             = _mm_sub_pd(ix0,jx0);
560             dy00             = _mm_sub_pd(iy0,jy0);
561             dz00             = _mm_sub_pd(iz0,jz0);
562
563             /* Calculate squared distance and things based on it */
564             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
565
566             rinv00           = gmx_mm_invsqrt_pd(rsq00);
567
568             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
569
570             /* Load parameters for j particles */
571             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
572             vdwjidx0A        = 2*vdwtype[jnrA+0];
573             vdwjidx0B        = 2*vdwtype[jnrB+0];
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             if (gmx_mm_any_lt(rsq00,rcutoff2))
580             {
581
582             r00              = _mm_mul_pd(rsq00,rinv00);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq00             = _mm_mul_pd(iq0,jq0);
586             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
587                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
588             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
589                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
590
591             /* EWALD ELECTROSTATICS */
592
593             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
594             ewrt             = _mm_mul_pd(r00,ewtabscale);
595             ewitab           = _mm_cvttpd_epi32(ewrt);
596 #ifdef __XOP__
597             eweps            = _mm_frcz_pd(ewrt);
598 #else
599             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
600 #endif
601             twoeweps         = _mm_add_pd(eweps,eweps);
602             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
603                                          &ewtabF,&ewtabFn);
604             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
605             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
606
607             /* Analytical LJ-PME */
608             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
609             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
610             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
611             exponent         = gmx_simd_exp_d(ewcljrsq);
612             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
613             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
614             /* f6A = 6 * C6grid * (1 - poly) */
615             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
616             /* f6B = C6grid * exponent * beta^6 */
617             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
618             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
619             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
620
621             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
622
623             fscal            = _mm_add_pd(felec,fvdw);
624
625             fscal            = _mm_and_pd(fscal,cutoff_mask);
626
627             /* Update vectorial force */
628             fix0             = _mm_macc_pd(dx00,fscal,fix0);
629             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
630             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
631             
632             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
633                                                    _mm_mul_pd(dx00,fscal),
634                                                    _mm_mul_pd(dy00,fscal),
635                                                    _mm_mul_pd(dz00,fscal));
636
637             }
638
639             /* Inner loop uses 63 flops */
640         }
641
642         if(jidx<j_index_end)
643         {
644
645             jnrA             = jjnr[jidx];
646             j_coord_offsetA  = DIM*jnrA;
647
648             /* load j atom coordinates */
649             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
650                                               &jx0,&jy0,&jz0);
651
652             /* Calculate displacement vector */
653             dx00             = _mm_sub_pd(ix0,jx0);
654             dy00             = _mm_sub_pd(iy0,jy0);
655             dz00             = _mm_sub_pd(iz0,jz0);
656
657             /* Calculate squared distance and things based on it */
658             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
659
660             rinv00           = gmx_mm_invsqrt_pd(rsq00);
661
662             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
663
664             /* Load parameters for j particles */
665             jq0              = _mm_load_sd(charge+jnrA+0);
666             vdwjidx0A        = 2*vdwtype[jnrA+0];
667
668             /**************************
669              * CALCULATE INTERACTIONS *
670              **************************/
671
672             if (gmx_mm_any_lt(rsq00,rcutoff2))
673             {
674
675             r00              = _mm_mul_pd(rsq00,rinv00);
676
677             /* Compute parameters for interactions between i and j atoms */
678             qq00             = _mm_mul_pd(iq0,jq0);
679             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
680             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
681
682             /* EWALD ELECTROSTATICS */
683
684             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
685             ewrt             = _mm_mul_pd(r00,ewtabscale);
686             ewitab           = _mm_cvttpd_epi32(ewrt);
687 #ifdef __XOP__
688             eweps            = _mm_frcz_pd(ewrt);
689 #else
690             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
691 #endif
692             twoeweps         = _mm_add_pd(eweps,eweps);
693             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
694             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
695             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
696
697             /* Analytical LJ-PME */
698             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
699             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
700             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
701             exponent         = gmx_simd_exp_d(ewcljrsq);
702             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
703             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
704             /* f6A = 6 * C6grid * (1 - poly) */
705             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
706             /* f6B = C6grid * exponent * beta^6 */
707             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
708             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
709             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
710
711             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
712
713             fscal            = _mm_add_pd(felec,fvdw);
714
715             fscal            = _mm_and_pd(fscal,cutoff_mask);
716
717             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
718
719             /* Update vectorial force */
720             fix0             = _mm_macc_pd(dx00,fscal,fix0);
721             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
722             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
723             
724             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
725                                                    _mm_mul_pd(dx00,fscal),
726                                                    _mm_mul_pd(dy00,fscal),
727                                                    _mm_mul_pd(dz00,fscal));
728
729             }
730
731             /* Inner loop uses 63 flops */
732         }
733
734         /* End of innermost loop */
735
736         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
737                                               f+i_coord_offset,fshift+i_shift_offset);
738
739         /* Increment number of inner iterations */
740         inneriter                  += j_index_end - j_index_start;
741
742         /* Outer loop uses 7 flops */
743     }
744
745     /* Increment number of outer iterations */
746     outeriter        += nri;
747
748     /* Update outer/inner flops */
749
750     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
751 }