2eaf9be4ea37b510bbe59b6ef67b74c0143cf357
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d           c6grid_00;
94     real             *vdwgridparam;
95     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
96     __m128d           one_half  = _mm_set1_pd(0.5);
97     __m128d           minus_one = _mm_set1_pd(-1.0);
98     __m128i          ewitab;
99     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121     vdwgridparam     = fr->ljpme_c6grid;
122     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
123     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
124     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
132     rcutoff_scalar   = fr->rcoulomb;
133     rcutoff          = _mm_set1_pd(rcutoff_scalar);
134     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
135
136     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
137     rvdw             = _mm_set1_pd(fr->rvdw);
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _mm_setzero_pd();
165         fiy0             = _mm_setzero_pd();
166         fiz0             = _mm_setzero_pd();
167
168         /* Load parameters for i particles */
169         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
170         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_pd();
174         vvdwsum          = _mm_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185
186             /* load j atom coordinates */
187             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_pd(ix0,jx0);
192             dy00             = _mm_sub_pd(iy0,jy0);
193             dz00             = _mm_sub_pd(iz0,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
197
198             rinv00           = gmx_mm_invsqrt_pd(rsq00);
199
200             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
201
202             /* Load parameters for j particles */
203             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
204             vdwjidx0A        = 2*vdwtype[jnrA+0];
205             vdwjidx0B        = 2*vdwtype[jnrB+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             if (gmx_mm_any_lt(rsq00,rcutoff2))
212             {
213
214             r00              = _mm_mul_pd(rsq00,rinv00);
215
216             /* Compute parameters for interactions between i and j atoms */
217             qq00             = _mm_mul_pd(iq0,jq0);
218             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
219                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
220             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
221                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
222
223             /* EWALD ELECTROSTATICS */
224
225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
226             ewrt             = _mm_mul_pd(r00,ewtabscale);
227             ewitab           = _mm_cvttpd_epi32(ewrt);
228 #ifdef __XOP__
229             eweps            = _mm_frcz_pd(ewrt);
230 #else
231             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
232 #endif
233             twoeweps         = _mm_add_pd(eweps,eweps);
234             ewitab           = _mm_slli_epi32(ewitab,2);
235             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
236             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
237             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
238             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
239             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
240             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
241             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
242             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
243             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
244             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
245
246             /* Analytical LJ-PME */
247             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
248             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
249             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
250             exponent         = gmx_simd_exp_d(ewcljrsq);
251             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
252             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
253             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
254             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
255             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
256             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
257                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
258             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
259             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
260
261             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             velec            = _mm_and_pd(velec,cutoff_mask);
265             velecsum         = _mm_add_pd(velecsum,velec);
266             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
267             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
268
269             fscal            = _mm_add_pd(felec,fvdw);
270
271             fscal            = _mm_and_pd(fscal,cutoff_mask);
272
273             /* Update vectorial force */
274             fix0             = _mm_macc_pd(dx00,fscal,fix0);
275             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
276             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
277             
278             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
279                                                    _mm_mul_pd(dx00,fscal),
280                                                    _mm_mul_pd(dy00,fscal),
281                                                    _mm_mul_pd(dz00,fscal));
282
283             }
284
285             /* Inner loop uses 78 flops */
286         }
287
288         if(jidx<j_index_end)
289         {
290
291             jnrA             = jjnr[jidx];
292             j_coord_offsetA  = DIM*jnrA;
293
294             /* load j atom coordinates */
295             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
296                                               &jx0,&jy0,&jz0);
297
298             /* Calculate displacement vector */
299             dx00             = _mm_sub_pd(ix0,jx0);
300             dy00             = _mm_sub_pd(iy0,jy0);
301             dz00             = _mm_sub_pd(iz0,jz0);
302
303             /* Calculate squared distance and things based on it */
304             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
305
306             rinv00           = gmx_mm_invsqrt_pd(rsq00);
307
308             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
309
310             /* Load parameters for j particles */
311             jq0              = _mm_load_sd(charge+jnrA+0);
312             vdwjidx0A        = 2*vdwtype[jnrA+0];
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             if (gmx_mm_any_lt(rsq00,rcutoff2))
319             {
320
321             r00              = _mm_mul_pd(rsq00,rinv00);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq00             = _mm_mul_pd(iq0,jq0);
325             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
326             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
327
328             /* EWALD ELECTROSTATICS */
329
330             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
331             ewrt             = _mm_mul_pd(r00,ewtabscale);
332             ewitab           = _mm_cvttpd_epi32(ewrt);
333 #ifdef __XOP__
334             eweps            = _mm_frcz_pd(ewrt);
335 #else
336             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
337 #endif
338             twoeweps         = _mm_add_pd(eweps,eweps);
339             ewitab           = _mm_slli_epi32(ewitab,2);
340             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
341             ewtabD           = _mm_setzero_pd();
342             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
343             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
344             ewtabFn          = _mm_setzero_pd();
345             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
346             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
347             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
348             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
349             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
350
351             /* Analytical LJ-PME */
352             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
353             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
354             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
355             exponent         = gmx_simd_exp_d(ewcljrsq);
356             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
357             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
358             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
359             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
360             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
361             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
362                                _mm_mul_pd(_mm_sub_pd(vvdw6,_mm_macc_pd(c6grid_00,sh_lj_ewald,_mm_mul_pd(c6_00,sh_vdw_invrcut6))),one_sixth));
363             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
364             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
365
366             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velec            = _mm_and_pd(velec,cutoff_mask);
370             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
371             velecsum         = _mm_add_pd(velecsum,velec);
372             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
373             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
374             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
375
376             fscal            = _mm_add_pd(felec,fvdw);
377
378             fscal            = _mm_and_pd(fscal,cutoff_mask);
379
380             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
381
382             /* Update vectorial force */
383             fix0             = _mm_macc_pd(dx00,fscal,fix0);
384             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
385             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
386             
387             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
388                                                    _mm_mul_pd(dx00,fscal),
389                                                    _mm_mul_pd(dy00,fscal),
390                                                    _mm_mul_pd(dz00,fscal));
391
392             }
393
394             /* Inner loop uses 78 flops */
395         }
396
397         /* End of innermost loop */
398
399         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
400                                               f+i_coord_offset,fshift+i_shift_offset);
401
402         ggid                        = gid[iidx];
403         /* Update potential energies */
404         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
405         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
406
407         /* Increment number of inner iterations */
408         inneriter                  += j_index_end - j_index_start;
409
410         /* Outer loop uses 9 flops */
411     }
412
413     /* Increment number of outer iterations */
414     outeriter        += nri;
415
416     /* Update outer/inner flops */
417
418     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*78);
419 }
420 /*
421  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_double
422  * Electrostatics interaction: Ewald
423  * VdW interaction:            LJEwald
424  * Geometry:                   Particle-Particle
425  * Calculate force/pot:        Force
426  */
427 void
428 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_avx_128_fma_double
429                     (t_nblist                    * gmx_restrict       nlist,
430                      rvec                        * gmx_restrict          xx,
431                      rvec                        * gmx_restrict          ff,
432                      t_forcerec                  * gmx_restrict          fr,
433                      t_mdatoms                   * gmx_restrict     mdatoms,
434                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
435                      t_nrnb                      * gmx_restrict        nrnb)
436 {
437     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
438      * just 0 for non-waters.
439      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
440      * jnr indices corresponding to data put in the four positions in the SIMD register.
441      */
442     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
443     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
444     int              jnrA,jnrB;
445     int              j_coord_offsetA,j_coord_offsetB;
446     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
447     real             rcutoff_scalar;
448     real             *shiftvec,*fshift,*x,*f;
449     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
450     int              vdwioffset0;
451     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
452     int              vdwjidx0A,vdwjidx0B;
453     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
454     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
455     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
456     real             *charge;
457     int              nvdwtype;
458     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
459     int              *vdwtype;
460     real             *vdwparam;
461     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
462     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
463     __m128d           c6grid_00;
464     real             *vdwgridparam;
465     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
466     __m128d           one_half  = _mm_set1_pd(0.5);
467     __m128d           minus_one = _mm_set1_pd(-1.0);
468     __m128i          ewitab;
469     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
470     real             *ewtab;
471     __m128d          dummy_mask,cutoff_mask;
472     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
473     __m128d          one     = _mm_set1_pd(1.0);
474     __m128d          two     = _mm_set1_pd(2.0);
475     x                = xx[0];
476     f                = ff[0];
477
478     nri              = nlist->nri;
479     iinr             = nlist->iinr;
480     jindex           = nlist->jindex;
481     jjnr             = nlist->jjnr;
482     shiftidx         = nlist->shift;
483     gid              = nlist->gid;
484     shiftvec         = fr->shift_vec[0];
485     fshift           = fr->fshift[0];
486     facel            = _mm_set1_pd(fr->epsfac);
487     charge           = mdatoms->chargeA;
488     nvdwtype         = fr->ntype;
489     vdwparam         = fr->nbfp;
490     vdwtype          = mdatoms->typeA;
491     vdwgridparam     = fr->ljpme_c6grid;
492     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
493     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
494     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
495
496     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
497     ewtab            = fr->ic->tabq_coul_F;
498     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
499     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
500
501     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
502     rcutoff_scalar   = fr->rcoulomb;
503     rcutoff          = _mm_set1_pd(rcutoff_scalar);
504     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
505
506     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
507     rvdw             = _mm_set1_pd(fr->rvdw);
508
509     /* Avoid stupid compiler warnings */
510     jnrA = jnrB = 0;
511     j_coord_offsetA = 0;
512     j_coord_offsetB = 0;
513
514     outeriter        = 0;
515     inneriter        = 0;
516
517     /* Start outer loop over neighborlists */
518     for(iidx=0; iidx<nri; iidx++)
519     {
520         /* Load shift vector for this list */
521         i_shift_offset   = DIM*shiftidx[iidx];
522
523         /* Load limits for loop over neighbors */
524         j_index_start    = jindex[iidx];
525         j_index_end      = jindex[iidx+1];
526
527         /* Get outer coordinate index */
528         inr              = iinr[iidx];
529         i_coord_offset   = DIM*inr;
530
531         /* Load i particle coords and add shift vector */
532         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
533
534         fix0             = _mm_setzero_pd();
535         fiy0             = _mm_setzero_pd();
536         fiz0             = _mm_setzero_pd();
537
538         /* Load parameters for i particles */
539         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
540         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
541
542         /* Start inner kernel loop */
543         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
544         {
545
546             /* Get j neighbor index, and coordinate index */
547             jnrA             = jjnr[jidx];
548             jnrB             = jjnr[jidx+1];
549             j_coord_offsetA  = DIM*jnrA;
550             j_coord_offsetB  = DIM*jnrB;
551
552             /* load j atom coordinates */
553             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
554                                               &jx0,&jy0,&jz0);
555
556             /* Calculate displacement vector */
557             dx00             = _mm_sub_pd(ix0,jx0);
558             dy00             = _mm_sub_pd(iy0,jy0);
559             dz00             = _mm_sub_pd(iz0,jz0);
560
561             /* Calculate squared distance and things based on it */
562             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
563
564             rinv00           = gmx_mm_invsqrt_pd(rsq00);
565
566             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
567
568             /* Load parameters for j particles */
569             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
570             vdwjidx0A        = 2*vdwtype[jnrA+0];
571             vdwjidx0B        = 2*vdwtype[jnrB+0];
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             if (gmx_mm_any_lt(rsq00,rcutoff2))
578             {
579
580             r00              = _mm_mul_pd(rsq00,rinv00);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq00             = _mm_mul_pd(iq0,jq0);
584             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
585                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
586             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
587                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
588
589             /* EWALD ELECTROSTATICS */
590
591             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
592             ewrt             = _mm_mul_pd(r00,ewtabscale);
593             ewitab           = _mm_cvttpd_epi32(ewrt);
594 #ifdef __XOP__
595             eweps            = _mm_frcz_pd(ewrt);
596 #else
597             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
598 #endif
599             twoeweps         = _mm_add_pd(eweps,eweps);
600             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
601                                          &ewtabF,&ewtabFn);
602             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
603             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
604
605             /* Analytical LJ-PME */
606             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
607             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
608             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
609             exponent         = gmx_simd_exp_d(ewcljrsq);
610             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
611             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
612             /* f6A = 6 * C6grid * (1 - poly) */
613             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
614             /* f6B = C6grid * exponent * beta^6 */
615             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
616             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
617             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
618
619             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
620
621             fscal            = _mm_add_pd(felec,fvdw);
622
623             fscal            = _mm_and_pd(fscal,cutoff_mask);
624
625             /* Update vectorial force */
626             fix0             = _mm_macc_pd(dx00,fscal,fix0);
627             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
628             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
629             
630             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
631                                                    _mm_mul_pd(dx00,fscal),
632                                                    _mm_mul_pd(dy00,fscal),
633                                                    _mm_mul_pd(dz00,fscal));
634
635             }
636
637             /* Inner loop uses 63 flops */
638         }
639
640         if(jidx<j_index_end)
641         {
642
643             jnrA             = jjnr[jidx];
644             j_coord_offsetA  = DIM*jnrA;
645
646             /* load j atom coordinates */
647             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
648                                               &jx0,&jy0,&jz0);
649
650             /* Calculate displacement vector */
651             dx00             = _mm_sub_pd(ix0,jx0);
652             dy00             = _mm_sub_pd(iy0,jy0);
653             dz00             = _mm_sub_pd(iz0,jz0);
654
655             /* Calculate squared distance and things based on it */
656             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
657
658             rinv00           = gmx_mm_invsqrt_pd(rsq00);
659
660             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
661
662             /* Load parameters for j particles */
663             jq0              = _mm_load_sd(charge+jnrA+0);
664             vdwjidx0A        = 2*vdwtype[jnrA+0];
665
666             /**************************
667              * CALCULATE INTERACTIONS *
668              **************************/
669
670             if (gmx_mm_any_lt(rsq00,rcutoff2))
671             {
672
673             r00              = _mm_mul_pd(rsq00,rinv00);
674
675             /* Compute parameters for interactions between i and j atoms */
676             qq00             = _mm_mul_pd(iq0,jq0);
677             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
678             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
679
680             /* EWALD ELECTROSTATICS */
681
682             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
683             ewrt             = _mm_mul_pd(r00,ewtabscale);
684             ewitab           = _mm_cvttpd_epi32(ewrt);
685 #ifdef __XOP__
686             eweps            = _mm_frcz_pd(ewrt);
687 #else
688             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
689 #endif
690             twoeweps         = _mm_add_pd(eweps,eweps);
691             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
692             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
693             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
694
695             /* Analytical LJ-PME */
696             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
697             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
698             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
699             exponent         = gmx_simd_exp_d(ewcljrsq);
700             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
701             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
702             /* f6A = 6 * C6grid * (1 - poly) */
703             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
704             /* f6B = C6grid * exponent * beta^6 */
705             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
706             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
707             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
708
709             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
710
711             fscal            = _mm_add_pd(felec,fvdw);
712
713             fscal            = _mm_and_pd(fscal,cutoff_mask);
714
715             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
716
717             /* Update vectorial force */
718             fix0             = _mm_macc_pd(dx00,fscal,fix0);
719             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
720             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
721             
722             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
723                                                    _mm_mul_pd(dx00,fscal),
724                                                    _mm_mul_pd(dy00,fscal),
725                                                    _mm_mul_pd(dz00,fscal));
726
727             }
728
729             /* Inner loop uses 63 flops */
730         }
731
732         /* End of innermost loop */
733
734         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
735                                               f+i_coord_offset,fshift+i_shift_offset);
736
737         /* Increment number of inner iterations */
738         inneriter                  += j_index_end - j_index_start;
739
740         /* Outer loop uses 7 flops */
741     }
742
743     /* Increment number of outer iterations */
744     outeriter        += nri;
745
746     /* Update outer/inner flops */
747
748     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
749 }