5ec7b81874ed5762db25e790a37c95ff51dfdac7
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
126     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
127     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
128     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
154                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
155
156         fix0             = _mm_setzero_pd();
157         fiy0             = _mm_setzero_pd();
158         fiz0             = _mm_setzero_pd();
159         fix1             = _mm_setzero_pd();
160         fiy1             = _mm_setzero_pd();
161         fiz1             = _mm_setzero_pd();
162         fix2             = _mm_setzero_pd();
163         fiy2             = _mm_setzero_pd();
164         fiz2             = _mm_setzero_pd();
165         fix3             = _mm_setzero_pd();
166         fiy3             = _mm_setzero_pd();
167         fiz3             = _mm_setzero_pd();
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_pd();
171         vvdwsum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191             dx10             = _mm_sub_pd(ix1,jx0);
192             dy10             = _mm_sub_pd(iy1,jy0);
193             dz10             = _mm_sub_pd(iz1,jz0);
194             dx20             = _mm_sub_pd(ix2,jx0);
195             dy20             = _mm_sub_pd(iy2,jy0);
196             dz20             = _mm_sub_pd(iz2,jz0);
197             dx30             = _mm_sub_pd(ix3,jx0);
198             dy30             = _mm_sub_pd(iy3,jy0);
199             dz30             = _mm_sub_pd(iz3,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
203             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
204             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
205             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
206
207             rinv10           = gmx_mm_invsqrt_pd(rsq10);
208             rinv20           = gmx_mm_invsqrt_pd(rsq20);
209             rinv30           = gmx_mm_invsqrt_pd(rsq30);
210
211             rinvsq00         = gmx_mm_inv_pd(rsq00);
212             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
213             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
214             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
218             vdwjidx0A        = 2*vdwtype[jnrA+0];
219             vdwjidx0B        = 2*vdwtype[jnrB+0];
220
221             fjx0             = _mm_setzero_pd();
222             fjy0             = _mm_setzero_pd();
223             fjz0             = _mm_setzero_pd();
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             /* Compute parameters for interactions between i and j atoms */
230             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
231                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
232
233             /* LENNARD-JONES DISPERSION/REPULSION */
234
235             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
236             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
237             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
238             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
239             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
240
241             /* Update potential sum for this i atom from the interaction with this j atom. */
242             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
243
244             fscal            = fvdw;
245
246             /* Update vectorial force */
247             fix0             = _mm_macc_pd(dx00,fscal,fix0);
248             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
249             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
250             
251             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
252             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
253             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             /* Compute parameters for interactions between i and j atoms */
260             qq10             = _mm_mul_pd(iq1,jq0);
261
262             /* COULOMB ELECTROSTATICS */
263             velec            = _mm_mul_pd(qq10,rinv10);
264             felec            = _mm_mul_pd(velec,rinvsq10);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velecsum         = _mm_add_pd(velecsum,velec);
268
269             fscal            = felec;
270
271             /* Update vectorial force */
272             fix1             = _mm_macc_pd(dx10,fscal,fix1);
273             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
274             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
275             
276             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
277             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
278             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
279
280             /**************************
281              * CALCULATE INTERACTIONS *
282              **************************/
283
284             /* Compute parameters for interactions between i and j atoms */
285             qq20             = _mm_mul_pd(iq2,jq0);
286
287             /* COULOMB ELECTROSTATICS */
288             velec            = _mm_mul_pd(qq20,rinv20);
289             felec            = _mm_mul_pd(velec,rinvsq20);
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             velecsum         = _mm_add_pd(velecsum,velec);
293
294             fscal            = felec;
295
296             /* Update vectorial force */
297             fix2             = _mm_macc_pd(dx20,fscal,fix2);
298             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
299             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
300             
301             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
302             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
303             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             /* Compute parameters for interactions between i and j atoms */
310             qq30             = _mm_mul_pd(iq3,jq0);
311
312             /* COULOMB ELECTROSTATICS */
313             velec            = _mm_mul_pd(qq30,rinv30);
314             felec            = _mm_mul_pd(velec,rinvsq30);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velecsum         = _mm_add_pd(velecsum,velec);
318
319             fscal            = felec;
320
321             /* Update vectorial force */
322             fix3             = _mm_macc_pd(dx30,fscal,fix3);
323             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
324             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
325             
326             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
327             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
328             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
329
330             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
331
332             /* Inner loop uses 131 flops */
333         }
334
335         if(jidx<j_index_end)
336         {
337
338             jnrA             = jjnr[jidx];
339             j_coord_offsetA  = DIM*jnrA;
340
341             /* load j atom coordinates */
342             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
343                                               &jx0,&jy0,&jz0);
344
345             /* Calculate displacement vector */
346             dx00             = _mm_sub_pd(ix0,jx0);
347             dy00             = _mm_sub_pd(iy0,jy0);
348             dz00             = _mm_sub_pd(iz0,jz0);
349             dx10             = _mm_sub_pd(ix1,jx0);
350             dy10             = _mm_sub_pd(iy1,jy0);
351             dz10             = _mm_sub_pd(iz1,jz0);
352             dx20             = _mm_sub_pd(ix2,jx0);
353             dy20             = _mm_sub_pd(iy2,jy0);
354             dz20             = _mm_sub_pd(iz2,jz0);
355             dx30             = _mm_sub_pd(ix3,jx0);
356             dy30             = _mm_sub_pd(iy3,jy0);
357             dz30             = _mm_sub_pd(iz3,jz0);
358
359             /* Calculate squared distance and things based on it */
360             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
361             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
362             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
363             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
364
365             rinv10           = gmx_mm_invsqrt_pd(rsq10);
366             rinv20           = gmx_mm_invsqrt_pd(rsq20);
367             rinv30           = gmx_mm_invsqrt_pd(rsq30);
368
369             rinvsq00         = gmx_mm_inv_pd(rsq00);
370             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
371             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
372             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
373
374             /* Load parameters for j particles */
375             jq0              = _mm_load_sd(charge+jnrA+0);
376             vdwjidx0A        = 2*vdwtype[jnrA+0];
377
378             fjx0             = _mm_setzero_pd();
379             fjy0             = _mm_setzero_pd();
380             fjz0             = _mm_setzero_pd();
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             /* Compute parameters for interactions between i and j atoms */
387             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
388
389             /* LENNARD-JONES DISPERSION/REPULSION */
390
391             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
392             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
393             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
394             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
395             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
396
397             /* Update potential sum for this i atom from the interaction with this j atom. */
398             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
399             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
400
401             fscal            = fvdw;
402
403             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
404
405             /* Update vectorial force */
406             fix0             = _mm_macc_pd(dx00,fscal,fix0);
407             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
408             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
409             
410             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
411             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
412             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
413
414             /**************************
415              * CALCULATE INTERACTIONS *
416              **************************/
417
418             /* Compute parameters for interactions between i and j atoms */
419             qq10             = _mm_mul_pd(iq1,jq0);
420
421             /* COULOMB ELECTROSTATICS */
422             velec            = _mm_mul_pd(qq10,rinv10);
423             felec            = _mm_mul_pd(velec,rinvsq10);
424
425             /* Update potential sum for this i atom from the interaction with this j atom. */
426             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
427             velecsum         = _mm_add_pd(velecsum,velec);
428
429             fscal            = felec;
430
431             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
432
433             /* Update vectorial force */
434             fix1             = _mm_macc_pd(dx10,fscal,fix1);
435             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
436             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
437             
438             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
439             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
440             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             /* Compute parameters for interactions between i and j atoms */
447             qq20             = _mm_mul_pd(iq2,jq0);
448
449             /* COULOMB ELECTROSTATICS */
450             velec            = _mm_mul_pd(qq20,rinv20);
451             felec            = _mm_mul_pd(velec,rinvsq20);
452
453             /* Update potential sum for this i atom from the interaction with this j atom. */
454             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
455             velecsum         = _mm_add_pd(velecsum,velec);
456
457             fscal            = felec;
458
459             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
460
461             /* Update vectorial force */
462             fix2             = _mm_macc_pd(dx20,fscal,fix2);
463             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
464             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
465             
466             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
467             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
468             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
469
470             /**************************
471              * CALCULATE INTERACTIONS *
472              **************************/
473
474             /* Compute parameters for interactions between i and j atoms */
475             qq30             = _mm_mul_pd(iq3,jq0);
476
477             /* COULOMB ELECTROSTATICS */
478             velec            = _mm_mul_pd(qq30,rinv30);
479             felec            = _mm_mul_pd(velec,rinvsq30);
480
481             /* Update potential sum for this i atom from the interaction with this j atom. */
482             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
483             velecsum         = _mm_add_pd(velecsum,velec);
484
485             fscal            = felec;
486
487             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
488
489             /* Update vectorial force */
490             fix3             = _mm_macc_pd(dx30,fscal,fix3);
491             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
492             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
493             
494             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
495             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
496             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
497
498             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
499
500             /* Inner loop uses 131 flops */
501         }
502
503         /* End of innermost loop */
504
505         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
506                                               f+i_coord_offset,fshift+i_shift_offset);
507
508         ggid                        = gid[iidx];
509         /* Update potential energies */
510         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
511         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
512
513         /* Increment number of inner iterations */
514         inneriter                  += j_index_end - j_index_start;
515
516         /* Outer loop uses 26 flops */
517     }
518
519     /* Increment number of outer iterations */
520     outeriter        += nri;
521
522     /* Update outer/inner flops */
523
524     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*131);
525 }
526 /*
527  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_128_fma_double
528  * Electrostatics interaction: Coulomb
529  * VdW interaction:            LennardJones
530  * Geometry:                   Water4-Particle
531  * Calculate force/pot:        Force
532  */
533 void
534 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_128_fma_double
535                     (t_nblist                    * gmx_restrict       nlist,
536                      rvec                        * gmx_restrict          xx,
537                      rvec                        * gmx_restrict          ff,
538                      t_forcerec                  * gmx_restrict          fr,
539                      t_mdatoms                   * gmx_restrict     mdatoms,
540                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
541                      t_nrnb                      * gmx_restrict        nrnb)
542 {
543     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
544      * just 0 for non-waters.
545      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
546      * jnr indices corresponding to data put in the four positions in the SIMD register.
547      */
548     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
549     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
550     int              jnrA,jnrB;
551     int              j_coord_offsetA,j_coord_offsetB;
552     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
553     real             rcutoff_scalar;
554     real             *shiftvec,*fshift,*x,*f;
555     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
556     int              vdwioffset0;
557     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
558     int              vdwioffset1;
559     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
560     int              vdwioffset2;
561     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
562     int              vdwioffset3;
563     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
564     int              vdwjidx0A,vdwjidx0B;
565     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
566     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
567     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
568     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
569     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
570     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
571     real             *charge;
572     int              nvdwtype;
573     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
574     int              *vdwtype;
575     real             *vdwparam;
576     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
577     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
578     __m128d          dummy_mask,cutoff_mask;
579     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
580     __m128d          one     = _mm_set1_pd(1.0);
581     __m128d          two     = _mm_set1_pd(2.0);
582     x                = xx[0];
583     f                = ff[0];
584
585     nri              = nlist->nri;
586     iinr             = nlist->iinr;
587     jindex           = nlist->jindex;
588     jjnr             = nlist->jjnr;
589     shiftidx         = nlist->shift;
590     gid              = nlist->gid;
591     shiftvec         = fr->shift_vec[0];
592     fshift           = fr->fshift[0];
593     facel            = _mm_set1_pd(fr->epsfac);
594     charge           = mdatoms->chargeA;
595     nvdwtype         = fr->ntype;
596     vdwparam         = fr->nbfp;
597     vdwtype          = mdatoms->typeA;
598
599     /* Setup water-specific parameters */
600     inr              = nlist->iinr[0];
601     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
602     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
603     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
604     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
605
606     /* Avoid stupid compiler warnings */
607     jnrA = jnrB = 0;
608     j_coord_offsetA = 0;
609     j_coord_offsetB = 0;
610
611     outeriter        = 0;
612     inneriter        = 0;
613
614     /* Start outer loop over neighborlists */
615     for(iidx=0; iidx<nri; iidx++)
616     {
617         /* Load shift vector for this list */
618         i_shift_offset   = DIM*shiftidx[iidx];
619
620         /* Load limits for loop over neighbors */
621         j_index_start    = jindex[iidx];
622         j_index_end      = jindex[iidx+1];
623
624         /* Get outer coordinate index */
625         inr              = iinr[iidx];
626         i_coord_offset   = DIM*inr;
627
628         /* Load i particle coords and add shift vector */
629         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
630                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
631
632         fix0             = _mm_setzero_pd();
633         fiy0             = _mm_setzero_pd();
634         fiz0             = _mm_setzero_pd();
635         fix1             = _mm_setzero_pd();
636         fiy1             = _mm_setzero_pd();
637         fiz1             = _mm_setzero_pd();
638         fix2             = _mm_setzero_pd();
639         fiy2             = _mm_setzero_pd();
640         fiz2             = _mm_setzero_pd();
641         fix3             = _mm_setzero_pd();
642         fiy3             = _mm_setzero_pd();
643         fiz3             = _mm_setzero_pd();
644
645         /* Start inner kernel loop */
646         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
647         {
648
649             /* Get j neighbor index, and coordinate index */
650             jnrA             = jjnr[jidx];
651             jnrB             = jjnr[jidx+1];
652             j_coord_offsetA  = DIM*jnrA;
653             j_coord_offsetB  = DIM*jnrB;
654
655             /* load j atom coordinates */
656             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
657                                               &jx0,&jy0,&jz0);
658
659             /* Calculate displacement vector */
660             dx00             = _mm_sub_pd(ix0,jx0);
661             dy00             = _mm_sub_pd(iy0,jy0);
662             dz00             = _mm_sub_pd(iz0,jz0);
663             dx10             = _mm_sub_pd(ix1,jx0);
664             dy10             = _mm_sub_pd(iy1,jy0);
665             dz10             = _mm_sub_pd(iz1,jz0);
666             dx20             = _mm_sub_pd(ix2,jx0);
667             dy20             = _mm_sub_pd(iy2,jy0);
668             dz20             = _mm_sub_pd(iz2,jz0);
669             dx30             = _mm_sub_pd(ix3,jx0);
670             dy30             = _mm_sub_pd(iy3,jy0);
671             dz30             = _mm_sub_pd(iz3,jz0);
672
673             /* Calculate squared distance and things based on it */
674             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
675             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
676             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
677             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
678
679             rinv10           = gmx_mm_invsqrt_pd(rsq10);
680             rinv20           = gmx_mm_invsqrt_pd(rsq20);
681             rinv30           = gmx_mm_invsqrt_pd(rsq30);
682
683             rinvsq00         = gmx_mm_inv_pd(rsq00);
684             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
685             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
686             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
687
688             /* Load parameters for j particles */
689             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
690             vdwjidx0A        = 2*vdwtype[jnrA+0];
691             vdwjidx0B        = 2*vdwtype[jnrB+0];
692
693             fjx0             = _mm_setzero_pd();
694             fjy0             = _mm_setzero_pd();
695             fjz0             = _mm_setzero_pd();
696
697             /**************************
698              * CALCULATE INTERACTIONS *
699              **************************/
700
701             /* Compute parameters for interactions between i and j atoms */
702             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
703                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
704
705             /* LENNARD-JONES DISPERSION/REPULSION */
706
707             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
708             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
709
710             fscal            = fvdw;
711
712             /* Update vectorial force */
713             fix0             = _mm_macc_pd(dx00,fscal,fix0);
714             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
715             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
716             
717             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
718             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
719             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
720
721             /**************************
722              * CALCULATE INTERACTIONS *
723              **************************/
724
725             /* Compute parameters for interactions between i and j atoms */
726             qq10             = _mm_mul_pd(iq1,jq0);
727
728             /* COULOMB ELECTROSTATICS */
729             velec            = _mm_mul_pd(qq10,rinv10);
730             felec            = _mm_mul_pd(velec,rinvsq10);
731
732             fscal            = felec;
733
734             /* Update vectorial force */
735             fix1             = _mm_macc_pd(dx10,fscal,fix1);
736             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
737             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
738             
739             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
740             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
741             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
742
743             /**************************
744              * CALCULATE INTERACTIONS *
745              **************************/
746
747             /* Compute parameters for interactions between i and j atoms */
748             qq20             = _mm_mul_pd(iq2,jq0);
749
750             /* COULOMB ELECTROSTATICS */
751             velec            = _mm_mul_pd(qq20,rinv20);
752             felec            = _mm_mul_pd(velec,rinvsq20);
753
754             fscal            = felec;
755
756             /* Update vectorial force */
757             fix2             = _mm_macc_pd(dx20,fscal,fix2);
758             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
759             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
760             
761             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
762             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
763             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
764
765             /**************************
766              * CALCULATE INTERACTIONS *
767              **************************/
768
769             /* Compute parameters for interactions between i and j atoms */
770             qq30             = _mm_mul_pd(iq3,jq0);
771
772             /* COULOMB ELECTROSTATICS */
773             velec            = _mm_mul_pd(qq30,rinv30);
774             felec            = _mm_mul_pd(velec,rinvsq30);
775
776             fscal            = felec;
777
778             /* Update vectorial force */
779             fix3             = _mm_macc_pd(dx30,fscal,fix3);
780             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
781             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
782             
783             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
784             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
785             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
786
787             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
788
789             /* Inner loop uses 123 flops */
790         }
791
792         if(jidx<j_index_end)
793         {
794
795             jnrA             = jjnr[jidx];
796             j_coord_offsetA  = DIM*jnrA;
797
798             /* load j atom coordinates */
799             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
800                                               &jx0,&jy0,&jz0);
801
802             /* Calculate displacement vector */
803             dx00             = _mm_sub_pd(ix0,jx0);
804             dy00             = _mm_sub_pd(iy0,jy0);
805             dz00             = _mm_sub_pd(iz0,jz0);
806             dx10             = _mm_sub_pd(ix1,jx0);
807             dy10             = _mm_sub_pd(iy1,jy0);
808             dz10             = _mm_sub_pd(iz1,jz0);
809             dx20             = _mm_sub_pd(ix2,jx0);
810             dy20             = _mm_sub_pd(iy2,jy0);
811             dz20             = _mm_sub_pd(iz2,jz0);
812             dx30             = _mm_sub_pd(ix3,jx0);
813             dy30             = _mm_sub_pd(iy3,jy0);
814             dz30             = _mm_sub_pd(iz3,jz0);
815
816             /* Calculate squared distance and things based on it */
817             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
818             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
819             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
820             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
821
822             rinv10           = gmx_mm_invsqrt_pd(rsq10);
823             rinv20           = gmx_mm_invsqrt_pd(rsq20);
824             rinv30           = gmx_mm_invsqrt_pd(rsq30);
825
826             rinvsq00         = gmx_mm_inv_pd(rsq00);
827             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
828             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
829             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
830
831             /* Load parameters for j particles */
832             jq0              = _mm_load_sd(charge+jnrA+0);
833             vdwjidx0A        = 2*vdwtype[jnrA+0];
834
835             fjx0             = _mm_setzero_pd();
836             fjy0             = _mm_setzero_pd();
837             fjz0             = _mm_setzero_pd();
838
839             /**************************
840              * CALCULATE INTERACTIONS *
841              **************************/
842
843             /* Compute parameters for interactions between i and j atoms */
844             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
845
846             /* LENNARD-JONES DISPERSION/REPULSION */
847
848             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
849             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
850
851             fscal            = fvdw;
852
853             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
854
855             /* Update vectorial force */
856             fix0             = _mm_macc_pd(dx00,fscal,fix0);
857             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
858             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
859             
860             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
861             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
862             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             /* Compute parameters for interactions between i and j atoms */
869             qq10             = _mm_mul_pd(iq1,jq0);
870
871             /* COULOMB ELECTROSTATICS */
872             velec            = _mm_mul_pd(qq10,rinv10);
873             felec            = _mm_mul_pd(velec,rinvsq10);
874
875             fscal            = felec;
876
877             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
878
879             /* Update vectorial force */
880             fix1             = _mm_macc_pd(dx10,fscal,fix1);
881             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
882             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
883             
884             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
885             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
886             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
887
888             /**************************
889              * CALCULATE INTERACTIONS *
890              **************************/
891
892             /* Compute parameters for interactions between i and j atoms */
893             qq20             = _mm_mul_pd(iq2,jq0);
894
895             /* COULOMB ELECTROSTATICS */
896             velec            = _mm_mul_pd(qq20,rinv20);
897             felec            = _mm_mul_pd(velec,rinvsq20);
898
899             fscal            = felec;
900
901             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
902
903             /* Update vectorial force */
904             fix2             = _mm_macc_pd(dx20,fscal,fix2);
905             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
906             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
907             
908             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
909             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
910             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
911
912             /**************************
913              * CALCULATE INTERACTIONS *
914              **************************/
915
916             /* Compute parameters for interactions between i and j atoms */
917             qq30             = _mm_mul_pd(iq3,jq0);
918
919             /* COULOMB ELECTROSTATICS */
920             velec            = _mm_mul_pd(qq30,rinv30);
921             felec            = _mm_mul_pd(velec,rinvsq30);
922
923             fscal            = felec;
924
925             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
926
927             /* Update vectorial force */
928             fix3             = _mm_macc_pd(dx30,fscal,fix3);
929             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
930             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
931             
932             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
933             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
934             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
935
936             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
937
938             /* Inner loop uses 123 flops */
939         }
940
941         /* End of innermost loop */
942
943         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
944                                               f+i_coord_offset,fshift+i_shift_offset);
945
946         /* Increment number of inner iterations */
947         inneriter                  += j_index_end - j_index_start;
948
949         /* Outer loop uses 24 flops */
950     }
951
952     /* Increment number of outer iterations */
953     outeriter        += nri;
954
955     /* Update outer/inner flops */
956
957     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*123);
958 }