c39dde601ff1a6161816e35160a32cb09e049a31
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCoul_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128d          dummy_mask,cutoff_mask;
80     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
81     __m128d          one     = _mm_set1_pd(1.0);
82     __m128d          two     = _mm_set1_pd(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_pd(fr->epsfac);
95     charge           = mdatoms->chargeA;
96     nvdwtype         = fr->ntype;
97     vdwparam         = fr->nbfp;
98     vdwtype          = mdatoms->typeA;
99
100     /* Avoid stupid compiler warnings */
101     jnrA = jnrB = 0;
102     j_coord_offsetA = 0;
103     j_coord_offsetB = 0;
104
105     outeriter        = 0;
106     inneriter        = 0;
107
108     /* Start outer loop over neighborlists */
109     for(iidx=0; iidx<nri; iidx++)
110     {
111         /* Load shift vector for this list */
112         i_shift_offset   = DIM*shiftidx[iidx];
113
114         /* Load limits for loop over neighbors */
115         j_index_start    = jindex[iidx];
116         j_index_end      = jindex[iidx+1];
117
118         /* Get outer coordinate index */
119         inr              = iinr[iidx];
120         i_coord_offset   = DIM*inr;
121
122         /* Load i particle coords and add shift vector */
123         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
124
125         fix0             = _mm_setzero_pd();
126         fiy0             = _mm_setzero_pd();
127         fiz0             = _mm_setzero_pd();
128
129         /* Load parameters for i particles */
130         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
131         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133         /* Reset potential sums */
134         velecsum         = _mm_setzero_pd();
135         vvdwsum          = _mm_setzero_pd();
136
137         /* Start inner kernel loop */
138         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
139         {
140
141             /* Get j neighbor index, and coordinate index */
142             jnrA             = jjnr[jidx];
143             jnrB             = jjnr[jidx+1];
144             j_coord_offsetA  = DIM*jnrA;
145             j_coord_offsetB  = DIM*jnrB;
146
147             /* load j atom coordinates */
148             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
149                                               &jx0,&jy0,&jz0);
150
151             /* Calculate displacement vector */
152             dx00             = _mm_sub_pd(ix0,jx0);
153             dy00             = _mm_sub_pd(iy0,jy0);
154             dz00             = _mm_sub_pd(iz0,jz0);
155
156             /* Calculate squared distance and things based on it */
157             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
158
159             rinv00           = gmx_mm_invsqrt_pd(rsq00);
160
161             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
162
163             /* Load parameters for j particles */
164             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
165             vdwjidx0A        = 2*vdwtype[jnrA+0];
166             vdwjidx0B        = 2*vdwtype[jnrB+0];
167
168             /**************************
169              * CALCULATE INTERACTIONS *
170              **************************/
171
172             /* Compute parameters for interactions between i and j atoms */
173             qq00             = _mm_mul_pd(iq0,jq0);
174             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
175                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
176
177             /* COULOMB ELECTROSTATICS */
178             velec            = _mm_mul_pd(qq00,rinv00);
179             felec            = _mm_mul_pd(velec,rinvsq00);
180
181             /* LENNARD-JONES DISPERSION/REPULSION */
182
183             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
184             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
185             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
186             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
187             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
188
189             /* Update potential sum for this i atom from the interaction with this j atom. */
190             velecsum         = _mm_add_pd(velecsum,velec);
191             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
192
193             fscal            = _mm_add_pd(felec,fvdw);
194
195             /* Update vectorial force */
196             fix0             = _mm_macc_pd(dx00,fscal,fix0);
197             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
198             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
199             
200             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
201                                                    _mm_mul_pd(dx00,fscal),
202                                                    _mm_mul_pd(dy00,fscal),
203                                                    _mm_mul_pd(dz00,fscal));
204
205             /* Inner loop uses 43 flops */
206         }
207
208         if(jidx<j_index_end)
209         {
210
211             jnrA             = jjnr[jidx];
212             j_coord_offsetA  = DIM*jnrA;
213
214             /* load j atom coordinates */
215             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
216                                               &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm_sub_pd(ix0,jx0);
220             dy00             = _mm_sub_pd(iy0,jy0);
221             dz00             = _mm_sub_pd(iz0,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
225
226             rinv00           = gmx_mm_invsqrt_pd(rsq00);
227
228             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
229
230             /* Load parameters for j particles */
231             jq0              = _mm_load_sd(charge+jnrA+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm_mul_pd(iq0,jq0);
240             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
241
242             /* COULOMB ELECTROSTATICS */
243             velec            = _mm_mul_pd(qq00,rinv00);
244             felec            = _mm_mul_pd(velec,rinvsq00);
245
246             /* LENNARD-JONES DISPERSION/REPULSION */
247
248             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
249             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
250             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
251             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
252             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
253
254             /* Update potential sum for this i atom from the interaction with this j atom. */
255             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
256             velecsum         = _mm_add_pd(velecsum,velec);
257             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
258             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
259
260             fscal            = _mm_add_pd(felec,fvdw);
261
262             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
263
264             /* Update vectorial force */
265             fix0             = _mm_macc_pd(dx00,fscal,fix0);
266             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
267             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
268             
269             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
270                                                    _mm_mul_pd(dx00,fscal),
271                                                    _mm_mul_pd(dy00,fscal),
272                                                    _mm_mul_pd(dz00,fscal));
273
274             /* Inner loop uses 43 flops */
275         }
276
277         /* End of innermost loop */
278
279         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
280                                               f+i_coord_offset,fshift+i_shift_offset);
281
282         ggid                        = gid[iidx];
283         /* Update potential energies */
284         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
285         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
286
287         /* Increment number of inner iterations */
288         inneriter                  += j_index_end - j_index_start;
289
290         /* Outer loop uses 9 flops */
291     }
292
293     /* Increment number of outer iterations */
294     outeriter        += nri;
295
296     /* Update outer/inner flops */
297
298     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*43);
299 }
300 /*
301  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_128_fma_double
302  * Electrostatics interaction: Coulomb
303  * VdW interaction:            LennardJones
304  * Geometry:                   Particle-Particle
305  * Calculate force/pot:        Force
306  */
307 void
308 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_128_fma_double
309                     (t_nblist * gmx_restrict                nlist,
310                      rvec * gmx_restrict                    xx,
311                      rvec * gmx_restrict                    ff,
312                      t_forcerec * gmx_restrict              fr,
313                      t_mdatoms * gmx_restrict               mdatoms,
314                      nb_kernel_data_t * gmx_restrict        kernel_data,
315                      t_nrnb * gmx_restrict                  nrnb)
316 {
317     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
318      * just 0 for non-waters.
319      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
320      * jnr indices corresponding to data put in the four positions in the SIMD register.
321      */
322     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
323     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
324     int              jnrA,jnrB;
325     int              j_coord_offsetA,j_coord_offsetB;
326     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
327     real             rcutoff_scalar;
328     real             *shiftvec,*fshift,*x,*f;
329     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
330     int              vdwioffset0;
331     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
332     int              vdwjidx0A,vdwjidx0B;
333     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
334     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
335     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
336     real             *charge;
337     int              nvdwtype;
338     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
339     int              *vdwtype;
340     real             *vdwparam;
341     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
342     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
343     __m128d          dummy_mask,cutoff_mask;
344     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
345     __m128d          one     = _mm_set1_pd(1.0);
346     __m128d          two     = _mm_set1_pd(2.0);
347     x                = xx[0];
348     f                = ff[0];
349
350     nri              = nlist->nri;
351     iinr             = nlist->iinr;
352     jindex           = nlist->jindex;
353     jjnr             = nlist->jjnr;
354     shiftidx         = nlist->shift;
355     gid              = nlist->gid;
356     shiftvec         = fr->shift_vec[0];
357     fshift           = fr->fshift[0];
358     facel            = _mm_set1_pd(fr->epsfac);
359     charge           = mdatoms->chargeA;
360     nvdwtype         = fr->ntype;
361     vdwparam         = fr->nbfp;
362     vdwtype          = mdatoms->typeA;
363
364     /* Avoid stupid compiler warnings */
365     jnrA = jnrB = 0;
366     j_coord_offsetA = 0;
367     j_coord_offsetB = 0;
368
369     outeriter        = 0;
370     inneriter        = 0;
371
372     /* Start outer loop over neighborlists */
373     for(iidx=0; iidx<nri; iidx++)
374     {
375         /* Load shift vector for this list */
376         i_shift_offset   = DIM*shiftidx[iidx];
377
378         /* Load limits for loop over neighbors */
379         j_index_start    = jindex[iidx];
380         j_index_end      = jindex[iidx+1];
381
382         /* Get outer coordinate index */
383         inr              = iinr[iidx];
384         i_coord_offset   = DIM*inr;
385
386         /* Load i particle coords and add shift vector */
387         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
388
389         fix0             = _mm_setzero_pd();
390         fiy0             = _mm_setzero_pd();
391         fiz0             = _mm_setzero_pd();
392
393         /* Load parameters for i particles */
394         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
395         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
396
397         /* Start inner kernel loop */
398         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
399         {
400
401             /* Get j neighbor index, and coordinate index */
402             jnrA             = jjnr[jidx];
403             jnrB             = jjnr[jidx+1];
404             j_coord_offsetA  = DIM*jnrA;
405             j_coord_offsetB  = DIM*jnrB;
406
407             /* load j atom coordinates */
408             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
409                                               &jx0,&jy0,&jz0);
410
411             /* Calculate displacement vector */
412             dx00             = _mm_sub_pd(ix0,jx0);
413             dy00             = _mm_sub_pd(iy0,jy0);
414             dz00             = _mm_sub_pd(iz0,jz0);
415
416             /* Calculate squared distance and things based on it */
417             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
418
419             rinv00           = gmx_mm_invsqrt_pd(rsq00);
420
421             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
422
423             /* Load parameters for j particles */
424             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
425             vdwjidx0A        = 2*vdwtype[jnrA+0];
426             vdwjidx0B        = 2*vdwtype[jnrB+0];
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             /* Compute parameters for interactions between i and j atoms */
433             qq00             = _mm_mul_pd(iq0,jq0);
434             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
435                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
436
437             /* COULOMB ELECTROSTATICS */
438             velec            = _mm_mul_pd(qq00,rinv00);
439             felec            = _mm_mul_pd(velec,rinvsq00);
440
441             /* LENNARD-JONES DISPERSION/REPULSION */
442
443             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
444             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
445
446             fscal            = _mm_add_pd(felec,fvdw);
447
448             /* Update vectorial force */
449             fix0             = _mm_macc_pd(dx00,fscal,fix0);
450             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
451             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
452             
453             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
454                                                    _mm_mul_pd(dx00,fscal),
455                                                    _mm_mul_pd(dy00,fscal),
456                                                    _mm_mul_pd(dz00,fscal));
457
458             /* Inner loop uses 37 flops */
459         }
460
461         if(jidx<j_index_end)
462         {
463
464             jnrA             = jjnr[jidx];
465             j_coord_offsetA  = DIM*jnrA;
466
467             /* load j atom coordinates */
468             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
469                                               &jx0,&jy0,&jz0);
470
471             /* Calculate displacement vector */
472             dx00             = _mm_sub_pd(ix0,jx0);
473             dy00             = _mm_sub_pd(iy0,jy0);
474             dz00             = _mm_sub_pd(iz0,jz0);
475
476             /* Calculate squared distance and things based on it */
477             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
478
479             rinv00           = gmx_mm_invsqrt_pd(rsq00);
480
481             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
482
483             /* Load parameters for j particles */
484             jq0              = _mm_load_sd(charge+jnrA+0);
485             vdwjidx0A        = 2*vdwtype[jnrA+0];
486
487             /**************************
488              * CALCULATE INTERACTIONS *
489              **************************/
490
491             /* Compute parameters for interactions between i and j atoms */
492             qq00             = _mm_mul_pd(iq0,jq0);
493             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
494
495             /* COULOMB ELECTROSTATICS */
496             velec            = _mm_mul_pd(qq00,rinv00);
497             felec            = _mm_mul_pd(velec,rinvsq00);
498
499             /* LENNARD-JONES DISPERSION/REPULSION */
500
501             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
502             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
503
504             fscal            = _mm_add_pd(felec,fvdw);
505
506             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
507
508             /* Update vectorial force */
509             fix0             = _mm_macc_pd(dx00,fscal,fix0);
510             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
511             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
512             
513             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
514                                                    _mm_mul_pd(dx00,fscal),
515                                                    _mm_mul_pd(dy00,fscal),
516                                                    _mm_mul_pd(dz00,fscal));
517
518             /* Inner loop uses 37 flops */
519         }
520
521         /* End of innermost loop */
522
523         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
524                                               f+i_coord_offset,fshift+i_shift_offset);
525
526         /* Increment number of inner iterations */
527         inneriter                  += j_index_end - j_index_start;
528
529         /* Outer loop uses 7 flops */
530     }
531
532     /* Increment number of outer iterations */
533     outeriter        += nri;
534
535     /* Update outer/inner flops */
536
537     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
538 }