Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCoul_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->ic->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     /* Avoid stupid compiler warnings */
114     jnrA = jnrB = 0;
115     j_coord_offsetA = 0;
116     j_coord_offsetB = 0;
117
118     outeriter        = 0;
119     inneriter        = 0;
120
121     /* Start outer loop over neighborlists */
122     for(iidx=0; iidx<nri; iidx++)
123     {
124         /* Load shift vector for this list */
125         i_shift_offset   = DIM*shiftidx[iidx];
126
127         /* Load limits for loop over neighbors */
128         j_index_start    = jindex[iidx];
129         j_index_end      = jindex[iidx+1];
130
131         /* Get outer coordinate index */
132         inr              = iinr[iidx];
133         i_coord_offset   = DIM*inr;
134
135         /* Load i particle coords and add shift vector */
136         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
137
138         fix0             = _mm_setzero_pd();
139         fiy0             = _mm_setzero_pd();
140         fiz0             = _mm_setzero_pd();
141
142         /* Load parameters for i particles */
143         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
144         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146         /* Reset potential sums */
147         velecsum         = _mm_setzero_pd();
148         vvdwsum          = _mm_setzero_pd();
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
152         {
153
154             /* Get j neighbor index, and coordinate index */
155             jnrA             = jjnr[jidx];
156             jnrB             = jjnr[jidx+1];
157             j_coord_offsetA  = DIM*jnrA;
158             j_coord_offsetB  = DIM*jnrB;
159
160             /* load j atom coordinates */
161             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
162                                               &jx0,&jy0,&jz0);
163
164             /* Calculate displacement vector */
165             dx00             = _mm_sub_pd(ix0,jx0);
166             dy00             = _mm_sub_pd(iy0,jy0);
167             dz00             = _mm_sub_pd(iz0,jz0);
168
169             /* Calculate squared distance and things based on it */
170             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
171
172             rinv00           = avx128fma_invsqrt_d(rsq00);
173
174             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
175
176             /* Load parameters for j particles */
177             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
178             vdwjidx0A        = 2*vdwtype[jnrA+0];
179             vdwjidx0B        = 2*vdwtype[jnrB+0];
180
181             /**************************
182              * CALCULATE INTERACTIONS *
183              **************************/
184
185             /* Compute parameters for interactions between i and j atoms */
186             qq00             = _mm_mul_pd(iq0,jq0);
187             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
188                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
189
190             /* COULOMB ELECTROSTATICS */
191             velec            = _mm_mul_pd(qq00,rinv00);
192             felec            = _mm_mul_pd(velec,rinvsq00);
193
194             /* LENNARD-JONES DISPERSION/REPULSION */
195
196             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
197             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
198             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
199             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
200             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
201
202             /* Update potential sum for this i atom from the interaction with this j atom. */
203             velecsum         = _mm_add_pd(velecsum,velec);
204             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
205
206             fscal            = _mm_add_pd(felec,fvdw);
207
208             /* Update vectorial force */
209             fix0             = _mm_macc_pd(dx00,fscal,fix0);
210             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
211             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
212             
213             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
214                                                    _mm_mul_pd(dx00,fscal),
215                                                    _mm_mul_pd(dy00,fscal),
216                                                    _mm_mul_pd(dz00,fscal));
217
218             /* Inner loop uses 43 flops */
219         }
220
221         if(jidx<j_index_end)
222         {
223
224             jnrA             = jjnr[jidx];
225             j_coord_offsetA  = DIM*jnrA;
226
227             /* load j atom coordinates */
228             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
229                                               &jx0,&jy0,&jz0);
230
231             /* Calculate displacement vector */
232             dx00             = _mm_sub_pd(ix0,jx0);
233             dy00             = _mm_sub_pd(iy0,jy0);
234             dz00             = _mm_sub_pd(iz0,jz0);
235
236             /* Calculate squared distance and things based on it */
237             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
238
239             rinv00           = avx128fma_invsqrt_d(rsq00);
240
241             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
242
243             /* Load parameters for j particles */
244             jq0              = _mm_load_sd(charge+jnrA+0);
245             vdwjidx0A        = 2*vdwtype[jnrA+0];
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             /* Compute parameters for interactions between i and j atoms */
252             qq00             = _mm_mul_pd(iq0,jq0);
253             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
254
255             /* COULOMB ELECTROSTATICS */
256             velec            = _mm_mul_pd(qq00,rinv00);
257             felec            = _mm_mul_pd(velec,rinvsq00);
258
259             /* LENNARD-JONES DISPERSION/REPULSION */
260
261             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
262             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
263             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
264             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
265             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
269             velecsum         = _mm_add_pd(velecsum,velec);
270             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
271             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
272
273             fscal            = _mm_add_pd(felec,fvdw);
274
275             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
276
277             /* Update vectorial force */
278             fix0             = _mm_macc_pd(dx00,fscal,fix0);
279             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
280             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
281             
282             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
283                                                    _mm_mul_pd(dx00,fscal),
284                                                    _mm_mul_pd(dy00,fscal),
285                                                    _mm_mul_pd(dz00,fscal));
286
287             /* Inner loop uses 43 flops */
288         }
289
290         /* End of innermost loop */
291
292         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
293                                               f+i_coord_offset,fshift+i_shift_offset);
294
295         ggid                        = gid[iidx];
296         /* Update potential energies */
297         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
298         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
299
300         /* Increment number of inner iterations */
301         inneriter                  += j_index_end - j_index_start;
302
303         /* Outer loop uses 9 flops */
304     }
305
306     /* Increment number of outer iterations */
307     outeriter        += nri;
308
309     /* Update outer/inner flops */
310
311     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*43);
312 }
313 /*
314  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_128_fma_double
315  * Electrostatics interaction: Coulomb
316  * VdW interaction:            LennardJones
317  * Geometry:                   Particle-Particle
318  * Calculate force/pot:        Force
319  */
320 void
321 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_128_fma_double
322                     (t_nblist                    * gmx_restrict       nlist,
323                      rvec                        * gmx_restrict          xx,
324                      rvec                        * gmx_restrict          ff,
325                      struct t_forcerec           * gmx_restrict          fr,
326                      t_mdatoms                   * gmx_restrict     mdatoms,
327                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
328                      t_nrnb                      * gmx_restrict        nrnb)
329 {
330     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
331      * just 0 for non-waters.
332      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
333      * jnr indices corresponding to data put in the four positions in the SIMD register.
334      */
335     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
336     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
337     int              jnrA,jnrB;
338     int              j_coord_offsetA,j_coord_offsetB;
339     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
340     real             rcutoff_scalar;
341     real             *shiftvec,*fshift,*x,*f;
342     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
343     int              vdwioffset0;
344     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
345     int              vdwjidx0A,vdwjidx0B;
346     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
347     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
348     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
349     real             *charge;
350     int              nvdwtype;
351     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
352     int              *vdwtype;
353     real             *vdwparam;
354     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
355     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
356     __m128d          dummy_mask,cutoff_mask;
357     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
358     __m128d          one     = _mm_set1_pd(1.0);
359     __m128d          two     = _mm_set1_pd(2.0);
360     x                = xx[0];
361     f                = ff[0];
362
363     nri              = nlist->nri;
364     iinr             = nlist->iinr;
365     jindex           = nlist->jindex;
366     jjnr             = nlist->jjnr;
367     shiftidx         = nlist->shift;
368     gid              = nlist->gid;
369     shiftvec         = fr->shift_vec[0];
370     fshift           = fr->fshift[0];
371     facel            = _mm_set1_pd(fr->ic->epsfac);
372     charge           = mdatoms->chargeA;
373     nvdwtype         = fr->ntype;
374     vdwparam         = fr->nbfp;
375     vdwtype          = mdatoms->typeA;
376
377     /* Avoid stupid compiler warnings */
378     jnrA = jnrB = 0;
379     j_coord_offsetA = 0;
380     j_coord_offsetB = 0;
381
382     outeriter        = 0;
383     inneriter        = 0;
384
385     /* Start outer loop over neighborlists */
386     for(iidx=0; iidx<nri; iidx++)
387     {
388         /* Load shift vector for this list */
389         i_shift_offset   = DIM*shiftidx[iidx];
390
391         /* Load limits for loop over neighbors */
392         j_index_start    = jindex[iidx];
393         j_index_end      = jindex[iidx+1];
394
395         /* Get outer coordinate index */
396         inr              = iinr[iidx];
397         i_coord_offset   = DIM*inr;
398
399         /* Load i particle coords and add shift vector */
400         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
401
402         fix0             = _mm_setzero_pd();
403         fiy0             = _mm_setzero_pd();
404         fiz0             = _mm_setzero_pd();
405
406         /* Load parameters for i particles */
407         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
408         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
409
410         /* Start inner kernel loop */
411         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
412         {
413
414             /* Get j neighbor index, and coordinate index */
415             jnrA             = jjnr[jidx];
416             jnrB             = jjnr[jidx+1];
417             j_coord_offsetA  = DIM*jnrA;
418             j_coord_offsetB  = DIM*jnrB;
419
420             /* load j atom coordinates */
421             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
422                                               &jx0,&jy0,&jz0);
423
424             /* Calculate displacement vector */
425             dx00             = _mm_sub_pd(ix0,jx0);
426             dy00             = _mm_sub_pd(iy0,jy0);
427             dz00             = _mm_sub_pd(iz0,jz0);
428
429             /* Calculate squared distance and things based on it */
430             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
431
432             rinv00           = avx128fma_invsqrt_d(rsq00);
433
434             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
435
436             /* Load parameters for j particles */
437             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
438             vdwjidx0A        = 2*vdwtype[jnrA+0];
439             vdwjidx0B        = 2*vdwtype[jnrB+0];
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq00             = _mm_mul_pd(iq0,jq0);
447             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
448                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
449
450             /* COULOMB ELECTROSTATICS */
451             velec            = _mm_mul_pd(qq00,rinv00);
452             felec            = _mm_mul_pd(velec,rinvsq00);
453
454             /* LENNARD-JONES DISPERSION/REPULSION */
455
456             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
457             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
458
459             fscal            = _mm_add_pd(felec,fvdw);
460
461             /* Update vectorial force */
462             fix0             = _mm_macc_pd(dx00,fscal,fix0);
463             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
464             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
465             
466             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
467                                                    _mm_mul_pd(dx00,fscal),
468                                                    _mm_mul_pd(dy00,fscal),
469                                                    _mm_mul_pd(dz00,fscal));
470
471             /* Inner loop uses 37 flops */
472         }
473
474         if(jidx<j_index_end)
475         {
476
477             jnrA             = jjnr[jidx];
478             j_coord_offsetA  = DIM*jnrA;
479
480             /* load j atom coordinates */
481             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
482                                               &jx0,&jy0,&jz0);
483
484             /* Calculate displacement vector */
485             dx00             = _mm_sub_pd(ix0,jx0);
486             dy00             = _mm_sub_pd(iy0,jy0);
487             dz00             = _mm_sub_pd(iz0,jz0);
488
489             /* Calculate squared distance and things based on it */
490             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
491
492             rinv00           = avx128fma_invsqrt_d(rsq00);
493
494             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
495
496             /* Load parameters for j particles */
497             jq0              = _mm_load_sd(charge+jnrA+0);
498             vdwjidx0A        = 2*vdwtype[jnrA+0];
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             /* Compute parameters for interactions between i and j atoms */
505             qq00             = _mm_mul_pd(iq0,jq0);
506             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
507
508             /* COULOMB ELECTROSTATICS */
509             velec            = _mm_mul_pd(qq00,rinv00);
510             felec            = _mm_mul_pd(velec,rinvsq00);
511
512             /* LENNARD-JONES DISPERSION/REPULSION */
513
514             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
515             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
516
517             fscal            = _mm_add_pd(felec,fvdw);
518
519             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
520
521             /* Update vectorial force */
522             fix0             = _mm_macc_pd(dx00,fscal,fix0);
523             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
524             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
525             
526             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
527                                                    _mm_mul_pd(dx00,fscal),
528                                                    _mm_mul_pd(dy00,fscal),
529                                                    _mm_mul_pd(dz00,fscal));
530
531             /* Inner loop uses 37 flops */
532         }
533
534         /* End of innermost loop */
535
536         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
537                                               f+i_coord_offset,fshift+i_shift_offset);
538
539         /* Increment number of inner iterations */
540         inneriter                  += j_index_end - j_index_start;
541
542         /* Outer loop uses 7 flops */
543     }
544
545     /* Increment number of outer iterations */
546     outeriter        += nri;
547
548     /* Update outer/inner flops */
549
550     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
551 }