Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
91     real             *vftab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
119     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
120     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
147                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
148
149         fix0             = _mm_setzero_pd();
150         fiy0             = _mm_setzero_pd();
151         fiz0             = _mm_setzero_pd();
152         fix1             = _mm_setzero_pd();
153         fiy1             = _mm_setzero_pd();
154         fiz1             = _mm_setzero_pd();
155         fix2             = _mm_setzero_pd();
156         fiy2             = _mm_setzero_pd();
157         fiz2             = _mm_setzero_pd();
158         fix3             = _mm_setzero_pd();
159         fiy3             = _mm_setzero_pd();
160         fiz3             = _mm_setzero_pd();
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_pd();
164         vvdwsum          = _mm_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_pd(ix0,jx0);
182             dy00             = _mm_sub_pd(iy0,jy0);
183             dz00             = _mm_sub_pd(iz0,jz0);
184             dx10             = _mm_sub_pd(ix1,jx0);
185             dy10             = _mm_sub_pd(iy1,jy0);
186             dz10             = _mm_sub_pd(iz1,jz0);
187             dx20             = _mm_sub_pd(ix2,jx0);
188             dy20             = _mm_sub_pd(iy2,jy0);
189             dz20             = _mm_sub_pd(iz2,jz0);
190             dx30             = _mm_sub_pd(ix3,jx0);
191             dy30             = _mm_sub_pd(iy3,jy0);
192             dz30             = _mm_sub_pd(iz3,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
196             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
197             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
198             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
199
200             rinv00           = gmx_mm_invsqrt_pd(rsq00);
201             rinv10           = gmx_mm_invsqrt_pd(rsq10);
202             rinv20           = gmx_mm_invsqrt_pd(rsq20);
203             rinv30           = gmx_mm_invsqrt_pd(rsq30);
204
205             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
206             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
207             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
211             vdwjidx0A        = 2*vdwtype[jnrA+0];
212             vdwjidx0B        = 2*vdwtype[jnrB+0];
213
214             fjx0             = _mm_setzero_pd();
215             fjy0             = _mm_setzero_pd();
216             fjz0             = _mm_setzero_pd();
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r00              = _mm_mul_pd(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
226                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
227
228             /* Calculate table index by multiplying r with table scale and truncate to integer */
229             rt               = _mm_mul_pd(r00,vftabscale);
230             vfitab           = _mm_cvttpd_epi32(rt);
231 #ifdef __XOP__
232             vfeps            = _mm_frcz_pd(rt);
233 #else
234             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
235 #endif
236             twovfeps         = _mm_add_pd(vfeps,vfeps);
237             vfitab           = _mm_slli_epi32(vfitab,3);
238
239             /* CUBIC SPLINE TABLE DISPERSION */
240             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
241             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
242             GMX_MM_TRANSPOSE2_PD(Y,F);
243             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
244             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
245             GMX_MM_TRANSPOSE2_PD(G,H);
246             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
247             VV               = _mm_macc_pd(vfeps,Fp,Y);
248             vvdw6            = _mm_mul_pd(c6_00,VV);
249             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
250             fvdw6            = _mm_mul_pd(c6_00,FF);
251
252             /* CUBIC SPLINE TABLE REPULSION */
253             vfitab           = _mm_add_epi32(vfitab,ifour);
254             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
255             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
256             GMX_MM_TRANSPOSE2_PD(Y,F);
257             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
258             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
259             GMX_MM_TRANSPOSE2_PD(G,H);
260             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
261             VV               = _mm_macc_pd(vfeps,Fp,Y);
262             vvdw12           = _mm_mul_pd(c12_00,VV);
263             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
264             fvdw12           = _mm_mul_pd(c12_00,FF);
265             vvdw             = _mm_add_pd(vvdw12,vvdw6);
266             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
270
271             fscal            = fvdw;
272
273             /* Update vectorial force */
274             fix0             = _mm_macc_pd(dx00,fscal,fix0);
275             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
276             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
277             
278             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
279             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
280             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             /* Compute parameters for interactions between i and j atoms */
287             qq10             = _mm_mul_pd(iq1,jq0);
288
289             /* COULOMB ELECTROSTATICS */
290             velec            = _mm_mul_pd(qq10,rinv10);
291             felec            = _mm_mul_pd(velec,rinvsq10);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velecsum         = _mm_add_pd(velecsum,velec);
295
296             fscal            = felec;
297
298             /* Update vectorial force */
299             fix1             = _mm_macc_pd(dx10,fscal,fix1);
300             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
301             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
302             
303             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
304             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
305             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             /* Compute parameters for interactions between i and j atoms */
312             qq20             = _mm_mul_pd(iq2,jq0);
313
314             /* COULOMB ELECTROSTATICS */
315             velec            = _mm_mul_pd(qq20,rinv20);
316             felec            = _mm_mul_pd(velec,rinvsq20);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velecsum         = _mm_add_pd(velecsum,velec);
320
321             fscal            = felec;
322
323             /* Update vectorial force */
324             fix2             = _mm_macc_pd(dx20,fscal,fix2);
325             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
326             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
327             
328             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
329             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
330             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq30             = _mm_mul_pd(iq3,jq0);
338
339             /* COULOMB ELECTROSTATICS */
340             velec            = _mm_mul_pd(qq30,rinv30);
341             felec            = _mm_mul_pd(velec,rinvsq30);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm_add_pd(velecsum,velec);
345
346             fscal            = felec;
347
348             /* Update vectorial force */
349             fix3             = _mm_macc_pd(dx30,fscal,fix3);
350             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
351             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
352             
353             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
354             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
355             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
356
357             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
358
359             /* Inner loop uses 155 flops */
360         }
361
362         if(jidx<j_index_end)
363         {
364
365             jnrA             = jjnr[jidx];
366             j_coord_offsetA  = DIM*jnrA;
367
368             /* load j atom coordinates */
369             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
370                                               &jx0,&jy0,&jz0);
371
372             /* Calculate displacement vector */
373             dx00             = _mm_sub_pd(ix0,jx0);
374             dy00             = _mm_sub_pd(iy0,jy0);
375             dz00             = _mm_sub_pd(iz0,jz0);
376             dx10             = _mm_sub_pd(ix1,jx0);
377             dy10             = _mm_sub_pd(iy1,jy0);
378             dz10             = _mm_sub_pd(iz1,jz0);
379             dx20             = _mm_sub_pd(ix2,jx0);
380             dy20             = _mm_sub_pd(iy2,jy0);
381             dz20             = _mm_sub_pd(iz2,jz0);
382             dx30             = _mm_sub_pd(ix3,jx0);
383             dy30             = _mm_sub_pd(iy3,jy0);
384             dz30             = _mm_sub_pd(iz3,jz0);
385
386             /* Calculate squared distance and things based on it */
387             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
388             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
389             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
390             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
391
392             rinv00           = gmx_mm_invsqrt_pd(rsq00);
393             rinv10           = gmx_mm_invsqrt_pd(rsq10);
394             rinv20           = gmx_mm_invsqrt_pd(rsq20);
395             rinv30           = gmx_mm_invsqrt_pd(rsq30);
396
397             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
398             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
399             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
400
401             /* Load parameters for j particles */
402             jq0              = _mm_load_sd(charge+jnrA+0);
403             vdwjidx0A        = 2*vdwtype[jnrA+0];
404
405             fjx0             = _mm_setzero_pd();
406             fjy0             = _mm_setzero_pd();
407             fjz0             = _mm_setzero_pd();
408
409             /**************************
410              * CALCULATE INTERACTIONS *
411              **************************/
412
413             r00              = _mm_mul_pd(rsq00,rinv00);
414
415             /* Compute parameters for interactions between i and j atoms */
416             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
417
418             /* Calculate table index by multiplying r with table scale and truncate to integer */
419             rt               = _mm_mul_pd(r00,vftabscale);
420             vfitab           = _mm_cvttpd_epi32(rt);
421 #ifdef __XOP__
422             vfeps            = _mm_frcz_pd(rt);
423 #else
424             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
425 #endif
426             twovfeps         = _mm_add_pd(vfeps,vfeps);
427             vfitab           = _mm_slli_epi32(vfitab,3);
428
429             /* CUBIC SPLINE TABLE DISPERSION */
430             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
431             F                = _mm_setzero_pd();
432             GMX_MM_TRANSPOSE2_PD(Y,F);
433             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
434             H                = _mm_setzero_pd();
435             GMX_MM_TRANSPOSE2_PD(G,H);
436             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
437             VV               = _mm_macc_pd(vfeps,Fp,Y);
438             vvdw6            = _mm_mul_pd(c6_00,VV);
439             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
440             fvdw6            = _mm_mul_pd(c6_00,FF);
441
442             /* CUBIC SPLINE TABLE REPULSION */
443             vfitab           = _mm_add_epi32(vfitab,ifour);
444             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
445             F                = _mm_setzero_pd();
446             GMX_MM_TRANSPOSE2_PD(Y,F);
447             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
448             H                = _mm_setzero_pd();
449             GMX_MM_TRANSPOSE2_PD(G,H);
450             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
451             VV               = _mm_macc_pd(vfeps,Fp,Y);
452             vvdw12           = _mm_mul_pd(c12_00,VV);
453             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
454             fvdw12           = _mm_mul_pd(c12_00,FF);
455             vvdw             = _mm_add_pd(vvdw12,vvdw6);
456             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
457
458             /* Update potential sum for this i atom from the interaction with this j atom. */
459             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
460             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
461
462             fscal            = fvdw;
463
464             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
465
466             /* Update vectorial force */
467             fix0             = _mm_macc_pd(dx00,fscal,fix0);
468             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
469             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
470             
471             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
472             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
473             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             /* Compute parameters for interactions between i and j atoms */
480             qq10             = _mm_mul_pd(iq1,jq0);
481
482             /* COULOMB ELECTROSTATICS */
483             velec            = _mm_mul_pd(qq10,rinv10);
484             felec            = _mm_mul_pd(velec,rinvsq10);
485
486             /* Update potential sum for this i atom from the interaction with this j atom. */
487             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
488             velecsum         = _mm_add_pd(velecsum,velec);
489
490             fscal            = felec;
491
492             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
493
494             /* Update vectorial force */
495             fix1             = _mm_macc_pd(dx10,fscal,fix1);
496             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
497             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
498             
499             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
500             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
501             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
502
503             /**************************
504              * CALCULATE INTERACTIONS *
505              **************************/
506
507             /* Compute parameters for interactions between i and j atoms */
508             qq20             = _mm_mul_pd(iq2,jq0);
509
510             /* COULOMB ELECTROSTATICS */
511             velec            = _mm_mul_pd(qq20,rinv20);
512             felec            = _mm_mul_pd(velec,rinvsq20);
513
514             /* Update potential sum for this i atom from the interaction with this j atom. */
515             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
516             velecsum         = _mm_add_pd(velecsum,velec);
517
518             fscal            = felec;
519
520             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
521
522             /* Update vectorial force */
523             fix2             = _mm_macc_pd(dx20,fscal,fix2);
524             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
525             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
526             
527             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
528             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
529             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             /* Compute parameters for interactions between i and j atoms */
536             qq30             = _mm_mul_pd(iq3,jq0);
537
538             /* COULOMB ELECTROSTATICS */
539             velec            = _mm_mul_pd(qq30,rinv30);
540             felec            = _mm_mul_pd(velec,rinvsq30);
541
542             /* Update potential sum for this i atom from the interaction with this j atom. */
543             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
544             velecsum         = _mm_add_pd(velecsum,velec);
545
546             fscal            = felec;
547
548             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
549
550             /* Update vectorial force */
551             fix3             = _mm_macc_pd(dx30,fscal,fix3);
552             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
553             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
554             
555             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
556             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
557             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
558
559             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
560
561             /* Inner loop uses 155 flops */
562         }
563
564         /* End of innermost loop */
565
566         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
567                                               f+i_coord_offset,fshift+i_shift_offset);
568
569         ggid                        = gid[iidx];
570         /* Update potential energies */
571         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
572         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
573
574         /* Increment number of inner iterations */
575         inneriter                  += j_index_end - j_index_start;
576
577         /* Outer loop uses 26 flops */
578     }
579
580     /* Increment number of outer iterations */
581     outeriter        += nri;
582
583     /* Update outer/inner flops */
584
585     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*155);
586 }
587 /*
588  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_128_fma_double
589  * Electrostatics interaction: Coulomb
590  * VdW interaction:            CubicSplineTable
591  * Geometry:                   Water4-Particle
592  * Calculate force/pot:        Force
593  */
594 void
595 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_128_fma_double
596                     (t_nblist * gmx_restrict                nlist,
597                      rvec * gmx_restrict                    xx,
598                      rvec * gmx_restrict                    ff,
599                      t_forcerec * gmx_restrict              fr,
600                      t_mdatoms * gmx_restrict               mdatoms,
601                      nb_kernel_data_t * gmx_restrict        kernel_data,
602                      t_nrnb * gmx_restrict                  nrnb)
603 {
604     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
605      * just 0 for non-waters.
606      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
607      * jnr indices corresponding to data put in the four positions in the SIMD register.
608      */
609     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
610     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
611     int              jnrA,jnrB;
612     int              j_coord_offsetA,j_coord_offsetB;
613     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
614     real             rcutoff_scalar;
615     real             *shiftvec,*fshift,*x,*f;
616     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
617     int              vdwioffset0;
618     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
619     int              vdwioffset1;
620     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
621     int              vdwioffset2;
622     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
623     int              vdwioffset3;
624     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
625     int              vdwjidx0A,vdwjidx0B;
626     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
627     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
628     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
629     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
630     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
631     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
632     real             *charge;
633     int              nvdwtype;
634     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
635     int              *vdwtype;
636     real             *vdwparam;
637     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
638     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
639     __m128i          vfitab;
640     __m128i          ifour       = _mm_set1_epi32(4);
641     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
642     real             *vftab;
643     __m128d          dummy_mask,cutoff_mask;
644     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
645     __m128d          one     = _mm_set1_pd(1.0);
646     __m128d          two     = _mm_set1_pd(2.0);
647     x                = xx[0];
648     f                = ff[0];
649
650     nri              = nlist->nri;
651     iinr             = nlist->iinr;
652     jindex           = nlist->jindex;
653     jjnr             = nlist->jjnr;
654     shiftidx         = nlist->shift;
655     gid              = nlist->gid;
656     shiftvec         = fr->shift_vec[0];
657     fshift           = fr->fshift[0];
658     facel            = _mm_set1_pd(fr->epsfac);
659     charge           = mdatoms->chargeA;
660     nvdwtype         = fr->ntype;
661     vdwparam         = fr->nbfp;
662     vdwtype          = mdatoms->typeA;
663
664     vftab            = kernel_data->table_vdw->data;
665     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
666
667     /* Setup water-specific parameters */
668     inr              = nlist->iinr[0];
669     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
670     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
671     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
672     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
673
674     /* Avoid stupid compiler warnings */
675     jnrA = jnrB = 0;
676     j_coord_offsetA = 0;
677     j_coord_offsetB = 0;
678
679     outeriter        = 0;
680     inneriter        = 0;
681
682     /* Start outer loop over neighborlists */
683     for(iidx=0; iidx<nri; iidx++)
684     {
685         /* Load shift vector for this list */
686         i_shift_offset   = DIM*shiftidx[iidx];
687
688         /* Load limits for loop over neighbors */
689         j_index_start    = jindex[iidx];
690         j_index_end      = jindex[iidx+1];
691
692         /* Get outer coordinate index */
693         inr              = iinr[iidx];
694         i_coord_offset   = DIM*inr;
695
696         /* Load i particle coords and add shift vector */
697         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
698                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
699
700         fix0             = _mm_setzero_pd();
701         fiy0             = _mm_setzero_pd();
702         fiz0             = _mm_setzero_pd();
703         fix1             = _mm_setzero_pd();
704         fiy1             = _mm_setzero_pd();
705         fiz1             = _mm_setzero_pd();
706         fix2             = _mm_setzero_pd();
707         fiy2             = _mm_setzero_pd();
708         fiz2             = _mm_setzero_pd();
709         fix3             = _mm_setzero_pd();
710         fiy3             = _mm_setzero_pd();
711         fiz3             = _mm_setzero_pd();
712
713         /* Start inner kernel loop */
714         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
715         {
716
717             /* Get j neighbor index, and coordinate index */
718             jnrA             = jjnr[jidx];
719             jnrB             = jjnr[jidx+1];
720             j_coord_offsetA  = DIM*jnrA;
721             j_coord_offsetB  = DIM*jnrB;
722
723             /* load j atom coordinates */
724             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
725                                               &jx0,&jy0,&jz0);
726
727             /* Calculate displacement vector */
728             dx00             = _mm_sub_pd(ix0,jx0);
729             dy00             = _mm_sub_pd(iy0,jy0);
730             dz00             = _mm_sub_pd(iz0,jz0);
731             dx10             = _mm_sub_pd(ix1,jx0);
732             dy10             = _mm_sub_pd(iy1,jy0);
733             dz10             = _mm_sub_pd(iz1,jz0);
734             dx20             = _mm_sub_pd(ix2,jx0);
735             dy20             = _mm_sub_pd(iy2,jy0);
736             dz20             = _mm_sub_pd(iz2,jz0);
737             dx30             = _mm_sub_pd(ix3,jx0);
738             dy30             = _mm_sub_pd(iy3,jy0);
739             dz30             = _mm_sub_pd(iz3,jz0);
740
741             /* Calculate squared distance and things based on it */
742             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
743             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
744             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
745             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
746
747             rinv00           = gmx_mm_invsqrt_pd(rsq00);
748             rinv10           = gmx_mm_invsqrt_pd(rsq10);
749             rinv20           = gmx_mm_invsqrt_pd(rsq20);
750             rinv30           = gmx_mm_invsqrt_pd(rsq30);
751
752             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
753             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
754             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
755
756             /* Load parameters for j particles */
757             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
758             vdwjidx0A        = 2*vdwtype[jnrA+0];
759             vdwjidx0B        = 2*vdwtype[jnrB+0];
760
761             fjx0             = _mm_setzero_pd();
762             fjy0             = _mm_setzero_pd();
763             fjz0             = _mm_setzero_pd();
764
765             /**************************
766              * CALCULATE INTERACTIONS *
767              **************************/
768
769             r00              = _mm_mul_pd(rsq00,rinv00);
770
771             /* Compute parameters for interactions between i and j atoms */
772             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
773                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
774
775             /* Calculate table index by multiplying r with table scale and truncate to integer */
776             rt               = _mm_mul_pd(r00,vftabscale);
777             vfitab           = _mm_cvttpd_epi32(rt);
778 #ifdef __XOP__
779             vfeps            = _mm_frcz_pd(rt);
780 #else
781             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
782 #endif
783             twovfeps         = _mm_add_pd(vfeps,vfeps);
784             vfitab           = _mm_slli_epi32(vfitab,3);
785
786             /* CUBIC SPLINE TABLE DISPERSION */
787             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
788             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
789             GMX_MM_TRANSPOSE2_PD(Y,F);
790             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
791             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
792             GMX_MM_TRANSPOSE2_PD(G,H);
793             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
794             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
795             fvdw6            = _mm_mul_pd(c6_00,FF);
796
797             /* CUBIC SPLINE TABLE REPULSION */
798             vfitab           = _mm_add_epi32(vfitab,ifour);
799             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
800             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
801             GMX_MM_TRANSPOSE2_PD(Y,F);
802             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
803             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
804             GMX_MM_TRANSPOSE2_PD(G,H);
805             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
806             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
807             fvdw12           = _mm_mul_pd(c12_00,FF);
808             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
809
810             fscal            = fvdw;
811
812             /* Update vectorial force */
813             fix0             = _mm_macc_pd(dx00,fscal,fix0);
814             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
815             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
816             
817             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
818             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
819             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
820
821             /**************************
822              * CALCULATE INTERACTIONS *
823              **************************/
824
825             /* Compute parameters for interactions between i and j atoms */
826             qq10             = _mm_mul_pd(iq1,jq0);
827
828             /* COULOMB ELECTROSTATICS */
829             velec            = _mm_mul_pd(qq10,rinv10);
830             felec            = _mm_mul_pd(velec,rinvsq10);
831
832             fscal            = felec;
833
834             /* Update vectorial force */
835             fix1             = _mm_macc_pd(dx10,fscal,fix1);
836             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
837             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
838             
839             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
840             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
841             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
842
843             /**************************
844              * CALCULATE INTERACTIONS *
845              **************************/
846
847             /* Compute parameters for interactions between i and j atoms */
848             qq20             = _mm_mul_pd(iq2,jq0);
849
850             /* COULOMB ELECTROSTATICS */
851             velec            = _mm_mul_pd(qq20,rinv20);
852             felec            = _mm_mul_pd(velec,rinvsq20);
853
854             fscal            = felec;
855
856             /* Update vectorial force */
857             fix2             = _mm_macc_pd(dx20,fscal,fix2);
858             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
859             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
860             
861             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
862             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
863             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
864
865             /**************************
866              * CALCULATE INTERACTIONS *
867              **************************/
868
869             /* Compute parameters for interactions between i and j atoms */
870             qq30             = _mm_mul_pd(iq3,jq0);
871
872             /* COULOMB ELECTROSTATICS */
873             velec            = _mm_mul_pd(qq30,rinv30);
874             felec            = _mm_mul_pd(velec,rinvsq30);
875
876             fscal            = felec;
877
878             /* Update vectorial force */
879             fix3             = _mm_macc_pd(dx30,fscal,fix3);
880             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
881             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
882             
883             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
884             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
885             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
886
887             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
888
889             /* Inner loop uses 144 flops */
890         }
891
892         if(jidx<j_index_end)
893         {
894
895             jnrA             = jjnr[jidx];
896             j_coord_offsetA  = DIM*jnrA;
897
898             /* load j atom coordinates */
899             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
900                                               &jx0,&jy0,&jz0);
901
902             /* Calculate displacement vector */
903             dx00             = _mm_sub_pd(ix0,jx0);
904             dy00             = _mm_sub_pd(iy0,jy0);
905             dz00             = _mm_sub_pd(iz0,jz0);
906             dx10             = _mm_sub_pd(ix1,jx0);
907             dy10             = _mm_sub_pd(iy1,jy0);
908             dz10             = _mm_sub_pd(iz1,jz0);
909             dx20             = _mm_sub_pd(ix2,jx0);
910             dy20             = _mm_sub_pd(iy2,jy0);
911             dz20             = _mm_sub_pd(iz2,jz0);
912             dx30             = _mm_sub_pd(ix3,jx0);
913             dy30             = _mm_sub_pd(iy3,jy0);
914             dz30             = _mm_sub_pd(iz3,jz0);
915
916             /* Calculate squared distance and things based on it */
917             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
918             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
919             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
920             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
921
922             rinv00           = gmx_mm_invsqrt_pd(rsq00);
923             rinv10           = gmx_mm_invsqrt_pd(rsq10);
924             rinv20           = gmx_mm_invsqrt_pd(rsq20);
925             rinv30           = gmx_mm_invsqrt_pd(rsq30);
926
927             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
928             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
929             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
930
931             /* Load parameters for j particles */
932             jq0              = _mm_load_sd(charge+jnrA+0);
933             vdwjidx0A        = 2*vdwtype[jnrA+0];
934
935             fjx0             = _mm_setzero_pd();
936             fjy0             = _mm_setzero_pd();
937             fjz0             = _mm_setzero_pd();
938
939             /**************************
940              * CALCULATE INTERACTIONS *
941              **************************/
942
943             r00              = _mm_mul_pd(rsq00,rinv00);
944
945             /* Compute parameters for interactions between i and j atoms */
946             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
947
948             /* Calculate table index by multiplying r with table scale and truncate to integer */
949             rt               = _mm_mul_pd(r00,vftabscale);
950             vfitab           = _mm_cvttpd_epi32(rt);
951 #ifdef __XOP__
952             vfeps            = _mm_frcz_pd(rt);
953 #else
954             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
955 #endif
956             twovfeps         = _mm_add_pd(vfeps,vfeps);
957             vfitab           = _mm_slli_epi32(vfitab,3);
958
959             /* CUBIC SPLINE TABLE DISPERSION */
960             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
961             F                = _mm_setzero_pd();
962             GMX_MM_TRANSPOSE2_PD(Y,F);
963             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
964             H                = _mm_setzero_pd();
965             GMX_MM_TRANSPOSE2_PD(G,H);
966             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
967             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
968             fvdw6            = _mm_mul_pd(c6_00,FF);
969
970             /* CUBIC SPLINE TABLE REPULSION */
971             vfitab           = _mm_add_epi32(vfitab,ifour);
972             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
973             F                = _mm_setzero_pd();
974             GMX_MM_TRANSPOSE2_PD(Y,F);
975             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
976             H                = _mm_setzero_pd();
977             GMX_MM_TRANSPOSE2_PD(G,H);
978             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
979             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
980             fvdw12           = _mm_mul_pd(c12_00,FF);
981             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
982
983             fscal            = fvdw;
984
985             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
986
987             /* Update vectorial force */
988             fix0             = _mm_macc_pd(dx00,fscal,fix0);
989             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
990             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
991             
992             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
993             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
994             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
995
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             /* Compute parameters for interactions between i and j atoms */
1001             qq10             = _mm_mul_pd(iq1,jq0);
1002
1003             /* COULOMB ELECTROSTATICS */
1004             velec            = _mm_mul_pd(qq10,rinv10);
1005             felec            = _mm_mul_pd(velec,rinvsq10);
1006
1007             fscal            = felec;
1008
1009             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1010
1011             /* Update vectorial force */
1012             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1013             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1014             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1015             
1016             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1017             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1018             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1019
1020             /**************************
1021              * CALCULATE INTERACTIONS *
1022              **************************/
1023
1024             /* Compute parameters for interactions between i and j atoms */
1025             qq20             = _mm_mul_pd(iq2,jq0);
1026
1027             /* COULOMB ELECTROSTATICS */
1028             velec            = _mm_mul_pd(qq20,rinv20);
1029             felec            = _mm_mul_pd(velec,rinvsq20);
1030
1031             fscal            = felec;
1032
1033             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1034
1035             /* Update vectorial force */
1036             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1037             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1038             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1039             
1040             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1041             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1042             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1043
1044             /**************************
1045              * CALCULATE INTERACTIONS *
1046              **************************/
1047
1048             /* Compute parameters for interactions between i and j atoms */
1049             qq30             = _mm_mul_pd(iq3,jq0);
1050
1051             /* COULOMB ELECTROSTATICS */
1052             velec            = _mm_mul_pd(qq30,rinv30);
1053             felec            = _mm_mul_pd(velec,rinvsq30);
1054
1055             fscal            = felec;
1056
1057             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1058
1059             /* Update vectorial force */
1060             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1061             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1062             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1063             
1064             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1065             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1066             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1067
1068             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1069
1070             /* Inner loop uses 144 flops */
1071         }
1072
1073         /* End of innermost loop */
1074
1075         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1076                                               f+i_coord_offset,fshift+i_shift_offset);
1077
1078         /* Increment number of inner iterations */
1079         inneriter                  += j_index_end - j_index_start;
1080
1081         /* Outer loop uses 24 flops */
1082     }
1083
1084     /* Increment number of outer iterations */
1085     outeriter        += nri;
1086
1087     /* Update outer/inner flops */
1088
1089     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*144);
1090 }