Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
88     real             *vftab;
89     __m128d          dummy_mask,cutoff_mask;
90     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
91     __m128d          one     = _mm_set1_pd(1.0);
92     __m128d          two     = _mm_set1_pd(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_pd(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     vftab            = kernel_data->table_vdw->data;
111     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
116     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
117     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
118     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
144                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149         fix1             = _mm_setzero_pd();
150         fiy1             = _mm_setzero_pd();
151         fiz1             = _mm_setzero_pd();
152         fix2             = _mm_setzero_pd();
153         fiy2             = _mm_setzero_pd();
154         fiz2             = _mm_setzero_pd();
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_pd();
158         vvdwsum          = _mm_setzero_pd();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169
170             /* load j atom coordinates */
171             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_pd(ix0,jx0);
176             dy00             = _mm_sub_pd(iy0,jy0);
177             dz00             = _mm_sub_pd(iz0,jz0);
178             dx10             = _mm_sub_pd(ix1,jx0);
179             dy10             = _mm_sub_pd(iy1,jy0);
180             dz10             = _mm_sub_pd(iz1,jz0);
181             dx20             = _mm_sub_pd(ix2,jx0);
182             dy20             = _mm_sub_pd(iy2,jy0);
183             dz20             = _mm_sub_pd(iz2,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
188             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
189
190             rinv00           = gmx_mm_invsqrt_pd(rsq00);
191             rinv10           = gmx_mm_invsqrt_pd(rsq10);
192             rinv20           = gmx_mm_invsqrt_pd(rsq20);
193
194             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
195             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
196             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202
203             fjx0             = _mm_setzero_pd();
204             fjy0             = _mm_setzero_pd();
205             fjz0             = _mm_setzero_pd();
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             r00              = _mm_mul_pd(rsq00,rinv00);
212
213             /* Compute parameters for interactions between i and j atoms */
214             qq00             = _mm_mul_pd(iq0,jq0);
215             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
216                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
217
218             /* Calculate table index by multiplying r with table scale and truncate to integer */
219             rt               = _mm_mul_pd(r00,vftabscale);
220             vfitab           = _mm_cvttpd_epi32(rt);
221 #ifdef __XOP__
222             vfeps            = _mm_frcz_pd(rt);
223 #else
224             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
225 #endif
226             twovfeps         = _mm_add_pd(vfeps,vfeps);
227             vfitab           = _mm_slli_epi32(vfitab,3);
228
229             /* COULOMB ELECTROSTATICS */
230             velec            = _mm_mul_pd(qq00,rinv00);
231             felec            = _mm_mul_pd(velec,rinvsq00);
232
233             /* CUBIC SPLINE TABLE DISPERSION */
234             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
235             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
236             GMX_MM_TRANSPOSE2_PD(Y,F);
237             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
238             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
239             GMX_MM_TRANSPOSE2_PD(G,H);
240             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
241             VV               = _mm_macc_pd(vfeps,Fp,Y);
242             vvdw6            = _mm_mul_pd(c6_00,VV);
243             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
244             fvdw6            = _mm_mul_pd(c6_00,FF);
245
246             /* CUBIC SPLINE TABLE REPULSION */
247             vfitab           = _mm_add_epi32(vfitab,ifour);
248             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
249             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
250             GMX_MM_TRANSPOSE2_PD(Y,F);
251             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
252             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
253             GMX_MM_TRANSPOSE2_PD(G,H);
254             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
255             VV               = _mm_macc_pd(vfeps,Fp,Y);
256             vvdw12           = _mm_mul_pd(c12_00,VV);
257             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
258             fvdw12           = _mm_mul_pd(c12_00,FF);
259             vvdw             = _mm_add_pd(vvdw12,vvdw6);
260             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velecsum         = _mm_add_pd(velecsum,velec);
264             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
265
266             fscal            = _mm_add_pd(felec,fvdw);
267
268             /* Update vectorial force */
269             fix0             = _mm_macc_pd(dx00,fscal,fix0);
270             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
271             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
272             
273             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
274             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
275             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq10             = _mm_mul_pd(iq1,jq0);
283
284             /* COULOMB ELECTROSTATICS */
285             velec            = _mm_mul_pd(qq10,rinv10);
286             felec            = _mm_mul_pd(velec,rinvsq10);
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             velecsum         = _mm_add_pd(velecsum,velec);
290
291             fscal            = felec;
292
293             /* Update vectorial force */
294             fix1             = _mm_macc_pd(dx10,fscal,fix1);
295             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
296             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
297             
298             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
299             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
300             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq20             = _mm_mul_pd(iq2,jq0);
308
309             /* COULOMB ELECTROSTATICS */
310             velec            = _mm_mul_pd(qq20,rinv20);
311             felec            = _mm_mul_pd(velec,rinvsq20);
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velecsum         = _mm_add_pd(velecsum,velec);
315
316             fscal            = felec;
317
318             /* Update vectorial force */
319             fix2             = _mm_macc_pd(dx20,fscal,fix2);
320             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
321             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
322             
323             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
324             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
325             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
326
327             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
328
329             /* Inner loop uses 131 flops */
330         }
331
332         if(jidx<j_index_end)
333         {
334
335             jnrA             = jjnr[jidx];
336             j_coord_offsetA  = DIM*jnrA;
337
338             /* load j atom coordinates */
339             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
340                                               &jx0,&jy0,&jz0);
341
342             /* Calculate displacement vector */
343             dx00             = _mm_sub_pd(ix0,jx0);
344             dy00             = _mm_sub_pd(iy0,jy0);
345             dz00             = _mm_sub_pd(iz0,jz0);
346             dx10             = _mm_sub_pd(ix1,jx0);
347             dy10             = _mm_sub_pd(iy1,jy0);
348             dz10             = _mm_sub_pd(iz1,jz0);
349             dx20             = _mm_sub_pd(ix2,jx0);
350             dy20             = _mm_sub_pd(iy2,jy0);
351             dz20             = _mm_sub_pd(iz2,jz0);
352
353             /* Calculate squared distance and things based on it */
354             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
355             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
356             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
357
358             rinv00           = gmx_mm_invsqrt_pd(rsq00);
359             rinv10           = gmx_mm_invsqrt_pd(rsq10);
360             rinv20           = gmx_mm_invsqrt_pd(rsq20);
361
362             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
363             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
364             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
365
366             /* Load parameters for j particles */
367             jq0              = _mm_load_sd(charge+jnrA+0);
368             vdwjidx0A        = 2*vdwtype[jnrA+0];
369
370             fjx0             = _mm_setzero_pd();
371             fjy0             = _mm_setzero_pd();
372             fjz0             = _mm_setzero_pd();
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             r00              = _mm_mul_pd(rsq00,rinv00);
379
380             /* Compute parameters for interactions between i and j atoms */
381             qq00             = _mm_mul_pd(iq0,jq0);
382             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
383
384             /* Calculate table index by multiplying r with table scale and truncate to integer */
385             rt               = _mm_mul_pd(r00,vftabscale);
386             vfitab           = _mm_cvttpd_epi32(rt);
387 #ifdef __XOP__
388             vfeps            = _mm_frcz_pd(rt);
389 #else
390             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
391 #endif
392             twovfeps         = _mm_add_pd(vfeps,vfeps);
393             vfitab           = _mm_slli_epi32(vfitab,3);
394
395             /* COULOMB ELECTROSTATICS */
396             velec            = _mm_mul_pd(qq00,rinv00);
397             felec            = _mm_mul_pd(velec,rinvsq00);
398
399             /* CUBIC SPLINE TABLE DISPERSION */
400             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
401             F                = _mm_setzero_pd();
402             GMX_MM_TRANSPOSE2_PD(Y,F);
403             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
404             H                = _mm_setzero_pd();
405             GMX_MM_TRANSPOSE2_PD(G,H);
406             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
407             VV               = _mm_macc_pd(vfeps,Fp,Y);
408             vvdw6            = _mm_mul_pd(c6_00,VV);
409             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
410             fvdw6            = _mm_mul_pd(c6_00,FF);
411
412             /* CUBIC SPLINE TABLE REPULSION */
413             vfitab           = _mm_add_epi32(vfitab,ifour);
414             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
415             F                = _mm_setzero_pd();
416             GMX_MM_TRANSPOSE2_PD(Y,F);
417             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
418             H                = _mm_setzero_pd();
419             GMX_MM_TRANSPOSE2_PD(G,H);
420             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
421             VV               = _mm_macc_pd(vfeps,Fp,Y);
422             vvdw12           = _mm_mul_pd(c12_00,VV);
423             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
424             fvdw12           = _mm_mul_pd(c12_00,FF);
425             vvdw             = _mm_add_pd(vvdw12,vvdw6);
426             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
427
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
430             velecsum         = _mm_add_pd(velecsum,velec);
431             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
432             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
433
434             fscal            = _mm_add_pd(felec,fvdw);
435
436             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
437
438             /* Update vectorial force */
439             fix0             = _mm_macc_pd(dx00,fscal,fix0);
440             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
441             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
442             
443             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
444             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
445             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
446
447             /**************************
448              * CALCULATE INTERACTIONS *
449              **************************/
450
451             /* Compute parameters for interactions between i and j atoms */
452             qq10             = _mm_mul_pd(iq1,jq0);
453
454             /* COULOMB ELECTROSTATICS */
455             velec            = _mm_mul_pd(qq10,rinv10);
456             felec            = _mm_mul_pd(velec,rinvsq10);
457
458             /* Update potential sum for this i atom from the interaction with this j atom. */
459             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
460             velecsum         = _mm_add_pd(velecsum,velec);
461
462             fscal            = felec;
463
464             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
465
466             /* Update vectorial force */
467             fix1             = _mm_macc_pd(dx10,fscal,fix1);
468             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
469             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
470             
471             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
472             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
473             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             /* Compute parameters for interactions between i and j atoms */
480             qq20             = _mm_mul_pd(iq2,jq0);
481
482             /* COULOMB ELECTROSTATICS */
483             velec            = _mm_mul_pd(qq20,rinv20);
484             felec            = _mm_mul_pd(velec,rinvsq20);
485
486             /* Update potential sum for this i atom from the interaction with this j atom. */
487             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
488             velecsum         = _mm_add_pd(velecsum,velec);
489
490             fscal            = felec;
491
492             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
493
494             /* Update vectorial force */
495             fix2             = _mm_macc_pd(dx20,fscal,fix2);
496             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
497             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
498             
499             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
500             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
501             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
502
503             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
504
505             /* Inner loop uses 131 flops */
506         }
507
508         /* End of innermost loop */
509
510         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
511                                               f+i_coord_offset,fshift+i_shift_offset);
512
513         ggid                        = gid[iidx];
514         /* Update potential energies */
515         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
516         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
517
518         /* Increment number of inner iterations */
519         inneriter                  += j_index_end - j_index_start;
520
521         /* Outer loop uses 20 flops */
522     }
523
524     /* Increment number of outer iterations */
525     outeriter        += nri;
526
527     /* Update outer/inner flops */
528
529     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*131);
530 }
531 /*
532  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_double
533  * Electrostatics interaction: Coulomb
534  * VdW interaction:            CubicSplineTable
535  * Geometry:                   Water3-Particle
536  * Calculate force/pot:        Force
537  */
538 void
539 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_double
540                     (t_nblist * gmx_restrict                nlist,
541                      rvec * gmx_restrict                    xx,
542                      rvec * gmx_restrict                    ff,
543                      t_forcerec * gmx_restrict              fr,
544                      t_mdatoms * gmx_restrict               mdatoms,
545                      nb_kernel_data_t * gmx_restrict        kernel_data,
546                      t_nrnb * gmx_restrict                  nrnb)
547 {
548     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
549      * just 0 for non-waters.
550      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
551      * jnr indices corresponding to data put in the four positions in the SIMD register.
552      */
553     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
554     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
555     int              jnrA,jnrB;
556     int              j_coord_offsetA,j_coord_offsetB;
557     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
558     real             rcutoff_scalar;
559     real             *shiftvec,*fshift,*x,*f;
560     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
561     int              vdwioffset0;
562     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
563     int              vdwioffset1;
564     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
565     int              vdwioffset2;
566     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
567     int              vdwjidx0A,vdwjidx0B;
568     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
569     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
570     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
571     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
572     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
573     real             *charge;
574     int              nvdwtype;
575     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
576     int              *vdwtype;
577     real             *vdwparam;
578     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
579     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
580     __m128i          vfitab;
581     __m128i          ifour       = _mm_set1_epi32(4);
582     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
583     real             *vftab;
584     __m128d          dummy_mask,cutoff_mask;
585     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
586     __m128d          one     = _mm_set1_pd(1.0);
587     __m128d          two     = _mm_set1_pd(2.0);
588     x                = xx[0];
589     f                = ff[0];
590
591     nri              = nlist->nri;
592     iinr             = nlist->iinr;
593     jindex           = nlist->jindex;
594     jjnr             = nlist->jjnr;
595     shiftidx         = nlist->shift;
596     gid              = nlist->gid;
597     shiftvec         = fr->shift_vec[0];
598     fshift           = fr->fshift[0];
599     facel            = _mm_set1_pd(fr->epsfac);
600     charge           = mdatoms->chargeA;
601     nvdwtype         = fr->ntype;
602     vdwparam         = fr->nbfp;
603     vdwtype          = mdatoms->typeA;
604
605     vftab            = kernel_data->table_vdw->data;
606     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
607
608     /* Setup water-specific parameters */
609     inr              = nlist->iinr[0];
610     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
611     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
612     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
613     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
614
615     /* Avoid stupid compiler warnings */
616     jnrA = jnrB = 0;
617     j_coord_offsetA = 0;
618     j_coord_offsetB = 0;
619
620     outeriter        = 0;
621     inneriter        = 0;
622
623     /* Start outer loop over neighborlists */
624     for(iidx=0; iidx<nri; iidx++)
625     {
626         /* Load shift vector for this list */
627         i_shift_offset   = DIM*shiftidx[iidx];
628
629         /* Load limits for loop over neighbors */
630         j_index_start    = jindex[iidx];
631         j_index_end      = jindex[iidx+1];
632
633         /* Get outer coordinate index */
634         inr              = iinr[iidx];
635         i_coord_offset   = DIM*inr;
636
637         /* Load i particle coords and add shift vector */
638         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
639                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
640
641         fix0             = _mm_setzero_pd();
642         fiy0             = _mm_setzero_pd();
643         fiz0             = _mm_setzero_pd();
644         fix1             = _mm_setzero_pd();
645         fiy1             = _mm_setzero_pd();
646         fiz1             = _mm_setzero_pd();
647         fix2             = _mm_setzero_pd();
648         fiy2             = _mm_setzero_pd();
649         fiz2             = _mm_setzero_pd();
650
651         /* Start inner kernel loop */
652         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
653         {
654
655             /* Get j neighbor index, and coordinate index */
656             jnrA             = jjnr[jidx];
657             jnrB             = jjnr[jidx+1];
658             j_coord_offsetA  = DIM*jnrA;
659             j_coord_offsetB  = DIM*jnrB;
660
661             /* load j atom coordinates */
662             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
663                                               &jx0,&jy0,&jz0);
664
665             /* Calculate displacement vector */
666             dx00             = _mm_sub_pd(ix0,jx0);
667             dy00             = _mm_sub_pd(iy0,jy0);
668             dz00             = _mm_sub_pd(iz0,jz0);
669             dx10             = _mm_sub_pd(ix1,jx0);
670             dy10             = _mm_sub_pd(iy1,jy0);
671             dz10             = _mm_sub_pd(iz1,jz0);
672             dx20             = _mm_sub_pd(ix2,jx0);
673             dy20             = _mm_sub_pd(iy2,jy0);
674             dz20             = _mm_sub_pd(iz2,jz0);
675
676             /* Calculate squared distance and things based on it */
677             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
678             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
679             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
680
681             rinv00           = gmx_mm_invsqrt_pd(rsq00);
682             rinv10           = gmx_mm_invsqrt_pd(rsq10);
683             rinv20           = gmx_mm_invsqrt_pd(rsq20);
684
685             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
686             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
687             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
688
689             /* Load parameters for j particles */
690             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
691             vdwjidx0A        = 2*vdwtype[jnrA+0];
692             vdwjidx0B        = 2*vdwtype[jnrB+0];
693
694             fjx0             = _mm_setzero_pd();
695             fjy0             = _mm_setzero_pd();
696             fjz0             = _mm_setzero_pd();
697
698             /**************************
699              * CALCULATE INTERACTIONS *
700              **************************/
701
702             r00              = _mm_mul_pd(rsq00,rinv00);
703
704             /* Compute parameters for interactions between i and j atoms */
705             qq00             = _mm_mul_pd(iq0,jq0);
706             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
707                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
708
709             /* Calculate table index by multiplying r with table scale and truncate to integer */
710             rt               = _mm_mul_pd(r00,vftabscale);
711             vfitab           = _mm_cvttpd_epi32(rt);
712 #ifdef __XOP__
713             vfeps            = _mm_frcz_pd(rt);
714 #else
715             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
716 #endif
717             twovfeps         = _mm_add_pd(vfeps,vfeps);
718             vfitab           = _mm_slli_epi32(vfitab,3);
719
720             /* COULOMB ELECTROSTATICS */
721             velec            = _mm_mul_pd(qq00,rinv00);
722             felec            = _mm_mul_pd(velec,rinvsq00);
723
724             /* CUBIC SPLINE TABLE DISPERSION */
725             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
726             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
727             GMX_MM_TRANSPOSE2_PD(Y,F);
728             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
729             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
730             GMX_MM_TRANSPOSE2_PD(G,H);
731             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
732             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
733             fvdw6            = _mm_mul_pd(c6_00,FF);
734
735             /* CUBIC SPLINE TABLE REPULSION */
736             vfitab           = _mm_add_epi32(vfitab,ifour);
737             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
738             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
739             GMX_MM_TRANSPOSE2_PD(Y,F);
740             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
741             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
742             GMX_MM_TRANSPOSE2_PD(G,H);
743             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
744             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
745             fvdw12           = _mm_mul_pd(c12_00,FF);
746             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
747
748             fscal            = _mm_add_pd(felec,fvdw);
749
750             /* Update vectorial force */
751             fix0             = _mm_macc_pd(dx00,fscal,fix0);
752             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
753             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
754             
755             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
756             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
757             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
758
759             /**************************
760              * CALCULATE INTERACTIONS *
761              **************************/
762
763             /* Compute parameters for interactions between i and j atoms */
764             qq10             = _mm_mul_pd(iq1,jq0);
765
766             /* COULOMB ELECTROSTATICS */
767             velec            = _mm_mul_pd(qq10,rinv10);
768             felec            = _mm_mul_pd(velec,rinvsq10);
769
770             fscal            = felec;
771
772             /* Update vectorial force */
773             fix1             = _mm_macc_pd(dx10,fscal,fix1);
774             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
775             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
776             
777             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
778             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
779             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
780
781             /**************************
782              * CALCULATE INTERACTIONS *
783              **************************/
784
785             /* Compute parameters for interactions between i and j atoms */
786             qq20             = _mm_mul_pd(iq2,jq0);
787
788             /* COULOMB ELECTROSTATICS */
789             velec            = _mm_mul_pd(qq20,rinv20);
790             felec            = _mm_mul_pd(velec,rinvsq20);
791
792             fscal            = felec;
793
794             /* Update vectorial force */
795             fix2             = _mm_macc_pd(dx20,fscal,fix2);
796             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
797             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
798             
799             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
800             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
801             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
802
803             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
804
805             /* Inner loop uses 120 flops */
806         }
807
808         if(jidx<j_index_end)
809         {
810
811             jnrA             = jjnr[jidx];
812             j_coord_offsetA  = DIM*jnrA;
813
814             /* load j atom coordinates */
815             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
816                                               &jx0,&jy0,&jz0);
817
818             /* Calculate displacement vector */
819             dx00             = _mm_sub_pd(ix0,jx0);
820             dy00             = _mm_sub_pd(iy0,jy0);
821             dz00             = _mm_sub_pd(iz0,jz0);
822             dx10             = _mm_sub_pd(ix1,jx0);
823             dy10             = _mm_sub_pd(iy1,jy0);
824             dz10             = _mm_sub_pd(iz1,jz0);
825             dx20             = _mm_sub_pd(ix2,jx0);
826             dy20             = _mm_sub_pd(iy2,jy0);
827             dz20             = _mm_sub_pd(iz2,jz0);
828
829             /* Calculate squared distance and things based on it */
830             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
831             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
832             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
833
834             rinv00           = gmx_mm_invsqrt_pd(rsq00);
835             rinv10           = gmx_mm_invsqrt_pd(rsq10);
836             rinv20           = gmx_mm_invsqrt_pd(rsq20);
837
838             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
839             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
840             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
841
842             /* Load parameters for j particles */
843             jq0              = _mm_load_sd(charge+jnrA+0);
844             vdwjidx0A        = 2*vdwtype[jnrA+0];
845
846             fjx0             = _mm_setzero_pd();
847             fjy0             = _mm_setzero_pd();
848             fjz0             = _mm_setzero_pd();
849
850             /**************************
851              * CALCULATE INTERACTIONS *
852              **************************/
853
854             r00              = _mm_mul_pd(rsq00,rinv00);
855
856             /* Compute parameters for interactions between i and j atoms */
857             qq00             = _mm_mul_pd(iq0,jq0);
858             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
859
860             /* Calculate table index by multiplying r with table scale and truncate to integer */
861             rt               = _mm_mul_pd(r00,vftabscale);
862             vfitab           = _mm_cvttpd_epi32(rt);
863 #ifdef __XOP__
864             vfeps            = _mm_frcz_pd(rt);
865 #else
866             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
867 #endif
868             twovfeps         = _mm_add_pd(vfeps,vfeps);
869             vfitab           = _mm_slli_epi32(vfitab,3);
870
871             /* COULOMB ELECTROSTATICS */
872             velec            = _mm_mul_pd(qq00,rinv00);
873             felec            = _mm_mul_pd(velec,rinvsq00);
874
875             /* CUBIC SPLINE TABLE DISPERSION */
876             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
877             F                = _mm_setzero_pd();
878             GMX_MM_TRANSPOSE2_PD(Y,F);
879             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
880             H                = _mm_setzero_pd();
881             GMX_MM_TRANSPOSE2_PD(G,H);
882             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
883             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
884             fvdw6            = _mm_mul_pd(c6_00,FF);
885
886             /* CUBIC SPLINE TABLE REPULSION */
887             vfitab           = _mm_add_epi32(vfitab,ifour);
888             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
889             F                = _mm_setzero_pd();
890             GMX_MM_TRANSPOSE2_PD(Y,F);
891             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
892             H                = _mm_setzero_pd();
893             GMX_MM_TRANSPOSE2_PD(G,H);
894             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
895             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
896             fvdw12           = _mm_mul_pd(c12_00,FF);
897             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
898
899             fscal            = _mm_add_pd(felec,fvdw);
900
901             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
902
903             /* Update vectorial force */
904             fix0             = _mm_macc_pd(dx00,fscal,fix0);
905             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
906             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
907             
908             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
909             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
910             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
911
912             /**************************
913              * CALCULATE INTERACTIONS *
914              **************************/
915
916             /* Compute parameters for interactions between i and j atoms */
917             qq10             = _mm_mul_pd(iq1,jq0);
918
919             /* COULOMB ELECTROSTATICS */
920             velec            = _mm_mul_pd(qq10,rinv10);
921             felec            = _mm_mul_pd(velec,rinvsq10);
922
923             fscal            = felec;
924
925             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
926
927             /* Update vectorial force */
928             fix1             = _mm_macc_pd(dx10,fscal,fix1);
929             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
930             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
931             
932             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
933             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
934             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq20             = _mm_mul_pd(iq2,jq0);
942
943             /* COULOMB ELECTROSTATICS */
944             velec            = _mm_mul_pd(qq20,rinv20);
945             felec            = _mm_mul_pd(velec,rinvsq20);
946
947             fscal            = felec;
948
949             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
950
951             /* Update vectorial force */
952             fix2             = _mm_macc_pd(dx20,fscal,fix2);
953             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
954             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
955             
956             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
957             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
958             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
959
960             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
961
962             /* Inner loop uses 120 flops */
963         }
964
965         /* End of innermost loop */
966
967         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
968                                               f+i_coord_offset,fshift+i_shift_offset);
969
970         /* Increment number of inner iterations */
971         inneriter                  += j_index_end - j_index_start;
972
973         /* Outer loop uses 18 flops */
974     }
975
976     /* Increment number of outer iterations */
977     outeriter        += nri;
978
979     /* Update outer/inner flops */
980
981     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*120);
982 }