d47e3842381482f5852b830aa6b38089bbe21bf0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
130     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
131     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
132     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
159
160         fix0             = _mm_setzero_pd();
161         fiy0             = _mm_setzero_pd();
162         fiz0             = _mm_setzero_pd();
163         fix1             = _mm_setzero_pd();
164         fiy1             = _mm_setzero_pd();
165         fiz1             = _mm_setzero_pd();
166         fix2             = _mm_setzero_pd();
167         fiy2             = _mm_setzero_pd();
168         fiz2             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172         vvdwsum          = _mm_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_pd(ix0,jx0);
190             dy00             = _mm_sub_pd(iy0,jy0);
191             dz00             = _mm_sub_pd(iz0,jz0);
192             dx10             = _mm_sub_pd(ix1,jx0);
193             dy10             = _mm_sub_pd(iy1,jy0);
194             dz10             = _mm_sub_pd(iz1,jz0);
195             dx20             = _mm_sub_pd(ix2,jx0);
196             dy20             = _mm_sub_pd(iy2,jy0);
197             dz20             = _mm_sub_pd(iz2,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
201             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
202             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
203
204             rinv00           = gmx_mm_invsqrt_pd(rsq00);
205             rinv10           = gmx_mm_invsqrt_pd(rsq10);
206             rinv20           = gmx_mm_invsqrt_pd(rsq20);
207
208             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
209             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
210             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216
217             fjx0             = _mm_setzero_pd();
218             fjy0             = _mm_setzero_pd();
219             fjz0             = _mm_setzero_pd();
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm_mul_pd(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm_mul_pd(iq0,jq0);
229             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
230                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
231
232             /* Calculate table index by multiplying r with table scale and truncate to integer */
233             rt               = _mm_mul_pd(r00,vftabscale);
234             vfitab           = _mm_cvttpd_epi32(rt);
235 #ifdef __XOP__
236             vfeps            = _mm_frcz_pd(rt);
237 #else
238             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
239 #endif
240             twovfeps         = _mm_add_pd(vfeps,vfeps);
241             vfitab           = _mm_slli_epi32(vfitab,3);
242
243             /* COULOMB ELECTROSTATICS */
244             velec            = _mm_mul_pd(qq00,rinv00);
245             felec            = _mm_mul_pd(velec,rinvsq00);
246
247             /* CUBIC SPLINE TABLE DISPERSION */
248             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
249             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
250             GMX_MM_TRANSPOSE2_PD(Y,F);
251             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
252             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
253             GMX_MM_TRANSPOSE2_PD(G,H);
254             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
255             VV               = _mm_macc_pd(vfeps,Fp,Y);
256             vvdw6            = _mm_mul_pd(c6_00,VV);
257             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
258             fvdw6            = _mm_mul_pd(c6_00,FF);
259
260             /* CUBIC SPLINE TABLE REPULSION */
261             vfitab           = _mm_add_epi32(vfitab,ifour);
262             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
263             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
264             GMX_MM_TRANSPOSE2_PD(Y,F);
265             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
266             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
267             GMX_MM_TRANSPOSE2_PD(G,H);
268             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
269             VV               = _mm_macc_pd(vfeps,Fp,Y);
270             vvdw12           = _mm_mul_pd(c12_00,VV);
271             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
272             fvdw12           = _mm_mul_pd(c12_00,FF);
273             vvdw             = _mm_add_pd(vvdw12,vvdw6);
274             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velecsum         = _mm_add_pd(velecsum,velec);
278             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
279
280             fscal            = _mm_add_pd(felec,fvdw);
281
282             /* Update vectorial force */
283             fix0             = _mm_macc_pd(dx00,fscal,fix0);
284             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
285             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
286             
287             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
288             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
289             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             /* Compute parameters for interactions between i and j atoms */
296             qq10             = _mm_mul_pd(iq1,jq0);
297
298             /* COULOMB ELECTROSTATICS */
299             velec            = _mm_mul_pd(qq10,rinv10);
300             felec            = _mm_mul_pd(velec,rinvsq10);
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velecsum         = _mm_add_pd(velecsum,velec);
304
305             fscal            = felec;
306
307             /* Update vectorial force */
308             fix1             = _mm_macc_pd(dx10,fscal,fix1);
309             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
310             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
311             
312             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
313             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
314             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq20             = _mm_mul_pd(iq2,jq0);
322
323             /* COULOMB ELECTROSTATICS */
324             velec            = _mm_mul_pd(qq20,rinv20);
325             felec            = _mm_mul_pd(velec,rinvsq20);
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velecsum         = _mm_add_pd(velecsum,velec);
329
330             fscal            = felec;
331
332             /* Update vectorial force */
333             fix2             = _mm_macc_pd(dx20,fscal,fix2);
334             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
335             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
336             
337             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
338             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
339             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
340
341             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
342
343             /* Inner loop uses 131 flops */
344         }
345
346         if(jidx<j_index_end)
347         {
348
349             jnrA             = jjnr[jidx];
350             j_coord_offsetA  = DIM*jnrA;
351
352             /* load j atom coordinates */
353             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
354                                               &jx0,&jy0,&jz0);
355
356             /* Calculate displacement vector */
357             dx00             = _mm_sub_pd(ix0,jx0);
358             dy00             = _mm_sub_pd(iy0,jy0);
359             dz00             = _mm_sub_pd(iz0,jz0);
360             dx10             = _mm_sub_pd(ix1,jx0);
361             dy10             = _mm_sub_pd(iy1,jy0);
362             dz10             = _mm_sub_pd(iz1,jz0);
363             dx20             = _mm_sub_pd(ix2,jx0);
364             dy20             = _mm_sub_pd(iy2,jy0);
365             dz20             = _mm_sub_pd(iz2,jz0);
366
367             /* Calculate squared distance and things based on it */
368             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
369             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
370             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
371
372             rinv00           = gmx_mm_invsqrt_pd(rsq00);
373             rinv10           = gmx_mm_invsqrt_pd(rsq10);
374             rinv20           = gmx_mm_invsqrt_pd(rsq20);
375
376             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
377             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
378             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
379
380             /* Load parameters for j particles */
381             jq0              = _mm_load_sd(charge+jnrA+0);
382             vdwjidx0A        = 2*vdwtype[jnrA+0];
383
384             fjx0             = _mm_setzero_pd();
385             fjy0             = _mm_setzero_pd();
386             fjz0             = _mm_setzero_pd();
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             r00              = _mm_mul_pd(rsq00,rinv00);
393
394             /* Compute parameters for interactions between i and j atoms */
395             qq00             = _mm_mul_pd(iq0,jq0);
396             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
397
398             /* Calculate table index by multiplying r with table scale and truncate to integer */
399             rt               = _mm_mul_pd(r00,vftabscale);
400             vfitab           = _mm_cvttpd_epi32(rt);
401 #ifdef __XOP__
402             vfeps            = _mm_frcz_pd(rt);
403 #else
404             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
405 #endif
406             twovfeps         = _mm_add_pd(vfeps,vfeps);
407             vfitab           = _mm_slli_epi32(vfitab,3);
408
409             /* COULOMB ELECTROSTATICS */
410             velec            = _mm_mul_pd(qq00,rinv00);
411             felec            = _mm_mul_pd(velec,rinvsq00);
412
413             /* CUBIC SPLINE TABLE DISPERSION */
414             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
415             F                = _mm_setzero_pd();
416             GMX_MM_TRANSPOSE2_PD(Y,F);
417             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
418             H                = _mm_setzero_pd();
419             GMX_MM_TRANSPOSE2_PD(G,H);
420             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
421             VV               = _mm_macc_pd(vfeps,Fp,Y);
422             vvdw6            = _mm_mul_pd(c6_00,VV);
423             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
424             fvdw6            = _mm_mul_pd(c6_00,FF);
425
426             /* CUBIC SPLINE TABLE REPULSION */
427             vfitab           = _mm_add_epi32(vfitab,ifour);
428             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
429             F                = _mm_setzero_pd();
430             GMX_MM_TRANSPOSE2_PD(Y,F);
431             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
432             H                = _mm_setzero_pd();
433             GMX_MM_TRANSPOSE2_PD(G,H);
434             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
435             VV               = _mm_macc_pd(vfeps,Fp,Y);
436             vvdw12           = _mm_mul_pd(c12_00,VV);
437             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
438             fvdw12           = _mm_mul_pd(c12_00,FF);
439             vvdw             = _mm_add_pd(vvdw12,vvdw6);
440             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
441
442             /* Update potential sum for this i atom from the interaction with this j atom. */
443             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
444             velecsum         = _mm_add_pd(velecsum,velec);
445             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
446             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
447
448             fscal            = _mm_add_pd(felec,fvdw);
449
450             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
451
452             /* Update vectorial force */
453             fix0             = _mm_macc_pd(dx00,fscal,fix0);
454             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
455             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
456             
457             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
458             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
459             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             /* Compute parameters for interactions between i and j atoms */
466             qq10             = _mm_mul_pd(iq1,jq0);
467
468             /* COULOMB ELECTROSTATICS */
469             velec            = _mm_mul_pd(qq10,rinv10);
470             felec            = _mm_mul_pd(velec,rinvsq10);
471
472             /* Update potential sum for this i atom from the interaction with this j atom. */
473             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
474             velecsum         = _mm_add_pd(velecsum,velec);
475
476             fscal            = felec;
477
478             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
479
480             /* Update vectorial force */
481             fix1             = _mm_macc_pd(dx10,fscal,fix1);
482             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
483             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
484             
485             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
486             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
487             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             /* Compute parameters for interactions between i and j atoms */
494             qq20             = _mm_mul_pd(iq2,jq0);
495
496             /* COULOMB ELECTROSTATICS */
497             velec            = _mm_mul_pd(qq20,rinv20);
498             felec            = _mm_mul_pd(velec,rinvsq20);
499
500             /* Update potential sum for this i atom from the interaction with this j atom. */
501             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
502             velecsum         = _mm_add_pd(velecsum,velec);
503
504             fscal            = felec;
505
506             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
507
508             /* Update vectorial force */
509             fix2             = _mm_macc_pd(dx20,fscal,fix2);
510             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
511             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
512             
513             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
514             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
515             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
516
517             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
518
519             /* Inner loop uses 131 flops */
520         }
521
522         /* End of innermost loop */
523
524         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
525                                               f+i_coord_offset,fshift+i_shift_offset);
526
527         ggid                        = gid[iidx];
528         /* Update potential energies */
529         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
530         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
531
532         /* Increment number of inner iterations */
533         inneriter                  += j_index_end - j_index_start;
534
535         /* Outer loop uses 20 flops */
536     }
537
538     /* Increment number of outer iterations */
539     outeriter        += nri;
540
541     /* Update outer/inner flops */
542
543     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*131);
544 }
545 /*
546  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_double
547  * Electrostatics interaction: Coulomb
548  * VdW interaction:            CubicSplineTable
549  * Geometry:                   Water3-Particle
550  * Calculate force/pot:        Force
551  */
552 void
553 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_double
554                     (t_nblist                    * gmx_restrict       nlist,
555                      rvec                        * gmx_restrict          xx,
556                      rvec                        * gmx_restrict          ff,
557                      t_forcerec                  * gmx_restrict          fr,
558                      t_mdatoms                   * gmx_restrict     mdatoms,
559                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
560                      t_nrnb                      * gmx_restrict        nrnb)
561 {
562     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
563      * just 0 for non-waters.
564      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
565      * jnr indices corresponding to data put in the four positions in the SIMD register.
566      */
567     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
568     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
569     int              jnrA,jnrB;
570     int              j_coord_offsetA,j_coord_offsetB;
571     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
572     real             rcutoff_scalar;
573     real             *shiftvec,*fshift,*x,*f;
574     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
575     int              vdwioffset0;
576     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
577     int              vdwioffset1;
578     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
579     int              vdwioffset2;
580     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
581     int              vdwjidx0A,vdwjidx0B;
582     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
583     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
584     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
585     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
586     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
587     real             *charge;
588     int              nvdwtype;
589     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
590     int              *vdwtype;
591     real             *vdwparam;
592     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
593     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
594     __m128i          vfitab;
595     __m128i          ifour       = _mm_set1_epi32(4);
596     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
597     real             *vftab;
598     __m128d          dummy_mask,cutoff_mask;
599     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
600     __m128d          one     = _mm_set1_pd(1.0);
601     __m128d          two     = _mm_set1_pd(2.0);
602     x                = xx[0];
603     f                = ff[0];
604
605     nri              = nlist->nri;
606     iinr             = nlist->iinr;
607     jindex           = nlist->jindex;
608     jjnr             = nlist->jjnr;
609     shiftidx         = nlist->shift;
610     gid              = nlist->gid;
611     shiftvec         = fr->shift_vec[0];
612     fshift           = fr->fshift[0];
613     facel            = _mm_set1_pd(fr->epsfac);
614     charge           = mdatoms->chargeA;
615     nvdwtype         = fr->ntype;
616     vdwparam         = fr->nbfp;
617     vdwtype          = mdatoms->typeA;
618
619     vftab            = kernel_data->table_vdw->data;
620     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
621
622     /* Setup water-specific parameters */
623     inr              = nlist->iinr[0];
624     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
625     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
626     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
627     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
628
629     /* Avoid stupid compiler warnings */
630     jnrA = jnrB = 0;
631     j_coord_offsetA = 0;
632     j_coord_offsetB = 0;
633
634     outeriter        = 0;
635     inneriter        = 0;
636
637     /* Start outer loop over neighborlists */
638     for(iidx=0; iidx<nri; iidx++)
639     {
640         /* Load shift vector for this list */
641         i_shift_offset   = DIM*shiftidx[iidx];
642
643         /* Load limits for loop over neighbors */
644         j_index_start    = jindex[iidx];
645         j_index_end      = jindex[iidx+1];
646
647         /* Get outer coordinate index */
648         inr              = iinr[iidx];
649         i_coord_offset   = DIM*inr;
650
651         /* Load i particle coords and add shift vector */
652         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
653                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
654
655         fix0             = _mm_setzero_pd();
656         fiy0             = _mm_setzero_pd();
657         fiz0             = _mm_setzero_pd();
658         fix1             = _mm_setzero_pd();
659         fiy1             = _mm_setzero_pd();
660         fiz1             = _mm_setzero_pd();
661         fix2             = _mm_setzero_pd();
662         fiy2             = _mm_setzero_pd();
663         fiz2             = _mm_setzero_pd();
664
665         /* Start inner kernel loop */
666         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
667         {
668
669             /* Get j neighbor index, and coordinate index */
670             jnrA             = jjnr[jidx];
671             jnrB             = jjnr[jidx+1];
672             j_coord_offsetA  = DIM*jnrA;
673             j_coord_offsetB  = DIM*jnrB;
674
675             /* load j atom coordinates */
676             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
677                                               &jx0,&jy0,&jz0);
678
679             /* Calculate displacement vector */
680             dx00             = _mm_sub_pd(ix0,jx0);
681             dy00             = _mm_sub_pd(iy0,jy0);
682             dz00             = _mm_sub_pd(iz0,jz0);
683             dx10             = _mm_sub_pd(ix1,jx0);
684             dy10             = _mm_sub_pd(iy1,jy0);
685             dz10             = _mm_sub_pd(iz1,jz0);
686             dx20             = _mm_sub_pd(ix2,jx0);
687             dy20             = _mm_sub_pd(iy2,jy0);
688             dz20             = _mm_sub_pd(iz2,jz0);
689
690             /* Calculate squared distance and things based on it */
691             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
692             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
693             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
694
695             rinv00           = gmx_mm_invsqrt_pd(rsq00);
696             rinv10           = gmx_mm_invsqrt_pd(rsq10);
697             rinv20           = gmx_mm_invsqrt_pd(rsq20);
698
699             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
700             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
701             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
702
703             /* Load parameters for j particles */
704             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
705             vdwjidx0A        = 2*vdwtype[jnrA+0];
706             vdwjidx0B        = 2*vdwtype[jnrB+0];
707
708             fjx0             = _mm_setzero_pd();
709             fjy0             = _mm_setzero_pd();
710             fjz0             = _mm_setzero_pd();
711
712             /**************************
713              * CALCULATE INTERACTIONS *
714              **************************/
715
716             r00              = _mm_mul_pd(rsq00,rinv00);
717
718             /* Compute parameters for interactions between i and j atoms */
719             qq00             = _mm_mul_pd(iq0,jq0);
720             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
721                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
722
723             /* Calculate table index by multiplying r with table scale and truncate to integer */
724             rt               = _mm_mul_pd(r00,vftabscale);
725             vfitab           = _mm_cvttpd_epi32(rt);
726 #ifdef __XOP__
727             vfeps            = _mm_frcz_pd(rt);
728 #else
729             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
730 #endif
731             twovfeps         = _mm_add_pd(vfeps,vfeps);
732             vfitab           = _mm_slli_epi32(vfitab,3);
733
734             /* COULOMB ELECTROSTATICS */
735             velec            = _mm_mul_pd(qq00,rinv00);
736             felec            = _mm_mul_pd(velec,rinvsq00);
737
738             /* CUBIC SPLINE TABLE DISPERSION */
739             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
740             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
741             GMX_MM_TRANSPOSE2_PD(Y,F);
742             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
743             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
744             GMX_MM_TRANSPOSE2_PD(G,H);
745             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
746             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
747             fvdw6            = _mm_mul_pd(c6_00,FF);
748
749             /* CUBIC SPLINE TABLE REPULSION */
750             vfitab           = _mm_add_epi32(vfitab,ifour);
751             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
752             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
753             GMX_MM_TRANSPOSE2_PD(Y,F);
754             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
755             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
756             GMX_MM_TRANSPOSE2_PD(G,H);
757             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
758             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
759             fvdw12           = _mm_mul_pd(c12_00,FF);
760             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
761
762             fscal            = _mm_add_pd(felec,fvdw);
763
764             /* Update vectorial force */
765             fix0             = _mm_macc_pd(dx00,fscal,fix0);
766             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
767             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
768             
769             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
770             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
771             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
772
773             /**************************
774              * CALCULATE INTERACTIONS *
775              **************************/
776
777             /* Compute parameters for interactions between i and j atoms */
778             qq10             = _mm_mul_pd(iq1,jq0);
779
780             /* COULOMB ELECTROSTATICS */
781             velec            = _mm_mul_pd(qq10,rinv10);
782             felec            = _mm_mul_pd(velec,rinvsq10);
783
784             fscal            = felec;
785
786             /* Update vectorial force */
787             fix1             = _mm_macc_pd(dx10,fscal,fix1);
788             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
789             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
790             
791             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
792             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
793             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
794
795             /**************************
796              * CALCULATE INTERACTIONS *
797              **************************/
798
799             /* Compute parameters for interactions between i and j atoms */
800             qq20             = _mm_mul_pd(iq2,jq0);
801
802             /* COULOMB ELECTROSTATICS */
803             velec            = _mm_mul_pd(qq20,rinv20);
804             felec            = _mm_mul_pd(velec,rinvsq20);
805
806             fscal            = felec;
807
808             /* Update vectorial force */
809             fix2             = _mm_macc_pd(dx20,fscal,fix2);
810             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
811             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
812             
813             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
814             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
815             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
816
817             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
818
819             /* Inner loop uses 120 flops */
820         }
821
822         if(jidx<j_index_end)
823         {
824
825             jnrA             = jjnr[jidx];
826             j_coord_offsetA  = DIM*jnrA;
827
828             /* load j atom coordinates */
829             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
830                                               &jx0,&jy0,&jz0);
831
832             /* Calculate displacement vector */
833             dx00             = _mm_sub_pd(ix0,jx0);
834             dy00             = _mm_sub_pd(iy0,jy0);
835             dz00             = _mm_sub_pd(iz0,jz0);
836             dx10             = _mm_sub_pd(ix1,jx0);
837             dy10             = _mm_sub_pd(iy1,jy0);
838             dz10             = _mm_sub_pd(iz1,jz0);
839             dx20             = _mm_sub_pd(ix2,jx0);
840             dy20             = _mm_sub_pd(iy2,jy0);
841             dz20             = _mm_sub_pd(iz2,jz0);
842
843             /* Calculate squared distance and things based on it */
844             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
845             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
846             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
847
848             rinv00           = gmx_mm_invsqrt_pd(rsq00);
849             rinv10           = gmx_mm_invsqrt_pd(rsq10);
850             rinv20           = gmx_mm_invsqrt_pd(rsq20);
851
852             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
853             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
854             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
855
856             /* Load parameters for j particles */
857             jq0              = _mm_load_sd(charge+jnrA+0);
858             vdwjidx0A        = 2*vdwtype[jnrA+0];
859
860             fjx0             = _mm_setzero_pd();
861             fjy0             = _mm_setzero_pd();
862             fjz0             = _mm_setzero_pd();
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             r00              = _mm_mul_pd(rsq00,rinv00);
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq00             = _mm_mul_pd(iq0,jq0);
872             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
873
874             /* Calculate table index by multiplying r with table scale and truncate to integer */
875             rt               = _mm_mul_pd(r00,vftabscale);
876             vfitab           = _mm_cvttpd_epi32(rt);
877 #ifdef __XOP__
878             vfeps            = _mm_frcz_pd(rt);
879 #else
880             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
881 #endif
882             twovfeps         = _mm_add_pd(vfeps,vfeps);
883             vfitab           = _mm_slli_epi32(vfitab,3);
884
885             /* COULOMB ELECTROSTATICS */
886             velec            = _mm_mul_pd(qq00,rinv00);
887             felec            = _mm_mul_pd(velec,rinvsq00);
888
889             /* CUBIC SPLINE TABLE DISPERSION */
890             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
891             F                = _mm_setzero_pd();
892             GMX_MM_TRANSPOSE2_PD(Y,F);
893             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
894             H                = _mm_setzero_pd();
895             GMX_MM_TRANSPOSE2_PD(G,H);
896             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
897             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
898             fvdw6            = _mm_mul_pd(c6_00,FF);
899
900             /* CUBIC SPLINE TABLE REPULSION */
901             vfitab           = _mm_add_epi32(vfitab,ifour);
902             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
903             F                = _mm_setzero_pd();
904             GMX_MM_TRANSPOSE2_PD(Y,F);
905             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
906             H                = _mm_setzero_pd();
907             GMX_MM_TRANSPOSE2_PD(G,H);
908             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
909             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
910             fvdw12           = _mm_mul_pd(c12_00,FF);
911             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
912
913             fscal            = _mm_add_pd(felec,fvdw);
914
915             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
916
917             /* Update vectorial force */
918             fix0             = _mm_macc_pd(dx00,fscal,fix0);
919             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
920             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
921             
922             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
923             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
924             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
925
926             /**************************
927              * CALCULATE INTERACTIONS *
928              **************************/
929
930             /* Compute parameters for interactions between i and j atoms */
931             qq10             = _mm_mul_pd(iq1,jq0);
932
933             /* COULOMB ELECTROSTATICS */
934             velec            = _mm_mul_pd(qq10,rinv10);
935             felec            = _mm_mul_pd(velec,rinvsq10);
936
937             fscal            = felec;
938
939             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
940
941             /* Update vectorial force */
942             fix1             = _mm_macc_pd(dx10,fscal,fix1);
943             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
944             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
945             
946             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
947             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
948             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             /* Compute parameters for interactions between i and j atoms */
955             qq20             = _mm_mul_pd(iq2,jq0);
956
957             /* COULOMB ELECTROSTATICS */
958             velec            = _mm_mul_pd(qq20,rinv20);
959             felec            = _mm_mul_pd(velec,rinvsq20);
960
961             fscal            = felec;
962
963             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
964
965             /* Update vectorial force */
966             fix2             = _mm_macc_pd(dx20,fscal,fix2);
967             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
968             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
969             
970             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
971             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
972             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
973
974             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
975
976             /* Inner loop uses 120 flops */
977         }
978
979         /* End of innermost loop */
980
981         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
982                                               f+i_coord_offset,fshift+i_shift_offset);
983
984         /* Increment number of inner iterations */
985         inneriter                  += j_index_end - j_index_start;
986
987         /* Outer loop uses 18 flops */
988     }
989
990     /* Increment number of outer iterations */
991     outeriter        += nri;
992
993     /* Update outer/inner flops */
994
995     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*120);
996 }