Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
161
162         fix0             = _mm_setzero_pd();
163         fiy0             = _mm_setzero_pd();
164         fiz0             = _mm_setzero_pd();
165         fix1             = _mm_setzero_pd();
166         fiy1             = _mm_setzero_pd();
167         fiz1             = _mm_setzero_pd();
168         fix2             = _mm_setzero_pd();
169         fiy2             = _mm_setzero_pd();
170         fiz2             = _mm_setzero_pd();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_pd();
174         vvdwsum          = _mm_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185
186             /* load j atom coordinates */
187             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_pd(ix0,jx0);
192             dy00             = _mm_sub_pd(iy0,jy0);
193             dz00             = _mm_sub_pd(iz0,jz0);
194             dx10             = _mm_sub_pd(ix1,jx0);
195             dy10             = _mm_sub_pd(iy1,jy0);
196             dz10             = _mm_sub_pd(iz1,jz0);
197             dx20             = _mm_sub_pd(ix2,jx0);
198             dy20             = _mm_sub_pd(iy2,jy0);
199             dz20             = _mm_sub_pd(iz2,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
203             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
204             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
205
206             rinv00           = gmx_mm_invsqrt_pd(rsq00);
207             rinv10           = gmx_mm_invsqrt_pd(rsq10);
208             rinv20           = gmx_mm_invsqrt_pd(rsq20);
209
210             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
211             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
212             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218
219             fjx0             = _mm_setzero_pd();
220             fjy0             = _mm_setzero_pd();
221             fjz0             = _mm_setzero_pd();
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             r00              = _mm_mul_pd(rsq00,rinv00);
228
229             /* Compute parameters for interactions between i and j atoms */
230             qq00             = _mm_mul_pd(iq0,jq0);
231             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
232                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
233
234             /* Calculate table index by multiplying r with table scale and truncate to integer */
235             rt               = _mm_mul_pd(r00,vftabscale);
236             vfitab           = _mm_cvttpd_epi32(rt);
237 #ifdef __XOP__
238             vfeps            = _mm_frcz_pd(rt);
239 #else
240             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
241 #endif
242             twovfeps         = _mm_add_pd(vfeps,vfeps);
243             vfitab           = _mm_slli_epi32(vfitab,3);
244
245             /* COULOMB ELECTROSTATICS */
246             velec            = _mm_mul_pd(qq00,rinv00);
247             felec            = _mm_mul_pd(velec,rinvsq00);
248
249             /* CUBIC SPLINE TABLE DISPERSION */
250             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
251             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
252             GMX_MM_TRANSPOSE2_PD(Y,F);
253             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
254             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
255             GMX_MM_TRANSPOSE2_PD(G,H);
256             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
257             VV               = _mm_macc_pd(vfeps,Fp,Y);
258             vvdw6            = _mm_mul_pd(c6_00,VV);
259             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
260             fvdw6            = _mm_mul_pd(c6_00,FF);
261
262             /* CUBIC SPLINE TABLE REPULSION */
263             vfitab           = _mm_add_epi32(vfitab,ifour);
264             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
265             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
266             GMX_MM_TRANSPOSE2_PD(Y,F);
267             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
268             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
269             GMX_MM_TRANSPOSE2_PD(G,H);
270             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
271             VV               = _mm_macc_pd(vfeps,Fp,Y);
272             vvdw12           = _mm_mul_pd(c12_00,VV);
273             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
274             fvdw12           = _mm_mul_pd(c12_00,FF);
275             vvdw             = _mm_add_pd(vvdw12,vvdw6);
276             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm_add_pd(velecsum,velec);
280             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
281
282             fscal            = _mm_add_pd(felec,fvdw);
283
284             /* Update vectorial force */
285             fix0             = _mm_macc_pd(dx00,fscal,fix0);
286             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
287             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
288             
289             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
290             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
291             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq10             = _mm_mul_pd(iq1,jq0);
299
300             /* COULOMB ELECTROSTATICS */
301             velec            = _mm_mul_pd(qq10,rinv10);
302             felec            = _mm_mul_pd(velec,rinvsq10);
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             velecsum         = _mm_add_pd(velecsum,velec);
306
307             fscal            = felec;
308
309             /* Update vectorial force */
310             fix1             = _mm_macc_pd(dx10,fscal,fix1);
311             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
312             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
313             
314             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
315             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
316             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq20             = _mm_mul_pd(iq2,jq0);
324
325             /* COULOMB ELECTROSTATICS */
326             velec            = _mm_mul_pd(qq20,rinv20);
327             felec            = _mm_mul_pd(velec,rinvsq20);
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velecsum         = _mm_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             /* Update vectorial force */
335             fix2             = _mm_macc_pd(dx20,fscal,fix2);
336             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
337             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
338             
339             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
340             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
341             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
342
343             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
344
345             /* Inner loop uses 131 flops */
346         }
347
348         if(jidx<j_index_end)
349         {
350
351             jnrA             = jjnr[jidx];
352             j_coord_offsetA  = DIM*jnrA;
353
354             /* load j atom coordinates */
355             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
356                                               &jx0,&jy0,&jz0);
357
358             /* Calculate displacement vector */
359             dx00             = _mm_sub_pd(ix0,jx0);
360             dy00             = _mm_sub_pd(iy0,jy0);
361             dz00             = _mm_sub_pd(iz0,jz0);
362             dx10             = _mm_sub_pd(ix1,jx0);
363             dy10             = _mm_sub_pd(iy1,jy0);
364             dz10             = _mm_sub_pd(iz1,jz0);
365             dx20             = _mm_sub_pd(ix2,jx0);
366             dy20             = _mm_sub_pd(iy2,jy0);
367             dz20             = _mm_sub_pd(iz2,jz0);
368
369             /* Calculate squared distance and things based on it */
370             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
371             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
372             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
373
374             rinv00           = gmx_mm_invsqrt_pd(rsq00);
375             rinv10           = gmx_mm_invsqrt_pd(rsq10);
376             rinv20           = gmx_mm_invsqrt_pd(rsq20);
377
378             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
379             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
380             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
381
382             /* Load parameters for j particles */
383             jq0              = _mm_load_sd(charge+jnrA+0);
384             vdwjidx0A        = 2*vdwtype[jnrA+0];
385
386             fjx0             = _mm_setzero_pd();
387             fjy0             = _mm_setzero_pd();
388             fjz0             = _mm_setzero_pd();
389
390             /**************************
391              * CALCULATE INTERACTIONS *
392              **************************/
393
394             r00              = _mm_mul_pd(rsq00,rinv00);
395
396             /* Compute parameters for interactions between i and j atoms */
397             qq00             = _mm_mul_pd(iq0,jq0);
398             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
399
400             /* Calculate table index by multiplying r with table scale and truncate to integer */
401             rt               = _mm_mul_pd(r00,vftabscale);
402             vfitab           = _mm_cvttpd_epi32(rt);
403 #ifdef __XOP__
404             vfeps            = _mm_frcz_pd(rt);
405 #else
406             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
407 #endif
408             twovfeps         = _mm_add_pd(vfeps,vfeps);
409             vfitab           = _mm_slli_epi32(vfitab,3);
410
411             /* COULOMB ELECTROSTATICS */
412             velec            = _mm_mul_pd(qq00,rinv00);
413             felec            = _mm_mul_pd(velec,rinvsq00);
414
415             /* CUBIC SPLINE TABLE DISPERSION */
416             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
417             F                = _mm_setzero_pd();
418             GMX_MM_TRANSPOSE2_PD(Y,F);
419             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
420             H                = _mm_setzero_pd();
421             GMX_MM_TRANSPOSE2_PD(G,H);
422             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
423             VV               = _mm_macc_pd(vfeps,Fp,Y);
424             vvdw6            = _mm_mul_pd(c6_00,VV);
425             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
426             fvdw6            = _mm_mul_pd(c6_00,FF);
427
428             /* CUBIC SPLINE TABLE REPULSION */
429             vfitab           = _mm_add_epi32(vfitab,ifour);
430             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
431             F                = _mm_setzero_pd();
432             GMX_MM_TRANSPOSE2_PD(Y,F);
433             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
434             H                = _mm_setzero_pd();
435             GMX_MM_TRANSPOSE2_PD(G,H);
436             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
437             VV               = _mm_macc_pd(vfeps,Fp,Y);
438             vvdw12           = _mm_mul_pd(c12_00,VV);
439             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
440             fvdw12           = _mm_mul_pd(c12_00,FF);
441             vvdw             = _mm_add_pd(vvdw12,vvdw6);
442             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
443
444             /* Update potential sum for this i atom from the interaction with this j atom. */
445             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
446             velecsum         = _mm_add_pd(velecsum,velec);
447             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
448             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
449
450             fscal            = _mm_add_pd(felec,fvdw);
451
452             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
453
454             /* Update vectorial force */
455             fix0             = _mm_macc_pd(dx00,fscal,fix0);
456             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
457             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
458             
459             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
460             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
461             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
462
463             /**************************
464              * CALCULATE INTERACTIONS *
465              **************************/
466
467             /* Compute parameters for interactions between i and j atoms */
468             qq10             = _mm_mul_pd(iq1,jq0);
469
470             /* COULOMB ELECTROSTATICS */
471             velec            = _mm_mul_pd(qq10,rinv10);
472             felec            = _mm_mul_pd(velec,rinvsq10);
473
474             /* Update potential sum for this i atom from the interaction with this j atom. */
475             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
476             velecsum         = _mm_add_pd(velecsum,velec);
477
478             fscal            = felec;
479
480             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
481
482             /* Update vectorial force */
483             fix1             = _mm_macc_pd(dx10,fscal,fix1);
484             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
485             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
486             
487             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
488             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
489             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             /* Compute parameters for interactions between i and j atoms */
496             qq20             = _mm_mul_pd(iq2,jq0);
497
498             /* COULOMB ELECTROSTATICS */
499             velec            = _mm_mul_pd(qq20,rinv20);
500             felec            = _mm_mul_pd(velec,rinvsq20);
501
502             /* Update potential sum for this i atom from the interaction with this j atom. */
503             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
504             velecsum         = _mm_add_pd(velecsum,velec);
505
506             fscal            = felec;
507
508             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
509
510             /* Update vectorial force */
511             fix2             = _mm_macc_pd(dx20,fscal,fix2);
512             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
513             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
514             
515             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
516             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
517             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
518
519             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
520
521             /* Inner loop uses 131 flops */
522         }
523
524         /* End of innermost loop */
525
526         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
527                                               f+i_coord_offset,fshift+i_shift_offset);
528
529         ggid                        = gid[iidx];
530         /* Update potential energies */
531         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
532         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
533
534         /* Increment number of inner iterations */
535         inneriter                  += j_index_end - j_index_start;
536
537         /* Outer loop uses 20 flops */
538     }
539
540     /* Increment number of outer iterations */
541     outeriter        += nri;
542
543     /* Update outer/inner flops */
544
545     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*131);
546 }
547 /*
548  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_double
549  * Electrostatics interaction: Coulomb
550  * VdW interaction:            CubicSplineTable
551  * Geometry:                   Water3-Particle
552  * Calculate force/pot:        Force
553  */
554 void
555 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_128_fma_double
556                     (t_nblist                    * gmx_restrict       nlist,
557                      rvec                        * gmx_restrict          xx,
558                      rvec                        * gmx_restrict          ff,
559                      t_forcerec                  * gmx_restrict          fr,
560                      t_mdatoms                   * gmx_restrict     mdatoms,
561                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
562                      t_nrnb                      * gmx_restrict        nrnb)
563 {
564     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
565      * just 0 for non-waters.
566      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
567      * jnr indices corresponding to data put in the four positions in the SIMD register.
568      */
569     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
570     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
571     int              jnrA,jnrB;
572     int              j_coord_offsetA,j_coord_offsetB;
573     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
574     real             rcutoff_scalar;
575     real             *shiftvec,*fshift,*x,*f;
576     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
577     int              vdwioffset0;
578     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
579     int              vdwioffset1;
580     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
581     int              vdwioffset2;
582     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
583     int              vdwjidx0A,vdwjidx0B;
584     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
585     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
586     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
587     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
588     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
589     real             *charge;
590     int              nvdwtype;
591     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
592     int              *vdwtype;
593     real             *vdwparam;
594     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
595     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
596     __m128i          vfitab;
597     __m128i          ifour       = _mm_set1_epi32(4);
598     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
599     real             *vftab;
600     __m128d          dummy_mask,cutoff_mask;
601     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
602     __m128d          one     = _mm_set1_pd(1.0);
603     __m128d          two     = _mm_set1_pd(2.0);
604     x                = xx[0];
605     f                = ff[0];
606
607     nri              = nlist->nri;
608     iinr             = nlist->iinr;
609     jindex           = nlist->jindex;
610     jjnr             = nlist->jjnr;
611     shiftidx         = nlist->shift;
612     gid              = nlist->gid;
613     shiftvec         = fr->shift_vec[0];
614     fshift           = fr->fshift[0];
615     facel            = _mm_set1_pd(fr->epsfac);
616     charge           = mdatoms->chargeA;
617     nvdwtype         = fr->ntype;
618     vdwparam         = fr->nbfp;
619     vdwtype          = mdatoms->typeA;
620
621     vftab            = kernel_data->table_vdw->data;
622     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
623
624     /* Setup water-specific parameters */
625     inr              = nlist->iinr[0];
626     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
627     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
628     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
629     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
630
631     /* Avoid stupid compiler warnings */
632     jnrA = jnrB = 0;
633     j_coord_offsetA = 0;
634     j_coord_offsetB = 0;
635
636     outeriter        = 0;
637     inneriter        = 0;
638
639     /* Start outer loop over neighborlists */
640     for(iidx=0; iidx<nri; iidx++)
641     {
642         /* Load shift vector for this list */
643         i_shift_offset   = DIM*shiftidx[iidx];
644
645         /* Load limits for loop over neighbors */
646         j_index_start    = jindex[iidx];
647         j_index_end      = jindex[iidx+1];
648
649         /* Get outer coordinate index */
650         inr              = iinr[iidx];
651         i_coord_offset   = DIM*inr;
652
653         /* Load i particle coords and add shift vector */
654         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
655                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
656
657         fix0             = _mm_setzero_pd();
658         fiy0             = _mm_setzero_pd();
659         fiz0             = _mm_setzero_pd();
660         fix1             = _mm_setzero_pd();
661         fiy1             = _mm_setzero_pd();
662         fiz1             = _mm_setzero_pd();
663         fix2             = _mm_setzero_pd();
664         fiy2             = _mm_setzero_pd();
665         fiz2             = _mm_setzero_pd();
666
667         /* Start inner kernel loop */
668         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
669         {
670
671             /* Get j neighbor index, and coordinate index */
672             jnrA             = jjnr[jidx];
673             jnrB             = jjnr[jidx+1];
674             j_coord_offsetA  = DIM*jnrA;
675             j_coord_offsetB  = DIM*jnrB;
676
677             /* load j atom coordinates */
678             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
679                                               &jx0,&jy0,&jz0);
680
681             /* Calculate displacement vector */
682             dx00             = _mm_sub_pd(ix0,jx0);
683             dy00             = _mm_sub_pd(iy0,jy0);
684             dz00             = _mm_sub_pd(iz0,jz0);
685             dx10             = _mm_sub_pd(ix1,jx0);
686             dy10             = _mm_sub_pd(iy1,jy0);
687             dz10             = _mm_sub_pd(iz1,jz0);
688             dx20             = _mm_sub_pd(ix2,jx0);
689             dy20             = _mm_sub_pd(iy2,jy0);
690             dz20             = _mm_sub_pd(iz2,jz0);
691
692             /* Calculate squared distance and things based on it */
693             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
694             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
695             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
696
697             rinv00           = gmx_mm_invsqrt_pd(rsq00);
698             rinv10           = gmx_mm_invsqrt_pd(rsq10);
699             rinv20           = gmx_mm_invsqrt_pd(rsq20);
700
701             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
702             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
703             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
704
705             /* Load parameters for j particles */
706             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
707             vdwjidx0A        = 2*vdwtype[jnrA+0];
708             vdwjidx0B        = 2*vdwtype[jnrB+0];
709
710             fjx0             = _mm_setzero_pd();
711             fjy0             = _mm_setzero_pd();
712             fjz0             = _mm_setzero_pd();
713
714             /**************************
715              * CALCULATE INTERACTIONS *
716              **************************/
717
718             r00              = _mm_mul_pd(rsq00,rinv00);
719
720             /* Compute parameters for interactions between i and j atoms */
721             qq00             = _mm_mul_pd(iq0,jq0);
722             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
723                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
724
725             /* Calculate table index by multiplying r with table scale and truncate to integer */
726             rt               = _mm_mul_pd(r00,vftabscale);
727             vfitab           = _mm_cvttpd_epi32(rt);
728 #ifdef __XOP__
729             vfeps            = _mm_frcz_pd(rt);
730 #else
731             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
732 #endif
733             twovfeps         = _mm_add_pd(vfeps,vfeps);
734             vfitab           = _mm_slli_epi32(vfitab,3);
735
736             /* COULOMB ELECTROSTATICS */
737             velec            = _mm_mul_pd(qq00,rinv00);
738             felec            = _mm_mul_pd(velec,rinvsq00);
739
740             /* CUBIC SPLINE TABLE DISPERSION */
741             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
742             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
743             GMX_MM_TRANSPOSE2_PD(Y,F);
744             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
745             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
746             GMX_MM_TRANSPOSE2_PD(G,H);
747             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
748             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
749             fvdw6            = _mm_mul_pd(c6_00,FF);
750
751             /* CUBIC SPLINE TABLE REPULSION */
752             vfitab           = _mm_add_epi32(vfitab,ifour);
753             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
754             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
755             GMX_MM_TRANSPOSE2_PD(Y,F);
756             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
757             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
758             GMX_MM_TRANSPOSE2_PD(G,H);
759             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
760             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
761             fvdw12           = _mm_mul_pd(c12_00,FF);
762             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
763
764             fscal            = _mm_add_pd(felec,fvdw);
765
766             /* Update vectorial force */
767             fix0             = _mm_macc_pd(dx00,fscal,fix0);
768             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
769             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
770             
771             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
772             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
773             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
774
775             /**************************
776              * CALCULATE INTERACTIONS *
777              **************************/
778
779             /* Compute parameters for interactions between i and j atoms */
780             qq10             = _mm_mul_pd(iq1,jq0);
781
782             /* COULOMB ELECTROSTATICS */
783             velec            = _mm_mul_pd(qq10,rinv10);
784             felec            = _mm_mul_pd(velec,rinvsq10);
785
786             fscal            = felec;
787
788             /* Update vectorial force */
789             fix1             = _mm_macc_pd(dx10,fscal,fix1);
790             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
791             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
792             
793             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
794             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
795             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
796
797             /**************************
798              * CALCULATE INTERACTIONS *
799              **************************/
800
801             /* Compute parameters for interactions between i and j atoms */
802             qq20             = _mm_mul_pd(iq2,jq0);
803
804             /* COULOMB ELECTROSTATICS */
805             velec            = _mm_mul_pd(qq20,rinv20);
806             felec            = _mm_mul_pd(velec,rinvsq20);
807
808             fscal            = felec;
809
810             /* Update vectorial force */
811             fix2             = _mm_macc_pd(dx20,fscal,fix2);
812             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
813             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
814             
815             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
816             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
817             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
818
819             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
820
821             /* Inner loop uses 120 flops */
822         }
823
824         if(jidx<j_index_end)
825         {
826
827             jnrA             = jjnr[jidx];
828             j_coord_offsetA  = DIM*jnrA;
829
830             /* load j atom coordinates */
831             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
832                                               &jx0,&jy0,&jz0);
833
834             /* Calculate displacement vector */
835             dx00             = _mm_sub_pd(ix0,jx0);
836             dy00             = _mm_sub_pd(iy0,jy0);
837             dz00             = _mm_sub_pd(iz0,jz0);
838             dx10             = _mm_sub_pd(ix1,jx0);
839             dy10             = _mm_sub_pd(iy1,jy0);
840             dz10             = _mm_sub_pd(iz1,jz0);
841             dx20             = _mm_sub_pd(ix2,jx0);
842             dy20             = _mm_sub_pd(iy2,jy0);
843             dz20             = _mm_sub_pd(iz2,jz0);
844
845             /* Calculate squared distance and things based on it */
846             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
847             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
848             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
849
850             rinv00           = gmx_mm_invsqrt_pd(rsq00);
851             rinv10           = gmx_mm_invsqrt_pd(rsq10);
852             rinv20           = gmx_mm_invsqrt_pd(rsq20);
853
854             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
855             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
856             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
857
858             /* Load parameters for j particles */
859             jq0              = _mm_load_sd(charge+jnrA+0);
860             vdwjidx0A        = 2*vdwtype[jnrA+0];
861
862             fjx0             = _mm_setzero_pd();
863             fjy0             = _mm_setzero_pd();
864             fjz0             = _mm_setzero_pd();
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             r00              = _mm_mul_pd(rsq00,rinv00);
871
872             /* Compute parameters for interactions between i and j atoms */
873             qq00             = _mm_mul_pd(iq0,jq0);
874             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
875
876             /* Calculate table index by multiplying r with table scale and truncate to integer */
877             rt               = _mm_mul_pd(r00,vftabscale);
878             vfitab           = _mm_cvttpd_epi32(rt);
879 #ifdef __XOP__
880             vfeps            = _mm_frcz_pd(rt);
881 #else
882             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
883 #endif
884             twovfeps         = _mm_add_pd(vfeps,vfeps);
885             vfitab           = _mm_slli_epi32(vfitab,3);
886
887             /* COULOMB ELECTROSTATICS */
888             velec            = _mm_mul_pd(qq00,rinv00);
889             felec            = _mm_mul_pd(velec,rinvsq00);
890
891             /* CUBIC SPLINE TABLE DISPERSION */
892             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
893             F                = _mm_setzero_pd();
894             GMX_MM_TRANSPOSE2_PD(Y,F);
895             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
896             H                = _mm_setzero_pd();
897             GMX_MM_TRANSPOSE2_PD(G,H);
898             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
899             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
900             fvdw6            = _mm_mul_pd(c6_00,FF);
901
902             /* CUBIC SPLINE TABLE REPULSION */
903             vfitab           = _mm_add_epi32(vfitab,ifour);
904             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
905             F                = _mm_setzero_pd();
906             GMX_MM_TRANSPOSE2_PD(Y,F);
907             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
908             H                = _mm_setzero_pd();
909             GMX_MM_TRANSPOSE2_PD(G,H);
910             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
911             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
912             fvdw12           = _mm_mul_pd(c12_00,FF);
913             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
914
915             fscal            = _mm_add_pd(felec,fvdw);
916
917             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
918
919             /* Update vectorial force */
920             fix0             = _mm_macc_pd(dx00,fscal,fix0);
921             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
922             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
923             
924             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
925             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
926             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
927
928             /**************************
929              * CALCULATE INTERACTIONS *
930              **************************/
931
932             /* Compute parameters for interactions between i and j atoms */
933             qq10             = _mm_mul_pd(iq1,jq0);
934
935             /* COULOMB ELECTROSTATICS */
936             velec            = _mm_mul_pd(qq10,rinv10);
937             felec            = _mm_mul_pd(velec,rinvsq10);
938
939             fscal            = felec;
940
941             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
942
943             /* Update vectorial force */
944             fix1             = _mm_macc_pd(dx10,fscal,fix1);
945             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
946             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
947             
948             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
949             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
950             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq20             = _mm_mul_pd(iq2,jq0);
958
959             /* COULOMB ELECTROSTATICS */
960             velec            = _mm_mul_pd(qq20,rinv20);
961             felec            = _mm_mul_pd(velec,rinvsq20);
962
963             fscal            = felec;
964
965             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
966
967             /* Update vectorial force */
968             fix2             = _mm_macc_pd(dx20,fscal,fix2);
969             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
970             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
971             
972             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
973             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
974             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
975
976             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
977
978             /* Inner loop uses 120 flops */
979         }
980
981         /* End of innermost loop */
982
983         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
984                                               f+i_coord_offset,fshift+i_shift_offset);
985
986         /* Increment number of inner iterations */
987         inneriter                  += j_index_end - j_index_start;
988
989         /* Outer loop uses 18 flops */
990     }
991
992     /* Increment number of outer iterations */
993     outeriter        += nri;
994
995     /* Update outer/inner flops */
996
997     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*120);
998 }