Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     vftab            = kernel_data->table_vdw->data;
119     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149
150         /* Load parameters for i particles */
151         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
152         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154         /* Reset potential sums */
155         velecsum         = _mm_setzero_pd();
156         vvdwsum          = _mm_setzero_pd();
157
158         /* Start inner kernel loop */
159         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
160         {
161
162             /* Get j neighbor index, and coordinate index */
163             jnrA             = jjnr[jidx];
164             jnrB             = jjnr[jidx+1];
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167
168             /* load j atom coordinates */
169             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
170                                               &jx0,&jy0,&jz0);
171
172             /* Calculate displacement vector */
173             dx00             = _mm_sub_pd(ix0,jx0);
174             dy00             = _mm_sub_pd(iy0,jy0);
175             dz00             = _mm_sub_pd(iz0,jz0);
176
177             /* Calculate squared distance and things based on it */
178             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
179
180             rinv00           = gmx_mm_invsqrt_pd(rsq00);
181
182             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
183
184             /* Load parameters for j particles */
185             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
186             vdwjidx0A        = 2*vdwtype[jnrA+0];
187             vdwjidx0B        = 2*vdwtype[jnrB+0];
188
189             /**************************
190              * CALCULATE INTERACTIONS *
191              **************************/
192
193             r00              = _mm_mul_pd(rsq00,rinv00);
194
195             /* Compute parameters for interactions between i and j atoms */
196             qq00             = _mm_mul_pd(iq0,jq0);
197             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
198                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
199
200             /* Calculate table index by multiplying r with table scale and truncate to integer */
201             rt               = _mm_mul_pd(r00,vftabscale);
202             vfitab           = _mm_cvttpd_epi32(rt);
203 #ifdef __XOP__
204             vfeps            = _mm_frcz_pd(rt);
205 #else
206             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
207 #endif
208             twovfeps         = _mm_add_pd(vfeps,vfeps);
209             vfitab           = _mm_slli_epi32(vfitab,3);
210
211             /* COULOMB ELECTROSTATICS */
212             velec            = _mm_mul_pd(qq00,rinv00);
213             felec            = _mm_mul_pd(velec,rinvsq00);
214
215             /* CUBIC SPLINE TABLE DISPERSION */
216             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
217             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
218             GMX_MM_TRANSPOSE2_PD(Y,F);
219             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
220             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
221             GMX_MM_TRANSPOSE2_PD(G,H);
222             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
223             VV               = _mm_macc_pd(vfeps,Fp,Y);
224             vvdw6            = _mm_mul_pd(c6_00,VV);
225             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
226             fvdw6            = _mm_mul_pd(c6_00,FF);
227
228             /* CUBIC SPLINE TABLE REPULSION */
229             vfitab           = _mm_add_epi32(vfitab,ifour);
230             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
231             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
232             GMX_MM_TRANSPOSE2_PD(Y,F);
233             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
234             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
235             GMX_MM_TRANSPOSE2_PD(G,H);
236             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
237             VV               = _mm_macc_pd(vfeps,Fp,Y);
238             vvdw12           = _mm_mul_pd(c12_00,VV);
239             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
240             fvdw12           = _mm_mul_pd(c12_00,FF);
241             vvdw             = _mm_add_pd(vvdw12,vvdw6);
242             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             velecsum         = _mm_add_pd(velecsum,velec);
246             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
247
248             fscal            = _mm_add_pd(felec,fvdw);
249
250             /* Update vectorial force */
251             fix0             = _mm_macc_pd(dx00,fscal,fix0);
252             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
253             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
254             
255             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
256                                                    _mm_mul_pd(dx00,fscal),
257                                                    _mm_mul_pd(dy00,fscal),
258                                                    _mm_mul_pd(dz00,fscal));
259
260             /* Inner loop uses 66 flops */
261         }
262
263         if(jidx<j_index_end)
264         {
265
266             jnrA             = jjnr[jidx];
267             j_coord_offsetA  = DIM*jnrA;
268
269             /* load j atom coordinates */
270             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
271                                               &jx0,&jy0,&jz0);
272
273             /* Calculate displacement vector */
274             dx00             = _mm_sub_pd(ix0,jx0);
275             dy00             = _mm_sub_pd(iy0,jy0);
276             dz00             = _mm_sub_pd(iz0,jz0);
277
278             /* Calculate squared distance and things based on it */
279             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
280
281             rinv00           = gmx_mm_invsqrt_pd(rsq00);
282
283             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
284
285             /* Load parameters for j particles */
286             jq0              = _mm_load_sd(charge+jnrA+0);
287             vdwjidx0A        = 2*vdwtype[jnrA+0];
288
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             r00              = _mm_mul_pd(rsq00,rinv00);
294
295             /* Compute parameters for interactions between i and j atoms */
296             qq00             = _mm_mul_pd(iq0,jq0);
297             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
298
299             /* Calculate table index by multiplying r with table scale and truncate to integer */
300             rt               = _mm_mul_pd(r00,vftabscale);
301             vfitab           = _mm_cvttpd_epi32(rt);
302 #ifdef __XOP__
303             vfeps            = _mm_frcz_pd(rt);
304 #else
305             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
306 #endif
307             twovfeps         = _mm_add_pd(vfeps,vfeps);
308             vfitab           = _mm_slli_epi32(vfitab,3);
309
310             /* COULOMB ELECTROSTATICS */
311             velec            = _mm_mul_pd(qq00,rinv00);
312             felec            = _mm_mul_pd(velec,rinvsq00);
313
314             /* CUBIC SPLINE TABLE DISPERSION */
315             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
316             F                = _mm_setzero_pd();
317             GMX_MM_TRANSPOSE2_PD(Y,F);
318             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
319             H                = _mm_setzero_pd();
320             GMX_MM_TRANSPOSE2_PD(G,H);
321             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
322             VV               = _mm_macc_pd(vfeps,Fp,Y);
323             vvdw6            = _mm_mul_pd(c6_00,VV);
324             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
325             fvdw6            = _mm_mul_pd(c6_00,FF);
326
327             /* CUBIC SPLINE TABLE REPULSION */
328             vfitab           = _mm_add_epi32(vfitab,ifour);
329             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
330             F                = _mm_setzero_pd();
331             GMX_MM_TRANSPOSE2_PD(Y,F);
332             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
333             H                = _mm_setzero_pd();
334             GMX_MM_TRANSPOSE2_PD(G,H);
335             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
336             VV               = _mm_macc_pd(vfeps,Fp,Y);
337             vvdw12           = _mm_mul_pd(c12_00,VV);
338             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
339             fvdw12           = _mm_mul_pd(c12_00,FF);
340             vvdw             = _mm_add_pd(vvdw12,vvdw6);
341             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
345             velecsum         = _mm_add_pd(velecsum,velec);
346             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
347             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
348
349             fscal            = _mm_add_pd(felec,fvdw);
350
351             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
352
353             /* Update vectorial force */
354             fix0             = _mm_macc_pd(dx00,fscal,fix0);
355             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
356             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
357             
358             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
359                                                    _mm_mul_pd(dx00,fscal),
360                                                    _mm_mul_pd(dy00,fscal),
361                                                    _mm_mul_pd(dz00,fscal));
362
363             /* Inner loop uses 66 flops */
364         }
365
366         /* End of innermost loop */
367
368         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
369                                               f+i_coord_offset,fshift+i_shift_offset);
370
371         ggid                        = gid[iidx];
372         /* Update potential energies */
373         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
374         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
375
376         /* Increment number of inner iterations */
377         inneriter                  += j_index_end - j_index_start;
378
379         /* Outer loop uses 9 flops */
380     }
381
382     /* Increment number of outer iterations */
383     outeriter        += nri;
384
385     /* Update outer/inner flops */
386
387     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*66);
388 }
389 /*
390  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_128_fma_double
391  * Electrostatics interaction: Coulomb
392  * VdW interaction:            CubicSplineTable
393  * Geometry:                   Particle-Particle
394  * Calculate force/pot:        Force
395  */
396 void
397 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_128_fma_double
398                     (t_nblist                    * gmx_restrict       nlist,
399                      rvec                        * gmx_restrict          xx,
400                      rvec                        * gmx_restrict          ff,
401                      t_forcerec                  * gmx_restrict          fr,
402                      t_mdatoms                   * gmx_restrict     mdatoms,
403                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
404                      t_nrnb                      * gmx_restrict        nrnb)
405 {
406     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
407      * just 0 for non-waters.
408      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
409      * jnr indices corresponding to data put in the four positions in the SIMD register.
410      */
411     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
412     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
413     int              jnrA,jnrB;
414     int              j_coord_offsetA,j_coord_offsetB;
415     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
416     real             rcutoff_scalar;
417     real             *shiftvec,*fshift,*x,*f;
418     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
419     int              vdwioffset0;
420     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
421     int              vdwjidx0A,vdwjidx0B;
422     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
423     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
424     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
425     real             *charge;
426     int              nvdwtype;
427     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
428     int              *vdwtype;
429     real             *vdwparam;
430     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
431     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
432     __m128i          vfitab;
433     __m128i          ifour       = _mm_set1_epi32(4);
434     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
435     real             *vftab;
436     __m128d          dummy_mask,cutoff_mask;
437     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
438     __m128d          one     = _mm_set1_pd(1.0);
439     __m128d          two     = _mm_set1_pd(2.0);
440     x                = xx[0];
441     f                = ff[0];
442
443     nri              = nlist->nri;
444     iinr             = nlist->iinr;
445     jindex           = nlist->jindex;
446     jjnr             = nlist->jjnr;
447     shiftidx         = nlist->shift;
448     gid              = nlist->gid;
449     shiftvec         = fr->shift_vec[0];
450     fshift           = fr->fshift[0];
451     facel            = _mm_set1_pd(fr->epsfac);
452     charge           = mdatoms->chargeA;
453     nvdwtype         = fr->ntype;
454     vdwparam         = fr->nbfp;
455     vdwtype          = mdatoms->typeA;
456
457     vftab            = kernel_data->table_vdw->data;
458     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
459
460     /* Avoid stupid compiler warnings */
461     jnrA = jnrB = 0;
462     j_coord_offsetA = 0;
463     j_coord_offsetB = 0;
464
465     outeriter        = 0;
466     inneriter        = 0;
467
468     /* Start outer loop over neighborlists */
469     for(iidx=0; iidx<nri; iidx++)
470     {
471         /* Load shift vector for this list */
472         i_shift_offset   = DIM*shiftidx[iidx];
473
474         /* Load limits for loop over neighbors */
475         j_index_start    = jindex[iidx];
476         j_index_end      = jindex[iidx+1];
477
478         /* Get outer coordinate index */
479         inr              = iinr[iidx];
480         i_coord_offset   = DIM*inr;
481
482         /* Load i particle coords and add shift vector */
483         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
484
485         fix0             = _mm_setzero_pd();
486         fiy0             = _mm_setzero_pd();
487         fiz0             = _mm_setzero_pd();
488
489         /* Load parameters for i particles */
490         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
491         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
492
493         /* Start inner kernel loop */
494         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
495         {
496
497             /* Get j neighbor index, and coordinate index */
498             jnrA             = jjnr[jidx];
499             jnrB             = jjnr[jidx+1];
500             j_coord_offsetA  = DIM*jnrA;
501             j_coord_offsetB  = DIM*jnrB;
502
503             /* load j atom coordinates */
504             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
505                                               &jx0,&jy0,&jz0);
506
507             /* Calculate displacement vector */
508             dx00             = _mm_sub_pd(ix0,jx0);
509             dy00             = _mm_sub_pd(iy0,jy0);
510             dz00             = _mm_sub_pd(iz0,jz0);
511
512             /* Calculate squared distance and things based on it */
513             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
514
515             rinv00           = gmx_mm_invsqrt_pd(rsq00);
516
517             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
518
519             /* Load parameters for j particles */
520             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522             vdwjidx0B        = 2*vdwtype[jnrB+0];
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             r00              = _mm_mul_pd(rsq00,rinv00);
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq00             = _mm_mul_pd(iq0,jq0);
532             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
533                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
534
535             /* Calculate table index by multiplying r with table scale and truncate to integer */
536             rt               = _mm_mul_pd(r00,vftabscale);
537             vfitab           = _mm_cvttpd_epi32(rt);
538 #ifdef __XOP__
539             vfeps            = _mm_frcz_pd(rt);
540 #else
541             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
542 #endif
543             twovfeps         = _mm_add_pd(vfeps,vfeps);
544             vfitab           = _mm_slli_epi32(vfitab,3);
545
546             /* COULOMB ELECTROSTATICS */
547             velec            = _mm_mul_pd(qq00,rinv00);
548             felec            = _mm_mul_pd(velec,rinvsq00);
549
550             /* CUBIC SPLINE TABLE DISPERSION */
551             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
552             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
553             GMX_MM_TRANSPOSE2_PD(Y,F);
554             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
555             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
556             GMX_MM_TRANSPOSE2_PD(G,H);
557             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
558             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
559             fvdw6            = _mm_mul_pd(c6_00,FF);
560
561             /* CUBIC SPLINE TABLE REPULSION */
562             vfitab           = _mm_add_epi32(vfitab,ifour);
563             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
564             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
565             GMX_MM_TRANSPOSE2_PD(Y,F);
566             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
567             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
568             GMX_MM_TRANSPOSE2_PD(G,H);
569             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
570             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
571             fvdw12           = _mm_mul_pd(c12_00,FF);
572             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
573
574             fscal            = _mm_add_pd(felec,fvdw);
575
576             /* Update vectorial force */
577             fix0             = _mm_macc_pd(dx00,fscal,fix0);
578             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
579             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
580             
581             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
582                                                    _mm_mul_pd(dx00,fscal),
583                                                    _mm_mul_pd(dy00,fscal),
584                                                    _mm_mul_pd(dz00,fscal));
585
586             /* Inner loop uses 57 flops */
587         }
588
589         if(jidx<j_index_end)
590         {
591
592             jnrA             = jjnr[jidx];
593             j_coord_offsetA  = DIM*jnrA;
594
595             /* load j atom coordinates */
596             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
597                                               &jx0,&jy0,&jz0);
598
599             /* Calculate displacement vector */
600             dx00             = _mm_sub_pd(ix0,jx0);
601             dy00             = _mm_sub_pd(iy0,jy0);
602             dz00             = _mm_sub_pd(iz0,jz0);
603
604             /* Calculate squared distance and things based on it */
605             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
606
607             rinv00           = gmx_mm_invsqrt_pd(rsq00);
608
609             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
610
611             /* Load parameters for j particles */
612             jq0              = _mm_load_sd(charge+jnrA+0);
613             vdwjidx0A        = 2*vdwtype[jnrA+0];
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             r00              = _mm_mul_pd(rsq00,rinv00);
620
621             /* Compute parameters for interactions between i and j atoms */
622             qq00             = _mm_mul_pd(iq0,jq0);
623             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
624
625             /* Calculate table index by multiplying r with table scale and truncate to integer */
626             rt               = _mm_mul_pd(r00,vftabscale);
627             vfitab           = _mm_cvttpd_epi32(rt);
628 #ifdef __XOP__
629             vfeps            = _mm_frcz_pd(rt);
630 #else
631             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
632 #endif
633             twovfeps         = _mm_add_pd(vfeps,vfeps);
634             vfitab           = _mm_slli_epi32(vfitab,3);
635
636             /* COULOMB ELECTROSTATICS */
637             velec            = _mm_mul_pd(qq00,rinv00);
638             felec            = _mm_mul_pd(velec,rinvsq00);
639
640             /* CUBIC SPLINE TABLE DISPERSION */
641             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
642             F                = _mm_setzero_pd();
643             GMX_MM_TRANSPOSE2_PD(Y,F);
644             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
645             H                = _mm_setzero_pd();
646             GMX_MM_TRANSPOSE2_PD(G,H);
647             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
648             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
649             fvdw6            = _mm_mul_pd(c6_00,FF);
650
651             /* CUBIC SPLINE TABLE REPULSION */
652             vfitab           = _mm_add_epi32(vfitab,ifour);
653             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
654             F                = _mm_setzero_pd();
655             GMX_MM_TRANSPOSE2_PD(Y,F);
656             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
657             H                = _mm_setzero_pd();
658             GMX_MM_TRANSPOSE2_PD(G,H);
659             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
660             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
661             fvdw12           = _mm_mul_pd(c12_00,FF);
662             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
663
664             fscal            = _mm_add_pd(felec,fvdw);
665
666             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
667
668             /* Update vectorial force */
669             fix0             = _mm_macc_pd(dx00,fscal,fix0);
670             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
671             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
672             
673             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
674                                                    _mm_mul_pd(dx00,fscal),
675                                                    _mm_mul_pd(dy00,fscal),
676                                                    _mm_mul_pd(dz00,fscal));
677
678             /* Inner loop uses 57 flops */
679         }
680
681         /* End of innermost loop */
682
683         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
684                                               f+i_coord_offset,fshift+i_shift_offset);
685
686         /* Increment number of inner iterations */
687         inneriter                  += j_index_end - j_index_start;
688
689         /* Outer loop uses 7 flops */
690     }
691
692     /* Increment number of outer iterations */
693     outeriter        += nri;
694
695     /* Update outer/inner flops */
696
697     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*57);
698 }