Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
82     real             *vftab;
83     __m128d          dummy_mask,cutoff_mask;
84     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
85     __m128d          one     = _mm_set1_pd(1.0);
86     __m128d          two     = _mm_set1_pd(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_pd(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     vftab            = kernel_data->table_vdw->data;
105     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
106
107     /* Avoid stupid compiler warnings */
108     jnrA = jnrB = 0;
109     j_coord_offsetA = 0;
110     j_coord_offsetB = 0;
111
112     outeriter        = 0;
113     inneriter        = 0;
114
115     /* Start outer loop over neighborlists */
116     for(iidx=0; iidx<nri; iidx++)
117     {
118         /* Load shift vector for this list */
119         i_shift_offset   = DIM*shiftidx[iidx];
120
121         /* Load limits for loop over neighbors */
122         j_index_start    = jindex[iidx];
123         j_index_end      = jindex[iidx+1];
124
125         /* Get outer coordinate index */
126         inr              = iinr[iidx];
127         i_coord_offset   = DIM*inr;
128
129         /* Load i particle coords and add shift vector */
130         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
131
132         fix0             = _mm_setzero_pd();
133         fiy0             = _mm_setzero_pd();
134         fiz0             = _mm_setzero_pd();
135
136         /* Load parameters for i particles */
137         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
138         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140         /* Reset potential sums */
141         velecsum         = _mm_setzero_pd();
142         vvdwsum          = _mm_setzero_pd();
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
146         {
147
148             /* Get j neighbor index, and coordinate index */
149             jnrA             = jjnr[jidx];
150             jnrB             = jjnr[jidx+1];
151             j_coord_offsetA  = DIM*jnrA;
152             j_coord_offsetB  = DIM*jnrB;
153
154             /* load j atom coordinates */
155             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
156                                               &jx0,&jy0,&jz0);
157
158             /* Calculate displacement vector */
159             dx00             = _mm_sub_pd(ix0,jx0);
160             dy00             = _mm_sub_pd(iy0,jy0);
161             dz00             = _mm_sub_pd(iz0,jz0);
162
163             /* Calculate squared distance and things based on it */
164             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
165
166             rinv00           = gmx_mm_invsqrt_pd(rsq00);
167
168             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
169
170             /* Load parameters for j particles */
171             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
172             vdwjidx0A        = 2*vdwtype[jnrA+0];
173             vdwjidx0B        = 2*vdwtype[jnrB+0];
174
175             /**************************
176              * CALCULATE INTERACTIONS *
177              **************************/
178
179             r00              = _mm_mul_pd(rsq00,rinv00);
180
181             /* Compute parameters for interactions between i and j atoms */
182             qq00             = _mm_mul_pd(iq0,jq0);
183             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
184                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
185
186             /* Calculate table index by multiplying r with table scale and truncate to integer */
187             rt               = _mm_mul_pd(r00,vftabscale);
188             vfitab           = _mm_cvttpd_epi32(rt);
189 #ifdef __XOP__
190             vfeps            = _mm_frcz_pd(rt);
191 #else
192             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
193 #endif
194             twovfeps         = _mm_add_pd(vfeps,vfeps);
195             vfitab           = _mm_slli_epi32(vfitab,3);
196
197             /* COULOMB ELECTROSTATICS */
198             velec            = _mm_mul_pd(qq00,rinv00);
199             felec            = _mm_mul_pd(velec,rinvsq00);
200
201             /* CUBIC SPLINE TABLE DISPERSION */
202             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
203             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
204             GMX_MM_TRANSPOSE2_PD(Y,F);
205             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
206             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
207             GMX_MM_TRANSPOSE2_PD(G,H);
208             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
209             VV               = _mm_macc_pd(vfeps,Fp,Y);
210             vvdw6            = _mm_mul_pd(c6_00,VV);
211             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
212             fvdw6            = _mm_mul_pd(c6_00,FF);
213
214             /* CUBIC SPLINE TABLE REPULSION */
215             vfitab           = _mm_add_epi32(vfitab,ifour);
216             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
217             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
218             GMX_MM_TRANSPOSE2_PD(Y,F);
219             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
220             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
221             GMX_MM_TRANSPOSE2_PD(G,H);
222             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
223             VV               = _mm_macc_pd(vfeps,Fp,Y);
224             vvdw12           = _mm_mul_pd(c12_00,VV);
225             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
226             fvdw12           = _mm_mul_pd(c12_00,FF);
227             vvdw             = _mm_add_pd(vvdw12,vvdw6);
228             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
229
230             /* Update potential sum for this i atom from the interaction with this j atom. */
231             velecsum         = _mm_add_pd(velecsum,velec);
232             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
233
234             fscal            = _mm_add_pd(felec,fvdw);
235
236             /* Update vectorial force */
237             fix0             = _mm_macc_pd(dx00,fscal,fix0);
238             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
239             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
240             
241             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
242                                                    _mm_mul_pd(dx00,fscal),
243                                                    _mm_mul_pd(dy00,fscal),
244                                                    _mm_mul_pd(dz00,fscal));
245
246             /* Inner loop uses 66 flops */
247         }
248
249         if(jidx<j_index_end)
250         {
251
252             jnrA             = jjnr[jidx];
253             j_coord_offsetA  = DIM*jnrA;
254
255             /* load j atom coordinates */
256             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
257                                               &jx0,&jy0,&jz0);
258
259             /* Calculate displacement vector */
260             dx00             = _mm_sub_pd(ix0,jx0);
261             dy00             = _mm_sub_pd(iy0,jy0);
262             dz00             = _mm_sub_pd(iz0,jz0);
263
264             /* Calculate squared distance and things based on it */
265             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
266
267             rinv00           = gmx_mm_invsqrt_pd(rsq00);
268
269             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
270
271             /* Load parameters for j particles */
272             jq0              = _mm_load_sd(charge+jnrA+0);
273             vdwjidx0A        = 2*vdwtype[jnrA+0];
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             r00              = _mm_mul_pd(rsq00,rinv00);
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq00             = _mm_mul_pd(iq0,jq0);
283             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
284
285             /* Calculate table index by multiplying r with table scale and truncate to integer */
286             rt               = _mm_mul_pd(r00,vftabscale);
287             vfitab           = _mm_cvttpd_epi32(rt);
288 #ifdef __XOP__
289             vfeps            = _mm_frcz_pd(rt);
290 #else
291             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
292 #endif
293             twovfeps         = _mm_add_pd(vfeps,vfeps);
294             vfitab           = _mm_slli_epi32(vfitab,3);
295
296             /* COULOMB ELECTROSTATICS */
297             velec            = _mm_mul_pd(qq00,rinv00);
298             felec            = _mm_mul_pd(velec,rinvsq00);
299
300             /* CUBIC SPLINE TABLE DISPERSION */
301             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
302             F                = _mm_setzero_pd();
303             GMX_MM_TRANSPOSE2_PD(Y,F);
304             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
305             H                = _mm_setzero_pd();
306             GMX_MM_TRANSPOSE2_PD(G,H);
307             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
308             VV               = _mm_macc_pd(vfeps,Fp,Y);
309             vvdw6            = _mm_mul_pd(c6_00,VV);
310             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
311             fvdw6            = _mm_mul_pd(c6_00,FF);
312
313             /* CUBIC SPLINE TABLE REPULSION */
314             vfitab           = _mm_add_epi32(vfitab,ifour);
315             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
316             F                = _mm_setzero_pd();
317             GMX_MM_TRANSPOSE2_PD(Y,F);
318             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
319             H                = _mm_setzero_pd();
320             GMX_MM_TRANSPOSE2_PD(G,H);
321             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
322             VV               = _mm_macc_pd(vfeps,Fp,Y);
323             vvdw12           = _mm_mul_pd(c12_00,VV);
324             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
325             fvdw12           = _mm_mul_pd(c12_00,FF);
326             vvdw             = _mm_add_pd(vvdw12,vvdw6);
327             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
331             velecsum         = _mm_add_pd(velecsum,velec);
332             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
333             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
334
335             fscal            = _mm_add_pd(felec,fvdw);
336
337             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
338
339             /* Update vectorial force */
340             fix0             = _mm_macc_pd(dx00,fscal,fix0);
341             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
342             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
343             
344             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
345                                                    _mm_mul_pd(dx00,fscal),
346                                                    _mm_mul_pd(dy00,fscal),
347                                                    _mm_mul_pd(dz00,fscal));
348
349             /* Inner loop uses 66 flops */
350         }
351
352         /* End of innermost loop */
353
354         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
355                                               f+i_coord_offset,fshift+i_shift_offset);
356
357         ggid                        = gid[iidx];
358         /* Update potential energies */
359         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
360         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
361
362         /* Increment number of inner iterations */
363         inneriter                  += j_index_end - j_index_start;
364
365         /* Outer loop uses 9 flops */
366     }
367
368     /* Increment number of outer iterations */
369     outeriter        += nri;
370
371     /* Update outer/inner flops */
372
373     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*66);
374 }
375 /*
376  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_128_fma_double
377  * Electrostatics interaction: Coulomb
378  * VdW interaction:            CubicSplineTable
379  * Geometry:                   Particle-Particle
380  * Calculate force/pot:        Force
381  */
382 void
383 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_128_fma_double
384                     (t_nblist * gmx_restrict                nlist,
385                      rvec * gmx_restrict                    xx,
386                      rvec * gmx_restrict                    ff,
387                      t_forcerec * gmx_restrict              fr,
388                      t_mdatoms * gmx_restrict               mdatoms,
389                      nb_kernel_data_t * gmx_restrict        kernel_data,
390                      t_nrnb * gmx_restrict                  nrnb)
391 {
392     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
393      * just 0 for non-waters.
394      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
395      * jnr indices corresponding to data put in the four positions in the SIMD register.
396      */
397     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
398     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
399     int              jnrA,jnrB;
400     int              j_coord_offsetA,j_coord_offsetB;
401     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
402     real             rcutoff_scalar;
403     real             *shiftvec,*fshift,*x,*f;
404     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
405     int              vdwioffset0;
406     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
407     int              vdwjidx0A,vdwjidx0B;
408     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
409     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
410     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
411     real             *charge;
412     int              nvdwtype;
413     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
414     int              *vdwtype;
415     real             *vdwparam;
416     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
417     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
418     __m128i          vfitab;
419     __m128i          ifour       = _mm_set1_epi32(4);
420     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
421     real             *vftab;
422     __m128d          dummy_mask,cutoff_mask;
423     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
424     __m128d          one     = _mm_set1_pd(1.0);
425     __m128d          two     = _mm_set1_pd(2.0);
426     x                = xx[0];
427     f                = ff[0];
428
429     nri              = nlist->nri;
430     iinr             = nlist->iinr;
431     jindex           = nlist->jindex;
432     jjnr             = nlist->jjnr;
433     shiftidx         = nlist->shift;
434     gid              = nlist->gid;
435     shiftvec         = fr->shift_vec[0];
436     fshift           = fr->fshift[0];
437     facel            = _mm_set1_pd(fr->epsfac);
438     charge           = mdatoms->chargeA;
439     nvdwtype         = fr->ntype;
440     vdwparam         = fr->nbfp;
441     vdwtype          = mdatoms->typeA;
442
443     vftab            = kernel_data->table_vdw->data;
444     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
445
446     /* Avoid stupid compiler warnings */
447     jnrA = jnrB = 0;
448     j_coord_offsetA = 0;
449     j_coord_offsetB = 0;
450
451     outeriter        = 0;
452     inneriter        = 0;
453
454     /* Start outer loop over neighborlists */
455     for(iidx=0; iidx<nri; iidx++)
456     {
457         /* Load shift vector for this list */
458         i_shift_offset   = DIM*shiftidx[iidx];
459
460         /* Load limits for loop over neighbors */
461         j_index_start    = jindex[iidx];
462         j_index_end      = jindex[iidx+1];
463
464         /* Get outer coordinate index */
465         inr              = iinr[iidx];
466         i_coord_offset   = DIM*inr;
467
468         /* Load i particle coords and add shift vector */
469         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
470
471         fix0             = _mm_setzero_pd();
472         fiy0             = _mm_setzero_pd();
473         fiz0             = _mm_setzero_pd();
474
475         /* Load parameters for i particles */
476         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
477         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
478
479         /* Start inner kernel loop */
480         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
481         {
482
483             /* Get j neighbor index, and coordinate index */
484             jnrA             = jjnr[jidx];
485             jnrB             = jjnr[jidx+1];
486             j_coord_offsetA  = DIM*jnrA;
487             j_coord_offsetB  = DIM*jnrB;
488
489             /* load j atom coordinates */
490             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
491                                               &jx0,&jy0,&jz0);
492
493             /* Calculate displacement vector */
494             dx00             = _mm_sub_pd(ix0,jx0);
495             dy00             = _mm_sub_pd(iy0,jy0);
496             dz00             = _mm_sub_pd(iz0,jz0);
497
498             /* Calculate squared distance and things based on it */
499             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
500
501             rinv00           = gmx_mm_invsqrt_pd(rsq00);
502
503             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
504
505             /* Load parameters for j particles */
506             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
507             vdwjidx0A        = 2*vdwtype[jnrA+0];
508             vdwjidx0B        = 2*vdwtype[jnrB+0];
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             r00              = _mm_mul_pd(rsq00,rinv00);
515
516             /* Compute parameters for interactions between i and j atoms */
517             qq00             = _mm_mul_pd(iq0,jq0);
518             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
519                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
520
521             /* Calculate table index by multiplying r with table scale and truncate to integer */
522             rt               = _mm_mul_pd(r00,vftabscale);
523             vfitab           = _mm_cvttpd_epi32(rt);
524 #ifdef __XOP__
525             vfeps            = _mm_frcz_pd(rt);
526 #else
527             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
528 #endif
529             twovfeps         = _mm_add_pd(vfeps,vfeps);
530             vfitab           = _mm_slli_epi32(vfitab,3);
531
532             /* COULOMB ELECTROSTATICS */
533             velec            = _mm_mul_pd(qq00,rinv00);
534             felec            = _mm_mul_pd(velec,rinvsq00);
535
536             /* CUBIC SPLINE TABLE DISPERSION */
537             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
538             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
539             GMX_MM_TRANSPOSE2_PD(Y,F);
540             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
541             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
542             GMX_MM_TRANSPOSE2_PD(G,H);
543             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
544             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
545             fvdw6            = _mm_mul_pd(c6_00,FF);
546
547             /* CUBIC SPLINE TABLE REPULSION */
548             vfitab           = _mm_add_epi32(vfitab,ifour);
549             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
550             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
551             GMX_MM_TRANSPOSE2_PD(Y,F);
552             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
553             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
554             GMX_MM_TRANSPOSE2_PD(G,H);
555             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
556             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
557             fvdw12           = _mm_mul_pd(c12_00,FF);
558             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
559
560             fscal            = _mm_add_pd(felec,fvdw);
561
562             /* Update vectorial force */
563             fix0             = _mm_macc_pd(dx00,fscal,fix0);
564             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
565             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
566             
567             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
568                                                    _mm_mul_pd(dx00,fscal),
569                                                    _mm_mul_pd(dy00,fscal),
570                                                    _mm_mul_pd(dz00,fscal));
571
572             /* Inner loop uses 57 flops */
573         }
574
575         if(jidx<j_index_end)
576         {
577
578             jnrA             = jjnr[jidx];
579             j_coord_offsetA  = DIM*jnrA;
580
581             /* load j atom coordinates */
582             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
583                                               &jx0,&jy0,&jz0);
584
585             /* Calculate displacement vector */
586             dx00             = _mm_sub_pd(ix0,jx0);
587             dy00             = _mm_sub_pd(iy0,jy0);
588             dz00             = _mm_sub_pd(iz0,jz0);
589
590             /* Calculate squared distance and things based on it */
591             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
592
593             rinv00           = gmx_mm_invsqrt_pd(rsq00);
594
595             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
596
597             /* Load parameters for j particles */
598             jq0              = _mm_load_sd(charge+jnrA+0);
599             vdwjidx0A        = 2*vdwtype[jnrA+0];
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             r00              = _mm_mul_pd(rsq00,rinv00);
606
607             /* Compute parameters for interactions between i and j atoms */
608             qq00             = _mm_mul_pd(iq0,jq0);
609             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
610
611             /* Calculate table index by multiplying r with table scale and truncate to integer */
612             rt               = _mm_mul_pd(r00,vftabscale);
613             vfitab           = _mm_cvttpd_epi32(rt);
614 #ifdef __XOP__
615             vfeps            = _mm_frcz_pd(rt);
616 #else
617             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
618 #endif
619             twovfeps         = _mm_add_pd(vfeps,vfeps);
620             vfitab           = _mm_slli_epi32(vfitab,3);
621
622             /* COULOMB ELECTROSTATICS */
623             velec            = _mm_mul_pd(qq00,rinv00);
624             felec            = _mm_mul_pd(velec,rinvsq00);
625
626             /* CUBIC SPLINE TABLE DISPERSION */
627             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
628             F                = _mm_setzero_pd();
629             GMX_MM_TRANSPOSE2_PD(Y,F);
630             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
631             H                = _mm_setzero_pd();
632             GMX_MM_TRANSPOSE2_PD(G,H);
633             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
634             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
635             fvdw6            = _mm_mul_pd(c6_00,FF);
636
637             /* CUBIC SPLINE TABLE REPULSION */
638             vfitab           = _mm_add_epi32(vfitab,ifour);
639             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
640             F                = _mm_setzero_pd();
641             GMX_MM_TRANSPOSE2_PD(Y,F);
642             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
643             H                = _mm_setzero_pd();
644             GMX_MM_TRANSPOSE2_PD(G,H);
645             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
646             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
647             fvdw12           = _mm_mul_pd(c12_00,FF);
648             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
649
650             fscal            = _mm_add_pd(felec,fvdw);
651
652             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
653
654             /* Update vectorial force */
655             fix0             = _mm_macc_pd(dx00,fscal,fix0);
656             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
657             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
658             
659             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
660                                                    _mm_mul_pd(dx00,fscal),
661                                                    _mm_mul_pd(dy00,fscal),
662                                                    _mm_mul_pd(dz00,fscal));
663
664             /* Inner loop uses 57 flops */
665         }
666
667         /* End of innermost loop */
668
669         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
670                                               f+i_coord_offset,fshift+i_shift_offset);
671
672         /* Increment number of inner iterations */
673         inneriter                  += j_index_end - j_index_start;
674
675         /* Outer loop uses 7 flops */
676     }
677
678     /* Increment number of outer iterations */
679     outeriter        += nri;
680
681     /* Update outer/inner flops */
682
683     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*57);
684 }