Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
98     real             *vftab;
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_vdw->data;
121     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
147
148         fix0             = _mm_setzero_pd();
149         fiy0             = _mm_setzero_pd();
150         fiz0             = _mm_setzero_pd();
151
152         /* Load parameters for i particles */
153         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
154         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_pd();
158         vvdwsum          = _mm_setzero_pd();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169
170             /* load j atom coordinates */
171             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_pd(ix0,jx0);
176             dy00             = _mm_sub_pd(iy0,jy0);
177             dz00             = _mm_sub_pd(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
181
182             rinv00           = gmx_mm_invsqrt_pd(rsq00);
183
184             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
185
186             /* Load parameters for j particles */
187             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
188             vdwjidx0A        = 2*vdwtype[jnrA+0];
189             vdwjidx0B        = 2*vdwtype[jnrB+0];
190
191             /**************************
192              * CALCULATE INTERACTIONS *
193              **************************/
194
195             r00              = _mm_mul_pd(rsq00,rinv00);
196
197             /* Compute parameters for interactions between i and j atoms */
198             qq00             = _mm_mul_pd(iq0,jq0);
199             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
200                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
201
202             /* Calculate table index by multiplying r with table scale and truncate to integer */
203             rt               = _mm_mul_pd(r00,vftabscale);
204             vfitab           = _mm_cvttpd_epi32(rt);
205 #ifdef __XOP__
206             vfeps            = _mm_frcz_pd(rt);
207 #else
208             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
209 #endif
210             twovfeps         = _mm_add_pd(vfeps,vfeps);
211             vfitab           = _mm_slli_epi32(vfitab,3);
212
213             /* COULOMB ELECTROSTATICS */
214             velec            = _mm_mul_pd(qq00,rinv00);
215             felec            = _mm_mul_pd(velec,rinvsq00);
216
217             /* CUBIC SPLINE TABLE DISPERSION */
218             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
219             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
220             GMX_MM_TRANSPOSE2_PD(Y,F);
221             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
222             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
223             GMX_MM_TRANSPOSE2_PD(G,H);
224             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
225             VV               = _mm_macc_pd(vfeps,Fp,Y);
226             vvdw6            = _mm_mul_pd(c6_00,VV);
227             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
228             fvdw6            = _mm_mul_pd(c6_00,FF);
229
230             /* CUBIC SPLINE TABLE REPULSION */
231             vfitab           = _mm_add_epi32(vfitab,ifour);
232             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
233             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
234             GMX_MM_TRANSPOSE2_PD(Y,F);
235             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
236             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
237             GMX_MM_TRANSPOSE2_PD(G,H);
238             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
239             VV               = _mm_macc_pd(vfeps,Fp,Y);
240             vvdw12           = _mm_mul_pd(c12_00,VV);
241             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
242             fvdw12           = _mm_mul_pd(c12_00,FF);
243             vvdw             = _mm_add_pd(vvdw12,vvdw6);
244             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velecsum         = _mm_add_pd(velecsum,velec);
248             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
249
250             fscal            = _mm_add_pd(felec,fvdw);
251
252             /* Update vectorial force */
253             fix0             = _mm_macc_pd(dx00,fscal,fix0);
254             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
255             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
256             
257             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
258                                                    _mm_mul_pd(dx00,fscal),
259                                                    _mm_mul_pd(dy00,fscal),
260                                                    _mm_mul_pd(dz00,fscal));
261
262             /* Inner loop uses 66 flops */
263         }
264
265         if(jidx<j_index_end)
266         {
267
268             jnrA             = jjnr[jidx];
269             j_coord_offsetA  = DIM*jnrA;
270
271             /* load j atom coordinates */
272             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
273                                               &jx0,&jy0,&jz0);
274
275             /* Calculate displacement vector */
276             dx00             = _mm_sub_pd(ix0,jx0);
277             dy00             = _mm_sub_pd(iy0,jy0);
278             dz00             = _mm_sub_pd(iz0,jz0);
279
280             /* Calculate squared distance and things based on it */
281             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
282
283             rinv00           = gmx_mm_invsqrt_pd(rsq00);
284
285             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
286
287             /* Load parameters for j particles */
288             jq0              = _mm_load_sd(charge+jnrA+0);
289             vdwjidx0A        = 2*vdwtype[jnrA+0];
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             r00              = _mm_mul_pd(rsq00,rinv00);
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq00             = _mm_mul_pd(iq0,jq0);
299             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
300
301             /* Calculate table index by multiplying r with table scale and truncate to integer */
302             rt               = _mm_mul_pd(r00,vftabscale);
303             vfitab           = _mm_cvttpd_epi32(rt);
304 #ifdef __XOP__
305             vfeps            = _mm_frcz_pd(rt);
306 #else
307             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
308 #endif
309             twovfeps         = _mm_add_pd(vfeps,vfeps);
310             vfitab           = _mm_slli_epi32(vfitab,3);
311
312             /* COULOMB ELECTROSTATICS */
313             velec            = _mm_mul_pd(qq00,rinv00);
314             felec            = _mm_mul_pd(velec,rinvsq00);
315
316             /* CUBIC SPLINE TABLE DISPERSION */
317             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
318             F                = _mm_setzero_pd();
319             GMX_MM_TRANSPOSE2_PD(Y,F);
320             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
321             H                = _mm_setzero_pd();
322             GMX_MM_TRANSPOSE2_PD(G,H);
323             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
324             VV               = _mm_macc_pd(vfeps,Fp,Y);
325             vvdw6            = _mm_mul_pd(c6_00,VV);
326             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
327             fvdw6            = _mm_mul_pd(c6_00,FF);
328
329             /* CUBIC SPLINE TABLE REPULSION */
330             vfitab           = _mm_add_epi32(vfitab,ifour);
331             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
332             F                = _mm_setzero_pd();
333             GMX_MM_TRANSPOSE2_PD(Y,F);
334             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
335             H                = _mm_setzero_pd();
336             GMX_MM_TRANSPOSE2_PD(G,H);
337             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
338             VV               = _mm_macc_pd(vfeps,Fp,Y);
339             vvdw12           = _mm_mul_pd(c12_00,VV);
340             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
341             fvdw12           = _mm_mul_pd(c12_00,FF);
342             vvdw             = _mm_add_pd(vvdw12,vvdw6);
343             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
347             velecsum         = _mm_add_pd(velecsum,velec);
348             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
349             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
350
351             fscal            = _mm_add_pd(felec,fvdw);
352
353             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
354
355             /* Update vectorial force */
356             fix0             = _mm_macc_pd(dx00,fscal,fix0);
357             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
358             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
359             
360             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
361                                                    _mm_mul_pd(dx00,fscal),
362                                                    _mm_mul_pd(dy00,fscal),
363                                                    _mm_mul_pd(dz00,fscal));
364
365             /* Inner loop uses 66 flops */
366         }
367
368         /* End of innermost loop */
369
370         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
371                                               f+i_coord_offset,fshift+i_shift_offset);
372
373         ggid                        = gid[iidx];
374         /* Update potential energies */
375         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
376         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
377
378         /* Increment number of inner iterations */
379         inneriter                  += j_index_end - j_index_start;
380
381         /* Outer loop uses 9 flops */
382     }
383
384     /* Increment number of outer iterations */
385     outeriter        += nri;
386
387     /* Update outer/inner flops */
388
389     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*66);
390 }
391 /*
392  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_128_fma_double
393  * Electrostatics interaction: Coulomb
394  * VdW interaction:            CubicSplineTable
395  * Geometry:                   Particle-Particle
396  * Calculate force/pot:        Force
397  */
398 void
399 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_128_fma_double
400                     (t_nblist                    * gmx_restrict       nlist,
401                      rvec                        * gmx_restrict          xx,
402                      rvec                        * gmx_restrict          ff,
403                      t_forcerec                  * gmx_restrict          fr,
404                      t_mdatoms                   * gmx_restrict     mdatoms,
405                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
406                      t_nrnb                      * gmx_restrict        nrnb)
407 {
408     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
409      * just 0 for non-waters.
410      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
411      * jnr indices corresponding to data put in the four positions in the SIMD register.
412      */
413     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
414     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
415     int              jnrA,jnrB;
416     int              j_coord_offsetA,j_coord_offsetB;
417     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
418     real             rcutoff_scalar;
419     real             *shiftvec,*fshift,*x,*f;
420     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
421     int              vdwioffset0;
422     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
423     int              vdwjidx0A,vdwjidx0B;
424     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
425     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
426     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
427     real             *charge;
428     int              nvdwtype;
429     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
430     int              *vdwtype;
431     real             *vdwparam;
432     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
433     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
434     __m128i          vfitab;
435     __m128i          ifour       = _mm_set1_epi32(4);
436     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
437     real             *vftab;
438     __m128d          dummy_mask,cutoff_mask;
439     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
440     __m128d          one     = _mm_set1_pd(1.0);
441     __m128d          two     = _mm_set1_pd(2.0);
442     x                = xx[0];
443     f                = ff[0];
444
445     nri              = nlist->nri;
446     iinr             = nlist->iinr;
447     jindex           = nlist->jindex;
448     jjnr             = nlist->jjnr;
449     shiftidx         = nlist->shift;
450     gid              = nlist->gid;
451     shiftvec         = fr->shift_vec[0];
452     fshift           = fr->fshift[0];
453     facel            = _mm_set1_pd(fr->epsfac);
454     charge           = mdatoms->chargeA;
455     nvdwtype         = fr->ntype;
456     vdwparam         = fr->nbfp;
457     vdwtype          = mdatoms->typeA;
458
459     vftab            = kernel_data->table_vdw->data;
460     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
461
462     /* Avoid stupid compiler warnings */
463     jnrA = jnrB = 0;
464     j_coord_offsetA = 0;
465     j_coord_offsetB = 0;
466
467     outeriter        = 0;
468     inneriter        = 0;
469
470     /* Start outer loop over neighborlists */
471     for(iidx=0; iidx<nri; iidx++)
472     {
473         /* Load shift vector for this list */
474         i_shift_offset   = DIM*shiftidx[iidx];
475
476         /* Load limits for loop over neighbors */
477         j_index_start    = jindex[iidx];
478         j_index_end      = jindex[iidx+1];
479
480         /* Get outer coordinate index */
481         inr              = iinr[iidx];
482         i_coord_offset   = DIM*inr;
483
484         /* Load i particle coords and add shift vector */
485         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
486
487         fix0             = _mm_setzero_pd();
488         fiy0             = _mm_setzero_pd();
489         fiz0             = _mm_setzero_pd();
490
491         /* Load parameters for i particles */
492         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
493         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
494
495         /* Start inner kernel loop */
496         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
497         {
498
499             /* Get j neighbor index, and coordinate index */
500             jnrA             = jjnr[jidx];
501             jnrB             = jjnr[jidx+1];
502             j_coord_offsetA  = DIM*jnrA;
503             j_coord_offsetB  = DIM*jnrB;
504
505             /* load j atom coordinates */
506             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
507                                               &jx0,&jy0,&jz0);
508
509             /* Calculate displacement vector */
510             dx00             = _mm_sub_pd(ix0,jx0);
511             dy00             = _mm_sub_pd(iy0,jy0);
512             dz00             = _mm_sub_pd(iz0,jz0);
513
514             /* Calculate squared distance and things based on it */
515             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
516
517             rinv00           = gmx_mm_invsqrt_pd(rsq00);
518
519             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
520
521             /* Load parameters for j particles */
522             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
523             vdwjidx0A        = 2*vdwtype[jnrA+0];
524             vdwjidx0B        = 2*vdwtype[jnrB+0];
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             r00              = _mm_mul_pd(rsq00,rinv00);
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq00             = _mm_mul_pd(iq0,jq0);
534             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
535                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
536
537             /* Calculate table index by multiplying r with table scale and truncate to integer */
538             rt               = _mm_mul_pd(r00,vftabscale);
539             vfitab           = _mm_cvttpd_epi32(rt);
540 #ifdef __XOP__
541             vfeps            = _mm_frcz_pd(rt);
542 #else
543             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
544 #endif
545             twovfeps         = _mm_add_pd(vfeps,vfeps);
546             vfitab           = _mm_slli_epi32(vfitab,3);
547
548             /* COULOMB ELECTROSTATICS */
549             velec            = _mm_mul_pd(qq00,rinv00);
550             felec            = _mm_mul_pd(velec,rinvsq00);
551
552             /* CUBIC SPLINE TABLE DISPERSION */
553             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
554             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
555             GMX_MM_TRANSPOSE2_PD(Y,F);
556             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
557             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
558             GMX_MM_TRANSPOSE2_PD(G,H);
559             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
560             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
561             fvdw6            = _mm_mul_pd(c6_00,FF);
562
563             /* CUBIC SPLINE TABLE REPULSION */
564             vfitab           = _mm_add_epi32(vfitab,ifour);
565             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
566             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
567             GMX_MM_TRANSPOSE2_PD(Y,F);
568             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
569             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
570             GMX_MM_TRANSPOSE2_PD(G,H);
571             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
572             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
573             fvdw12           = _mm_mul_pd(c12_00,FF);
574             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
575
576             fscal            = _mm_add_pd(felec,fvdw);
577
578             /* Update vectorial force */
579             fix0             = _mm_macc_pd(dx00,fscal,fix0);
580             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
581             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
582             
583             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
584                                                    _mm_mul_pd(dx00,fscal),
585                                                    _mm_mul_pd(dy00,fscal),
586                                                    _mm_mul_pd(dz00,fscal));
587
588             /* Inner loop uses 57 flops */
589         }
590
591         if(jidx<j_index_end)
592         {
593
594             jnrA             = jjnr[jidx];
595             j_coord_offsetA  = DIM*jnrA;
596
597             /* load j atom coordinates */
598             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
599                                               &jx0,&jy0,&jz0);
600
601             /* Calculate displacement vector */
602             dx00             = _mm_sub_pd(ix0,jx0);
603             dy00             = _mm_sub_pd(iy0,jy0);
604             dz00             = _mm_sub_pd(iz0,jz0);
605
606             /* Calculate squared distance and things based on it */
607             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
608
609             rinv00           = gmx_mm_invsqrt_pd(rsq00);
610
611             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
612
613             /* Load parameters for j particles */
614             jq0              = _mm_load_sd(charge+jnrA+0);
615             vdwjidx0A        = 2*vdwtype[jnrA+0];
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             r00              = _mm_mul_pd(rsq00,rinv00);
622
623             /* Compute parameters for interactions between i and j atoms */
624             qq00             = _mm_mul_pd(iq0,jq0);
625             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
626
627             /* Calculate table index by multiplying r with table scale and truncate to integer */
628             rt               = _mm_mul_pd(r00,vftabscale);
629             vfitab           = _mm_cvttpd_epi32(rt);
630 #ifdef __XOP__
631             vfeps            = _mm_frcz_pd(rt);
632 #else
633             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
634 #endif
635             twovfeps         = _mm_add_pd(vfeps,vfeps);
636             vfitab           = _mm_slli_epi32(vfitab,3);
637
638             /* COULOMB ELECTROSTATICS */
639             velec            = _mm_mul_pd(qq00,rinv00);
640             felec            = _mm_mul_pd(velec,rinvsq00);
641
642             /* CUBIC SPLINE TABLE DISPERSION */
643             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
644             F                = _mm_setzero_pd();
645             GMX_MM_TRANSPOSE2_PD(Y,F);
646             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
647             H                = _mm_setzero_pd();
648             GMX_MM_TRANSPOSE2_PD(G,H);
649             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
650             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
651             fvdw6            = _mm_mul_pd(c6_00,FF);
652
653             /* CUBIC SPLINE TABLE REPULSION */
654             vfitab           = _mm_add_epi32(vfitab,ifour);
655             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
656             F                = _mm_setzero_pd();
657             GMX_MM_TRANSPOSE2_PD(Y,F);
658             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
659             H                = _mm_setzero_pd();
660             GMX_MM_TRANSPOSE2_PD(G,H);
661             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
662             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
663             fvdw12           = _mm_mul_pd(c12_00,FF);
664             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
665
666             fscal            = _mm_add_pd(felec,fvdw);
667
668             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
669
670             /* Update vectorial force */
671             fix0             = _mm_macc_pd(dx00,fscal,fix0);
672             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
673             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
674             
675             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
676                                                    _mm_mul_pd(dx00,fscal),
677                                                    _mm_mul_pd(dy00,fscal),
678                                                    _mm_mul_pd(dz00,fscal));
679
680             /* Inner loop uses 57 flops */
681         }
682
683         /* End of innermost loop */
684
685         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
686                                               f+i_coord_offset,fshift+i_shift_offset);
687
688         /* Increment number of inner iterations */
689         inneriter                  += j_index_end - j_index_start;
690
691         /* Outer loop uses 7 flops */
692     }
693
694     /* Increment number of outer iterations */
695     outeriter        += nri;
696
697     /* Update outer/inner flops */
698
699     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*57);
700 }