Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwNone_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            None
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114
115     vftab            = kernel_data->table_elec->data;
116     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
117
118     /* Setup water-specific parameters */
119     inr              = nlist->iinr[0];
120     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
121     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
122     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
148                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
149
150         fix0             = _mm_setzero_pd();
151         fiy0             = _mm_setzero_pd();
152         fiz0             = _mm_setzero_pd();
153         fix1             = _mm_setzero_pd();
154         fiy1             = _mm_setzero_pd();
155         fiz1             = _mm_setzero_pd();
156         fix2             = _mm_setzero_pd();
157         fiy2             = _mm_setzero_pd();
158         fiz2             = _mm_setzero_pd();
159
160         /* Reset potential sums */
161         velecsum         = _mm_setzero_pd();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172
173             /* load j atom coordinates */
174             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                               &jx0,&jy0,&jz0);
176
177             /* Calculate displacement vector */
178             dx00             = _mm_sub_pd(ix0,jx0);
179             dy00             = _mm_sub_pd(iy0,jy0);
180             dz00             = _mm_sub_pd(iz0,jz0);
181             dx10             = _mm_sub_pd(ix1,jx0);
182             dy10             = _mm_sub_pd(iy1,jy0);
183             dz10             = _mm_sub_pd(iz1,jz0);
184             dx20             = _mm_sub_pd(ix2,jx0);
185             dy20             = _mm_sub_pd(iy2,jy0);
186             dz20             = _mm_sub_pd(iz2,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
190             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
191             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
192
193             rinv00           = gmx_mm_invsqrt_pd(rsq00);
194             rinv10           = gmx_mm_invsqrt_pd(rsq10);
195             rinv20           = gmx_mm_invsqrt_pd(rsq20);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
199
200             fjx0             = _mm_setzero_pd();
201             fjy0             = _mm_setzero_pd();
202             fjz0             = _mm_setzero_pd();
203
204             /**************************
205              * CALCULATE INTERACTIONS *
206              **************************/
207
208             r00              = _mm_mul_pd(rsq00,rinv00);
209
210             /* Compute parameters for interactions between i and j atoms */
211             qq00             = _mm_mul_pd(iq0,jq0);
212
213             /* Calculate table index by multiplying r with table scale and truncate to integer */
214             rt               = _mm_mul_pd(r00,vftabscale);
215             vfitab           = _mm_cvttpd_epi32(rt);
216 #ifdef __XOP__
217             vfeps            = _mm_frcz_pd(rt);
218 #else
219             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
220 #endif
221             twovfeps         = _mm_add_pd(vfeps,vfeps);
222             vfitab           = _mm_slli_epi32(vfitab,2);
223
224             /* CUBIC SPLINE TABLE ELECTROSTATICS */
225             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
226             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
227             GMX_MM_TRANSPOSE2_PD(Y,F);
228             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
229             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
230             GMX_MM_TRANSPOSE2_PD(G,H);
231             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
232             VV               = _mm_macc_pd(vfeps,Fp,Y);
233             velec            = _mm_mul_pd(qq00,VV);
234             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
235             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
236
237             /* Update potential sum for this i atom from the interaction with this j atom. */
238             velecsum         = _mm_add_pd(velecsum,velec);
239
240             fscal            = felec;
241
242             /* Update vectorial force */
243             fix0             = _mm_macc_pd(dx00,fscal,fix0);
244             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
245             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
246             
247             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
248             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
249             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             r10              = _mm_mul_pd(rsq10,rinv10);
256
257             /* Compute parameters for interactions between i and j atoms */
258             qq10             = _mm_mul_pd(iq1,jq0);
259
260             /* Calculate table index by multiplying r with table scale and truncate to integer */
261             rt               = _mm_mul_pd(r10,vftabscale);
262             vfitab           = _mm_cvttpd_epi32(rt);
263 #ifdef __XOP__
264             vfeps            = _mm_frcz_pd(rt);
265 #else
266             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
267 #endif
268             twovfeps         = _mm_add_pd(vfeps,vfeps);
269             vfitab           = _mm_slli_epi32(vfitab,2);
270
271             /* CUBIC SPLINE TABLE ELECTROSTATICS */
272             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
273             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
274             GMX_MM_TRANSPOSE2_PD(Y,F);
275             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
276             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
277             GMX_MM_TRANSPOSE2_PD(G,H);
278             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
279             VV               = _mm_macc_pd(vfeps,Fp,Y);
280             velec            = _mm_mul_pd(qq10,VV);
281             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
282             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             velecsum         = _mm_add_pd(velecsum,velec);
286
287             fscal            = felec;
288
289             /* Update vectorial force */
290             fix1             = _mm_macc_pd(dx10,fscal,fix1);
291             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
292             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
293             
294             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
295             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
296             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             r20              = _mm_mul_pd(rsq20,rinv20);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq20             = _mm_mul_pd(iq2,jq0);
306
307             /* Calculate table index by multiplying r with table scale and truncate to integer */
308             rt               = _mm_mul_pd(r20,vftabscale);
309             vfitab           = _mm_cvttpd_epi32(rt);
310 #ifdef __XOP__
311             vfeps            = _mm_frcz_pd(rt);
312 #else
313             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
314 #endif
315             twovfeps         = _mm_add_pd(vfeps,vfeps);
316             vfitab           = _mm_slli_epi32(vfitab,2);
317
318             /* CUBIC SPLINE TABLE ELECTROSTATICS */
319             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
320             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
321             GMX_MM_TRANSPOSE2_PD(Y,F);
322             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
323             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
324             GMX_MM_TRANSPOSE2_PD(G,H);
325             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
326             VV               = _mm_macc_pd(vfeps,Fp,Y);
327             velec            = _mm_mul_pd(qq20,VV);
328             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
329             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velecsum         = _mm_add_pd(velecsum,velec);
333
334             fscal            = felec;
335
336             /* Update vectorial force */
337             fix2             = _mm_macc_pd(dx20,fscal,fix2);
338             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
339             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
340             
341             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
342             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
343             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
344
345             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
346
347             /* Inner loop uses 141 flops */
348         }
349
350         if(jidx<j_index_end)
351         {
352
353             jnrA             = jjnr[jidx];
354             j_coord_offsetA  = DIM*jnrA;
355
356             /* load j atom coordinates */
357             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
358                                               &jx0,&jy0,&jz0);
359
360             /* Calculate displacement vector */
361             dx00             = _mm_sub_pd(ix0,jx0);
362             dy00             = _mm_sub_pd(iy0,jy0);
363             dz00             = _mm_sub_pd(iz0,jz0);
364             dx10             = _mm_sub_pd(ix1,jx0);
365             dy10             = _mm_sub_pd(iy1,jy0);
366             dz10             = _mm_sub_pd(iz1,jz0);
367             dx20             = _mm_sub_pd(ix2,jx0);
368             dy20             = _mm_sub_pd(iy2,jy0);
369             dz20             = _mm_sub_pd(iz2,jz0);
370
371             /* Calculate squared distance and things based on it */
372             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
373             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
374             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
375
376             rinv00           = gmx_mm_invsqrt_pd(rsq00);
377             rinv10           = gmx_mm_invsqrt_pd(rsq10);
378             rinv20           = gmx_mm_invsqrt_pd(rsq20);
379
380             /* Load parameters for j particles */
381             jq0              = _mm_load_sd(charge+jnrA+0);
382
383             fjx0             = _mm_setzero_pd();
384             fjy0             = _mm_setzero_pd();
385             fjz0             = _mm_setzero_pd();
386
387             /**************************
388              * CALCULATE INTERACTIONS *
389              **************************/
390
391             r00              = _mm_mul_pd(rsq00,rinv00);
392
393             /* Compute parameters for interactions between i and j atoms */
394             qq00             = _mm_mul_pd(iq0,jq0);
395
396             /* Calculate table index by multiplying r with table scale and truncate to integer */
397             rt               = _mm_mul_pd(r00,vftabscale);
398             vfitab           = _mm_cvttpd_epi32(rt);
399 #ifdef __XOP__
400             vfeps            = _mm_frcz_pd(rt);
401 #else
402             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
403 #endif
404             twovfeps         = _mm_add_pd(vfeps,vfeps);
405             vfitab           = _mm_slli_epi32(vfitab,2);
406
407             /* CUBIC SPLINE TABLE ELECTROSTATICS */
408             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
409             F                = _mm_setzero_pd();
410             GMX_MM_TRANSPOSE2_PD(Y,F);
411             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
412             H                = _mm_setzero_pd();
413             GMX_MM_TRANSPOSE2_PD(G,H);
414             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
415             VV               = _mm_macc_pd(vfeps,Fp,Y);
416             velec            = _mm_mul_pd(qq00,VV);
417             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
418             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
422             velecsum         = _mm_add_pd(velecsum,velec);
423
424             fscal            = felec;
425
426             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
427
428             /* Update vectorial force */
429             fix0             = _mm_macc_pd(dx00,fscal,fix0);
430             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
431             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
432             
433             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
434             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
435             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
436
437             /**************************
438              * CALCULATE INTERACTIONS *
439              **************************/
440
441             r10              = _mm_mul_pd(rsq10,rinv10);
442
443             /* Compute parameters for interactions between i and j atoms */
444             qq10             = _mm_mul_pd(iq1,jq0);
445
446             /* Calculate table index by multiplying r with table scale and truncate to integer */
447             rt               = _mm_mul_pd(r10,vftabscale);
448             vfitab           = _mm_cvttpd_epi32(rt);
449 #ifdef __XOP__
450             vfeps            = _mm_frcz_pd(rt);
451 #else
452             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
453 #endif
454             twovfeps         = _mm_add_pd(vfeps,vfeps);
455             vfitab           = _mm_slli_epi32(vfitab,2);
456
457             /* CUBIC SPLINE TABLE ELECTROSTATICS */
458             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
459             F                = _mm_setzero_pd();
460             GMX_MM_TRANSPOSE2_PD(Y,F);
461             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
462             H                = _mm_setzero_pd();
463             GMX_MM_TRANSPOSE2_PD(G,H);
464             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
465             VV               = _mm_macc_pd(vfeps,Fp,Y);
466             velec            = _mm_mul_pd(qq10,VV);
467             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
468             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
469
470             /* Update potential sum for this i atom from the interaction with this j atom. */
471             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
472             velecsum         = _mm_add_pd(velecsum,velec);
473
474             fscal            = felec;
475
476             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
477
478             /* Update vectorial force */
479             fix1             = _mm_macc_pd(dx10,fscal,fix1);
480             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
481             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
482             
483             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
484             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
485             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
486
487             /**************************
488              * CALCULATE INTERACTIONS *
489              **************************/
490
491             r20              = _mm_mul_pd(rsq20,rinv20);
492
493             /* Compute parameters for interactions between i and j atoms */
494             qq20             = _mm_mul_pd(iq2,jq0);
495
496             /* Calculate table index by multiplying r with table scale and truncate to integer */
497             rt               = _mm_mul_pd(r20,vftabscale);
498             vfitab           = _mm_cvttpd_epi32(rt);
499 #ifdef __XOP__
500             vfeps            = _mm_frcz_pd(rt);
501 #else
502             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
503 #endif
504             twovfeps         = _mm_add_pd(vfeps,vfeps);
505             vfitab           = _mm_slli_epi32(vfitab,2);
506
507             /* CUBIC SPLINE TABLE ELECTROSTATICS */
508             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
509             F                = _mm_setzero_pd();
510             GMX_MM_TRANSPOSE2_PD(Y,F);
511             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
512             H                = _mm_setzero_pd();
513             GMX_MM_TRANSPOSE2_PD(G,H);
514             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
515             VV               = _mm_macc_pd(vfeps,Fp,Y);
516             velec            = _mm_mul_pd(qq20,VV);
517             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
518             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
522             velecsum         = _mm_add_pd(velecsum,velec);
523
524             fscal            = felec;
525
526             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
527
528             /* Update vectorial force */
529             fix2             = _mm_macc_pd(dx20,fscal,fix2);
530             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
531             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
532             
533             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
534             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
535             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
536
537             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
538
539             /* Inner loop uses 141 flops */
540         }
541
542         /* End of innermost loop */
543
544         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
545                                               f+i_coord_offset,fshift+i_shift_offset);
546
547         ggid                        = gid[iidx];
548         /* Update potential energies */
549         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
550
551         /* Increment number of inner iterations */
552         inneriter                  += j_index_end - j_index_start;
553
554         /* Outer loop uses 19 flops */
555     }
556
557     /* Increment number of outer iterations */
558     outeriter        += nri;
559
560     /* Update outer/inner flops */
561
562     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*141);
563 }
564 /*
565  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_128_fma_double
566  * Electrostatics interaction: CubicSplineTable
567  * VdW interaction:            None
568  * Geometry:                   Water3-Particle
569  * Calculate force/pot:        Force
570  */
571 void
572 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_128_fma_double
573                     (t_nblist                    * gmx_restrict       nlist,
574                      rvec                        * gmx_restrict          xx,
575                      rvec                        * gmx_restrict          ff,
576                      t_forcerec                  * gmx_restrict          fr,
577                      t_mdatoms                   * gmx_restrict     mdatoms,
578                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
579                      t_nrnb                      * gmx_restrict        nrnb)
580 {
581     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
582      * just 0 for non-waters.
583      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
584      * jnr indices corresponding to data put in the four positions in the SIMD register.
585      */
586     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
587     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
588     int              jnrA,jnrB;
589     int              j_coord_offsetA,j_coord_offsetB;
590     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
591     real             rcutoff_scalar;
592     real             *shiftvec,*fshift,*x,*f;
593     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
594     int              vdwioffset0;
595     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
596     int              vdwioffset1;
597     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
598     int              vdwioffset2;
599     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
600     int              vdwjidx0A,vdwjidx0B;
601     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
602     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
603     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
604     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
605     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
606     real             *charge;
607     __m128i          vfitab;
608     __m128i          ifour       = _mm_set1_epi32(4);
609     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
610     real             *vftab;
611     __m128d          dummy_mask,cutoff_mask;
612     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
613     __m128d          one     = _mm_set1_pd(1.0);
614     __m128d          two     = _mm_set1_pd(2.0);
615     x                = xx[0];
616     f                = ff[0];
617
618     nri              = nlist->nri;
619     iinr             = nlist->iinr;
620     jindex           = nlist->jindex;
621     jjnr             = nlist->jjnr;
622     shiftidx         = nlist->shift;
623     gid              = nlist->gid;
624     shiftvec         = fr->shift_vec[0];
625     fshift           = fr->fshift[0];
626     facel            = _mm_set1_pd(fr->epsfac);
627     charge           = mdatoms->chargeA;
628
629     vftab            = kernel_data->table_elec->data;
630     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
631
632     /* Setup water-specific parameters */
633     inr              = nlist->iinr[0];
634     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
635     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
636     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
637
638     /* Avoid stupid compiler warnings */
639     jnrA = jnrB = 0;
640     j_coord_offsetA = 0;
641     j_coord_offsetB = 0;
642
643     outeriter        = 0;
644     inneriter        = 0;
645
646     /* Start outer loop over neighborlists */
647     for(iidx=0; iidx<nri; iidx++)
648     {
649         /* Load shift vector for this list */
650         i_shift_offset   = DIM*shiftidx[iidx];
651
652         /* Load limits for loop over neighbors */
653         j_index_start    = jindex[iidx];
654         j_index_end      = jindex[iidx+1];
655
656         /* Get outer coordinate index */
657         inr              = iinr[iidx];
658         i_coord_offset   = DIM*inr;
659
660         /* Load i particle coords and add shift vector */
661         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
662                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
663
664         fix0             = _mm_setzero_pd();
665         fiy0             = _mm_setzero_pd();
666         fiz0             = _mm_setzero_pd();
667         fix1             = _mm_setzero_pd();
668         fiy1             = _mm_setzero_pd();
669         fiz1             = _mm_setzero_pd();
670         fix2             = _mm_setzero_pd();
671         fiy2             = _mm_setzero_pd();
672         fiz2             = _mm_setzero_pd();
673
674         /* Start inner kernel loop */
675         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
676         {
677
678             /* Get j neighbor index, and coordinate index */
679             jnrA             = jjnr[jidx];
680             jnrB             = jjnr[jidx+1];
681             j_coord_offsetA  = DIM*jnrA;
682             j_coord_offsetB  = DIM*jnrB;
683
684             /* load j atom coordinates */
685             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
686                                               &jx0,&jy0,&jz0);
687
688             /* Calculate displacement vector */
689             dx00             = _mm_sub_pd(ix0,jx0);
690             dy00             = _mm_sub_pd(iy0,jy0);
691             dz00             = _mm_sub_pd(iz0,jz0);
692             dx10             = _mm_sub_pd(ix1,jx0);
693             dy10             = _mm_sub_pd(iy1,jy0);
694             dz10             = _mm_sub_pd(iz1,jz0);
695             dx20             = _mm_sub_pd(ix2,jx0);
696             dy20             = _mm_sub_pd(iy2,jy0);
697             dz20             = _mm_sub_pd(iz2,jz0);
698
699             /* Calculate squared distance and things based on it */
700             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
701             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
702             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
703
704             rinv00           = gmx_mm_invsqrt_pd(rsq00);
705             rinv10           = gmx_mm_invsqrt_pd(rsq10);
706             rinv20           = gmx_mm_invsqrt_pd(rsq20);
707
708             /* Load parameters for j particles */
709             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
710
711             fjx0             = _mm_setzero_pd();
712             fjy0             = _mm_setzero_pd();
713             fjz0             = _mm_setzero_pd();
714
715             /**************************
716              * CALCULATE INTERACTIONS *
717              **************************/
718
719             r00              = _mm_mul_pd(rsq00,rinv00);
720
721             /* Compute parameters for interactions between i and j atoms */
722             qq00             = _mm_mul_pd(iq0,jq0);
723
724             /* Calculate table index by multiplying r with table scale and truncate to integer */
725             rt               = _mm_mul_pd(r00,vftabscale);
726             vfitab           = _mm_cvttpd_epi32(rt);
727 #ifdef __XOP__
728             vfeps            = _mm_frcz_pd(rt);
729 #else
730             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
731 #endif
732             twovfeps         = _mm_add_pd(vfeps,vfeps);
733             vfitab           = _mm_slli_epi32(vfitab,2);
734
735             /* CUBIC SPLINE TABLE ELECTROSTATICS */
736             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
737             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
738             GMX_MM_TRANSPOSE2_PD(Y,F);
739             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
740             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
741             GMX_MM_TRANSPOSE2_PD(G,H);
742             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
743             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
744             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
745
746             fscal            = felec;
747
748             /* Update vectorial force */
749             fix0             = _mm_macc_pd(dx00,fscal,fix0);
750             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
751             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
752             
753             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
754             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
755             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
756
757             /**************************
758              * CALCULATE INTERACTIONS *
759              **************************/
760
761             r10              = _mm_mul_pd(rsq10,rinv10);
762
763             /* Compute parameters for interactions between i and j atoms */
764             qq10             = _mm_mul_pd(iq1,jq0);
765
766             /* Calculate table index by multiplying r with table scale and truncate to integer */
767             rt               = _mm_mul_pd(r10,vftabscale);
768             vfitab           = _mm_cvttpd_epi32(rt);
769 #ifdef __XOP__
770             vfeps            = _mm_frcz_pd(rt);
771 #else
772             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
773 #endif
774             twovfeps         = _mm_add_pd(vfeps,vfeps);
775             vfitab           = _mm_slli_epi32(vfitab,2);
776
777             /* CUBIC SPLINE TABLE ELECTROSTATICS */
778             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
779             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
780             GMX_MM_TRANSPOSE2_PD(Y,F);
781             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
782             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
783             GMX_MM_TRANSPOSE2_PD(G,H);
784             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
785             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
786             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
787
788             fscal            = felec;
789
790             /* Update vectorial force */
791             fix1             = _mm_macc_pd(dx10,fscal,fix1);
792             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
793             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
794             
795             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
796             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
797             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
798
799             /**************************
800              * CALCULATE INTERACTIONS *
801              **************************/
802
803             r20              = _mm_mul_pd(rsq20,rinv20);
804
805             /* Compute parameters for interactions between i and j atoms */
806             qq20             = _mm_mul_pd(iq2,jq0);
807
808             /* Calculate table index by multiplying r with table scale and truncate to integer */
809             rt               = _mm_mul_pd(r20,vftabscale);
810             vfitab           = _mm_cvttpd_epi32(rt);
811 #ifdef __XOP__
812             vfeps            = _mm_frcz_pd(rt);
813 #else
814             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
815 #endif
816             twovfeps         = _mm_add_pd(vfeps,vfeps);
817             vfitab           = _mm_slli_epi32(vfitab,2);
818
819             /* CUBIC SPLINE TABLE ELECTROSTATICS */
820             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
821             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
822             GMX_MM_TRANSPOSE2_PD(Y,F);
823             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
824             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
825             GMX_MM_TRANSPOSE2_PD(G,H);
826             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
827             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
828             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
829
830             fscal            = felec;
831
832             /* Update vectorial force */
833             fix2             = _mm_macc_pd(dx20,fscal,fix2);
834             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
835             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
836             
837             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
838             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
839             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
840
841             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
842
843             /* Inner loop uses 129 flops */
844         }
845
846         if(jidx<j_index_end)
847         {
848
849             jnrA             = jjnr[jidx];
850             j_coord_offsetA  = DIM*jnrA;
851
852             /* load j atom coordinates */
853             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
854                                               &jx0,&jy0,&jz0);
855
856             /* Calculate displacement vector */
857             dx00             = _mm_sub_pd(ix0,jx0);
858             dy00             = _mm_sub_pd(iy0,jy0);
859             dz00             = _mm_sub_pd(iz0,jz0);
860             dx10             = _mm_sub_pd(ix1,jx0);
861             dy10             = _mm_sub_pd(iy1,jy0);
862             dz10             = _mm_sub_pd(iz1,jz0);
863             dx20             = _mm_sub_pd(ix2,jx0);
864             dy20             = _mm_sub_pd(iy2,jy0);
865             dz20             = _mm_sub_pd(iz2,jz0);
866
867             /* Calculate squared distance and things based on it */
868             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
869             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
870             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
871
872             rinv00           = gmx_mm_invsqrt_pd(rsq00);
873             rinv10           = gmx_mm_invsqrt_pd(rsq10);
874             rinv20           = gmx_mm_invsqrt_pd(rsq20);
875
876             /* Load parameters for j particles */
877             jq0              = _mm_load_sd(charge+jnrA+0);
878
879             fjx0             = _mm_setzero_pd();
880             fjy0             = _mm_setzero_pd();
881             fjz0             = _mm_setzero_pd();
882
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             r00              = _mm_mul_pd(rsq00,rinv00);
888
889             /* Compute parameters for interactions between i and j atoms */
890             qq00             = _mm_mul_pd(iq0,jq0);
891
892             /* Calculate table index by multiplying r with table scale and truncate to integer */
893             rt               = _mm_mul_pd(r00,vftabscale);
894             vfitab           = _mm_cvttpd_epi32(rt);
895 #ifdef __XOP__
896             vfeps            = _mm_frcz_pd(rt);
897 #else
898             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
899 #endif
900             twovfeps         = _mm_add_pd(vfeps,vfeps);
901             vfitab           = _mm_slli_epi32(vfitab,2);
902
903             /* CUBIC SPLINE TABLE ELECTROSTATICS */
904             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
905             F                = _mm_setzero_pd();
906             GMX_MM_TRANSPOSE2_PD(Y,F);
907             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
908             H                = _mm_setzero_pd();
909             GMX_MM_TRANSPOSE2_PD(G,H);
910             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
911             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
912             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
913
914             fscal            = felec;
915
916             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
917
918             /* Update vectorial force */
919             fix0             = _mm_macc_pd(dx00,fscal,fix0);
920             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
921             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
922             
923             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
924             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
925             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             r10              = _mm_mul_pd(rsq10,rinv10);
932
933             /* Compute parameters for interactions between i and j atoms */
934             qq10             = _mm_mul_pd(iq1,jq0);
935
936             /* Calculate table index by multiplying r with table scale and truncate to integer */
937             rt               = _mm_mul_pd(r10,vftabscale);
938             vfitab           = _mm_cvttpd_epi32(rt);
939 #ifdef __XOP__
940             vfeps            = _mm_frcz_pd(rt);
941 #else
942             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
943 #endif
944             twovfeps         = _mm_add_pd(vfeps,vfeps);
945             vfitab           = _mm_slli_epi32(vfitab,2);
946
947             /* CUBIC SPLINE TABLE ELECTROSTATICS */
948             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
949             F                = _mm_setzero_pd();
950             GMX_MM_TRANSPOSE2_PD(Y,F);
951             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
952             H                = _mm_setzero_pd();
953             GMX_MM_TRANSPOSE2_PD(G,H);
954             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
955             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
956             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
957
958             fscal            = felec;
959
960             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
961
962             /* Update vectorial force */
963             fix1             = _mm_macc_pd(dx10,fscal,fix1);
964             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
965             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
966             
967             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
968             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
969             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             r20              = _mm_mul_pd(rsq20,rinv20);
976
977             /* Compute parameters for interactions between i and j atoms */
978             qq20             = _mm_mul_pd(iq2,jq0);
979
980             /* Calculate table index by multiplying r with table scale and truncate to integer */
981             rt               = _mm_mul_pd(r20,vftabscale);
982             vfitab           = _mm_cvttpd_epi32(rt);
983 #ifdef __XOP__
984             vfeps            = _mm_frcz_pd(rt);
985 #else
986             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
987 #endif
988             twovfeps         = _mm_add_pd(vfeps,vfeps);
989             vfitab           = _mm_slli_epi32(vfitab,2);
990
991             /* CUBIC SPLINE TABLE ELECTROSTATICS */
992             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
993             F                = _mm_setzero_pd();
994             GMX_MM_TRANSPOSE2_PD(Y,F);
995             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
996             H                = _mm_setzero_pd();
997             GMX_MM_TRANSPOSE2_PD(G,H);
998             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
999             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1000             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1001
1002             fscal            = felec;
1003
1004             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1005
1006             /* Update vectorial force */
1007             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1008             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1009             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1010             
1011             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1012             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1013             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1014
1015             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1016
1017             /* Inner loop uses 129 flops */
1018         }
1019
1020         /* End of innermost loop */
1021
1022         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1023                                               f+i_coord_offset,fshift+i_shift_offset);
1024
1025         /* Increment number of inner iterations */
1026         inneriter                  += j_index_end - j_index_start;
1027
1028         /* Outer loop uses 18 flops */
1029     }
1030
1031     /* Increment number of outer iterations */
1032     outeriter        += nri;
1033
1034     /* Update outer/inner flops */
1035
1036     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*129);
1037 }