Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwNone_GeomW3P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_128_fma_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
82     real             *vftab;
83     __m128d          dummy_mask,cutoff_mask;
84     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
85     __m128d          one     = _mm_set1_pd(1.0);
86     __m128d          two     = _mm_set1_pd(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_pd(fr->epsfac);
99     charge           = mdatoms->chargeA;
100
101     vftab            = kernel_data->table_elec->data;
102     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
103
104     /* Setup water-specific parameters */
105     inr              = nlist->iinr[0];
106     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
107     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
108     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
109
110     /* Avoid stupid compiler warnings */
111     jnrA = jnrB = 0;
112     j_coord_offsetA = 0;
113     j_coord_offsetB = 0;
114
115     outeriter        = 0;
116     inneriter        = 0;
117
118     /* Start outer loop over neighborlists */
119     for(iidx=0; iidx<nri; iidx++)
120     {
121         /* Load shift vector for this list */
122         i_shift_offset   = DIM*shiftidx[iidx];
123
124         /* Load limits for loop over neighbors */
125         j_index_start    = jindex[iidx];
126         j_index_end      = jindex[iidx+1];
127
128         /* Get outer coordinate index */
129         inr              = iinr[iidx];
130         i_coord_offset   = DIM*inr;
131
132         /* Load i particle coords and add shift vector */
133         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
134                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
135
136         fix0             = _mm_setzero_pd();
137         fiy0             = _mm_setzero_pd();
138         fiz0             = _mm_setzero_pd();
139         fix1             = _mm_setzero_pd();
140         fiy1             = _mm_setzero_pd();
141         fiz1             = _mm_setzero_pd();
142         fix2             = _mm_setzero_pd();
143         fiy2             = _mm_setzero_pd();
144         fiz2             = _mm_setzero_pd();
145
146         /* Reset potential sums */
147         velecsum         = _mm_setzero_pd();
148
149         /* Start inner kernel loop */
150         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
151         {
152
153             /* Get j neighbor index, and coordinate index */
154             jnrA             = jjnr[jidx];
155             jnrB             = jjnr[jidx+1];
156             j_coord_offsetA  = DIM*jnrA;
157             j_coord_offsetB  = DIM*jnrB;
158
159             /* load j atom coordinates */
160             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
161                                               &jx0,&jy0,&jz0);
162
163             /* Calculate displacement vector */
164             dx00             = _mm_sub_pd(ix0,jx0);
165             dy00             = _mm_sub_pd(iy0,jy0);
166             dz00             = _mm_sub_pd(iz0,jz0);
167             dx10             = _mm_sub_pd(ix1,jx0);
168             dy10             = _mm_sub_pd(iy1,jy0);
169             dz10             = _mm_sub_pd(iz1,jz0);
170             dx20             = _mm_sub_pd(ix2,jx0);
171             dy20             = _mm_sub_pd(iy2,jy0);
172             dz20             = _mm_sub_pd(iz2,jz0);
173
174             /* Calculate squared distance and things based on it */
175             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
176             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
177             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
178
179             rinv00           = gmx_mm_invsqrt_pd(rsq00);
180             rinv10           = gmx_mm_invsqrt_pd(rsq10);
181             rinv20           = gmx_mm_invsqrt_pd(rsq20);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
185
186             fjx0             = _mm_setzero_pd();
187             fjy0             = _mm_setzero_pd();
188             fjz0             = _mm_setzero_pd();
189
190             /**************************
191              * CALCULATE INTERACTIONS *
192              **************************/
193
194             r00              = _mm_mul_pd(rsq00,rinv00);
195
196             /* Compute parameters for interactions between i and j atoms */
197             qq00             = _mm_mul_pd(iq0,jq0);
198
199             /* Calculate table index by multiplying r with table scale and truncate to integer */
200             rt               = _mm_mul_pd(r00,vftabscale);
201             vfitab           = _mm_cvttpd_epi32(rt);
202 #ifdef __XOP__
203             vfeps            = _mm_frcz_pd(rt);
204 #else
205             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
206 #endif
207             twovfeps         = _mm_add_pd(vfeps,vfeps);
208             vfitab           = _mm_slli_epi32(vfitab,2);
209
210             /* CUBIC SPLINE TABLE ELECTROSTATICS */
211             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
212             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
213             GMX_MM_TRANSPOSE2_PD(Y,F);
214             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
215             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
216             GMX_MM_TRANSPOSE2_PD(G,H);
217             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
218             VV               = _mm_macc_pd(vfeps,Fp,Y);
219             velec            = _mm_mul_pd(qq00,VV);
220             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
221             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
222
223             /* Update potential sum for this i atom from the interaction with this j atom. */
224             velecsum         = _mm_add_pd(velecsum,velec);
225
226             fscal            = felec;
227
228             /* Update vectorial force */
229             fix0             = _mm_macc_pd(dx00,fscal,fix0);
230             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
231             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
232             
233             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
234             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
235             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             r10              = _mm_mul_pd(rsq10,rinv10);
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq10             = _mm_mul_pd(iq1,jq0);
245
246             /* Calculate table index by multiplying r with table scale and truncate to integer */
247             rt               = _mm_mul_pd(r10,vftabscale);
248             vfitab           = _mm_cvttpd_epi32(rt);
249 #ifdef __XOP__
250             vfeps            = _mm_frcz_pd(rt);
251 #else
252             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
253 #endif
254             twovfeps         = _mm_add_pd(vfeps,vfeps);
255             vfitab           = _mm_slli_epi32(vfitab,2);
256
257             /* CUBIC SPLINE TABLE ELECTROSTATICS */
258             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
259             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
260             GMX_MM_TRANSPOSE2_PD(Y,F);
261             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
262             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
263             GMX_MM_TRANSPOSE2_PD(G,H);
264             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
265             VV               = _mm_macc_pd(vfeps,Fp,Y);
266             velec            = _mm_mul_pd(qq10,VV);
267             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
268             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
269
270             /* Update potential sum for this i atom from the interaction with this j atom. */
271             velecsum         = _mm_add_pd(velecsum,velec);
272
273             fscal            = felec;
274
275             /* Update vectorial force */
276             fix1             = _mm_macc_pd(dx10,fscal,fix1);
277             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
278             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
279             
280             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
281             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
282             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             r20              = _mm_mul_pd(rsq20,rinv20);
289
290             /* Compute parameters for interactions between i and j atoms */
291             qq20             = _mm_mul_pd(iq2,jq0);
292
293             /* Calculate table index by multiplying r with table scale and truncate to integer */
294             rt               = _mm_mul_pd(r20,vftabscale);
295             vfitab           = _mm_cvttpd_epi32(rt);
296 #ifdef __XOP__
297             vfeps            = _mm_frcz_pd(rt);
298 #else
299             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
300 #endif
301             twovfeps         = _mm_add_pd(vfeps,vfeps);
302             vfitab           = _mm_slli_epi32(vfitab,2);
303
304             /* CUBIC SPLINE TABLE ELECTROSTATICS */
305             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
306             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
307             GMX_MM_TRANSPOSE2_PD(Y,F);
308             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
309             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
310             GMX_MM_TRANSPOSE2_PD(G,H);
311             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
312             VV               = _mm_macc_pd(vfeps,Fp,Y);
313             velec            = _mm_mul_pd(qq20,VV);
314             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
315             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velecsum         = _mm_add_pd(velecsum,velec);
319
320             fscal            = felec;
321
322             /* Update vectorial force */
323             fix2             = _mm_macc_pd(dx20,fscal,fix2);
324             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
325             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
326             
327             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
328             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
329             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
330
331             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
332
333             /* Inner loop uses 141 flops */
334         }
335
336         if(jidx<j_index_end)
337         {
338
339             jnrA             = jjnr[jidx];
340             j_coord_offsetA  = DIM*jnrA;
341
342             /* load j atom coordinates */
343             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
344                                               &jx0,&jy0,&jz0);
345
346             /* Calculate displacement vector */
347             dx00             = _mm_sub_pd(ix0,jx0);
348             dy00             = _mm_sub_pd(iy0,jy0);
349             dz00             = _mm_sub_pd(iz0,jz0);
350             dx10             = _mm_sub_pd(ix1,jx0);
351             dy10             = _mm_sub_pd(iy1,jy0);
352             dz10             = _mm_sub_pd(iz1,jz0);
353             dx20             = _mm_sub_pd(ix2,jx0);
354             dy20             = _mm_sub_pd(iy2,jy0);
355             dz20             = _mm_sub_pd(iz2,jz0);
356
357             /* Calculate squared distance and things based on it */
358             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
359             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
360             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
361
362             rinv00           = gmx_mm_invsqrt_pd(rsq00);
363             rinv10           = gmx_mm_invsqrt_pd(rsq10);
364             rinv20           = gmx_mm_invsqrt_pd(rsq20);
365
366             /* Load parameters for j particles */
367             jq0              = _mm_load_sd(charge+jnrA+0);
368
369             fjx0             = _mm_setzero_pd();
370             fjy0             = _mm_setzero_pd();
371             fjz0             = _mm_setzero_pd();
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             r00              = _mm_mul_pd(rsq00,rinv00);
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq00             = _mm_mul_pd(iq0,jq0);
381
382             /* Calculate table index by multiplying r with table scale and truncate to integer */
383             rt               = _mm_mul_pd(r00,vftabscale);
384             vfitab           = _mm_cvttpd_epi32(rt);
385 #ifdef __XOP__
386             vfeps            = _mm_frcz_pd(rt);
387 #else
388             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
389 #endif
390             twovfeps         = _mm_add_pd(vfeps,vfeps);
391             vfitab           = _mm_slli_epi32(vfitab,2);
392
393             /* CUBIC SPLINE TABLE ELECTROSTATICS */
394             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
395             F                = _mm_setzero_pd();
396             GMX_MM_TRANSPOSE2_PD(Y,F);
397             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
398             H                = _mm_setzero_pd();
399             GMX_MM_TRANSPOSE2_PD(G,H);
400             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
401             VV               = _mm_macc_pd(vfeps,Fp,Y);
402             velec            = _mm_mul_pd(qq00,VV);
403             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
404             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
408             velecsum         = _mm_add_pd(velecsum,velec);
409
410             fscal            = felec;
411
412             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
413
414             /* Update vectorial force */
415             fix0             = _mm_macc_pd(dx00,fscal,fix0);
416             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
417             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
418             
419             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
420             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
421             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
422
423             /**************************
424              * CALCULATE INTERACTIONS *
425              **************************/
426
427             r10              = _mm_mul_pd(rsq10,rinv10);
428
429             /* Compute parameters for interactions between i and j atoms */
430             qq10             = _mm_mul_pd(iq1,jq0);
431
432             /* Calculate table index by multiplying r with table scale and truncate to integer */
433             rt               = _mm_mul_pd(r10,vftabscale);
434             vfitab           = _mm_cvttpd_epi32(rt);
435 #ifdef __XOP__
436             vfeps            = _mm_frcz_pd(rt);
437 #else
438             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
439 #endif
440             twovfeps         = _mm_add_pd(vfeps,vfeps);
441             vfitab           = _mm_slli_epi32(vfitab,2);
442
443             /* CUBIC SPLINE TABLE ELECTROSTATICS */
444             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
445             F                = _mm_setzero_pd();
446             GMX_MM_TRANSPOSE2_PD(Y,F);
447             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
448             H                = _mm_setzero_pd();
449             GMX_MM_TRANSPOSE2_PD(G,H);
450             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
451             VV               = _mm_macc_pd(vfeps,Fp,Y);
452             velec            = _mm_mul_pd(qq10,VV);
453             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
454             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
455
456             /* Update potential sum for this i atom from the interaction with this j atom. */
457             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
458             velecsum         = _mm_add_pd(velecsum,velec);
459
460             fscal            = felec;
461
462             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
463
464             /* Update vectorial force */
465             fix1             = _mm_macc_pd(dx10,fscal,fix1);
466             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
467             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
468             
469             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
470             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
471             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
472
473             /**************************
474              * CALCULATE INTERACTIONS *
475              **************************/
476
477             r20              = _mm_mul_pd(rsq20,rinv20);
478
479             /* Compute parameters for interactions between i and j atoms */
480             qq20             = _mm_mul_pd(iq2,jq0);
481
482             /* Calculate table index by multiplying r with table scale and truncate to integer */
483             rt               = _mm_mul_pd(r20,vftabscale);
484             vfitab           = _mm_cvttpd_epi32(rt);
485 #ifdef __XOP__
486             vfeps            = _mm_frcz_pd(rt);
487 #else
488             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
489 #endif
490             twovfeps         = _mm_add_pd(vfeps,vfeps);
491             vfitab           = _mm_slli_epi32(vfitab,2);
492
493             /* CUBIC SPLINE TABLE ELECTROSTATICS */
494             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
495             F                = _mm_setzero_pd();
496             GMX_MM_TRANSPOSE2_PD(Y,F);
497             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
498             H                = _mm_setzero_pd();
499             GMX_MM_TRANSPOSE2_PD(G,H);
500             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
501             VV               = _mm_macc_pd(vfeps,Fp,Y);
502             velec            = _mm_mul_pd(qq20,VV);
503             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
504             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
505
506             /* Update potential sum for this i atom from the interaction with this j atom. */
507             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
508             velecsum         = _mm_add_pd(velecsum,velec);
509
510             fscal            = felec;
511
512             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
513
514             /* Update vectorial force */
515             fix2             = _mm_macc_pd(dx20,fscal,fix2);
516             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
517             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
518             
519             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
520             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
521             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
522
523             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
524
525             /* Inner loop uses 141 flops */
526         }
527
528         /* End of innermost loop */
529
530         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
531                                               f+i_coord_offset,fshift+i_shift_offset);
532
533         ggid                        = gid[iidx];
534         /* Update potential energies */
535         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
536
537         /* Increment number of inner iterations */
538         inneriter                  += j_index_end - j_index_start;
539
540         /* Outer loop uses 19 flops */
541     }
542
543     /* Increment number of outer iterations */
544     outeriter        += nri;
545
546     /* Update outer/inner flops */
547
548     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*141);
549 }
550 /*
551  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_128_fma_double
552  * Electrostatics interaction: CubicSplineTable
553  * VdW interaction:            None
554  * Geometry:                   Water3-Particle
555  * Calculate force/pot:        Force
556  */
557 void
558 nb_kernel_ElecCSTab_VdwNone_GeomW3P1_F_avx_128_fma_double
559                     (t_nblist * gmx_restrict                nlist,
560                      rvec * gmx_restrict                    xx,
561                      rvec * gmx_restrict                    ff,
562                      t_forcerec * gmx_restrict              fr,
563                      t_mdatoms * gmx_restrict               mdatoms,
564                      nb_kernel_data_t * gmx_restrict        kernel_data,
565                      t_nrnb * gmx_restrict                  nrnb)
566 {
567     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
568      * just 0 for non-waters.
569      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
570      * jnr indices corresponding to data put in the four positions in the SIMD register.
571      */
572     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
573     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
574     int              jnrA,jnrB;
575     int              j_coord_offsetA,j_coord_offsetB;
576     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
577     real             rcutoff_scalar;
578     real             *shiftvec,*fshift,*x,*f;
579     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
580     int              vdwioffset0;
581     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
582     int              vdwioffset1;
583     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
584     int              vdwioffset2;
585     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
586     int              vdwjidx0A,vdwjidx0B;
587     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
588     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
589     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
590     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
591     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
592     real             *charge;
593     __m128i          vfitab;
594     __m128i          ifour       = _mm_set1_epi32(4);
595     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
596     real             *vftab;
597     __m128d          dummy_mask,cutoff_mask;
598     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
599     __m128d          one     = _mm_set1_pd(1.0);
600     __m128d          two     = _mm_set1_pd(2.0);
601     x                = xx[0];
602     f                = ff[0];
603
604     nri              = nlist->nri;
605     iinr             = nlist->iinr;
606     jindex           = nlist->jindex;
607     jjnr             = nlist->jjnr;
608     shiftidx         = nlist->shift;
609     gid              = nlist->gid;
610     shiftvec         = fr->shift_vec[0];
611     fshift           = fr->fshift[0];
612     facel            = _mm_set1_pd(fr->epsfac);
613     charge           = mdatoms->chargeA;
614
615     vftab            = kernel_data->table_elec->data;
616     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
617
618     /* Setup water-specific parameters */
619     inr              = nlist->iinr[0];
620     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
621     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
622     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
623
624     /* Avoid stupid compiler warnings */
625     jnrA = jnrB = 0;
626     j_coord_offsetA = 0;
627     j_coord_offsetB = 0;
628
629     outeriter        = 0;
630     inneriter        = 0;
631
632     /* Start outer loop over neighborlists */
633     for(iidx=0; iidx<nri; iidx++)
634     {
635         /* Load shift vector for this list */
636         i_shift_offset   = DIM*shiftidx[iidx];
637
638         /* Load limits for loop over neighbors */
639         j_index_start    = jindex[iidx];
640         j_index_end      = jindex[iidx+1];
641
642         /* Get outer coordinate index */
643         inr              = iinr[iidx];
644         i_coord_offset   = DIM*inr;
645
646         /* Load i particle coords and add shift vector */
647         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
648                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
649
650         fix0             = _mm_setzero_pd();
651         fiy0             = _mm_setzero_pd();
652         fiz0             = _mm_setzero_pd();
653         fix1             = _mm_setzero_pd();
654         fiy1             = _mm_setzero_pd();
655         fiz1             = _mm_setzero_pd();
656         fix2             = _mm_setzero_pd();
657         fiy2             = _mm_setzero_pd();
658         fiz2             = _mm_setzero_pd();
659
660         /* Start inner kernel loop */
661         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
662         {
663
664             /* Get j neighbor index, and coordinate index */
665             jnrA             = jjnr[jidx];
666             jnrB             = jjnr[jidx+1];
667             j_coord_offsetA  = DIM*jnrA;
668             j_coord_offsetB  = DIM*jnrB;
669
670             /* load j atom coordinates */
671             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
672                                               &jx0,&jy0,&jz0);
673
674             /* Calculate displacement vector */
675             dx00             = _mm_sub_pd(ix0,jx0);
676             dy00             = _mm_sub_pd(iy0,jy0);
677             dz00             = _mm_sub_pd(iz0,jz0);
678             dx10             = _mm_sub_pd(ix1,jx0);
679             dy10             = _mm_sub_pd(iy1,jy0);
680             dz10             = _mm_sub_pd(iz1,jz0);
681             dx20             = _mm_sub_pd(ix2,jx0);
682             dy20             = _mm_sub_pd(iy2,jy0);
683             dz20             = _mm_sub_pd(iz2,jz0);
684
685             /* Calculate squared distance and things based on it */
686             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
687             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
688             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
689
690             rinv00           = gmx_mm_invsqrt_pd(rsq00);
691             rinv10           = gmx_mm_invsqrt_pd(rsq10);
692             rinv20           = gmx_mm_invsqrt_pd(rsq20);
693
694             /* Load parameters for j particles */
695             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
696
697             fjx0             = _mm_setzero_pd();
698             fjy0             = _mm_setzero_pd();
699             fjz0             = _mm_setzero_pd();
700
701             /**************************
702              * CALCULATE INTERACTIONS *
703              **************************/
704
705             r00              = _mm_mul_pd(rsq00,rinv00);
706
707             /* Compute parameters for interactions between i and j atoms */
708             qq00             = _mm_mul_pd(iq0,jq0);
709
710             /* Calculate table index by multiplying r with table scale and truncate to integer */
711             rt               = _mm_mul_pd(r00,vftabscale);
712             vfitab           = _mm_cvttpd_epi32(rt);
713 #ifdef __XOP__
714             vfeps            = _mm_frcz_pd(rt);
715 #else
716             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
717 #endif
718             twovfeps         = _mm_add_pd(vfeps,vfeps);
719             vfitab           = _mm_slli_epi32(vfitab,2);
720
721             /* CUBIC SPLINE TABLE ELECTROSTATICS */
722             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
723             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
724             GMX_MM_TRANSPOSE2_PD(Y,F);
725             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
726             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
727             GMX_MM_TRANSPOSE2_PD(G,H);
728             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
729             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
730             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
731
732             fscal            = felec;
733
734             /* Update vectorial force */
735             fix0             = _mm_macc_pd(dx00,fscal,fix0);
736             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
737             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
738             
739             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
740             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
741             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
742
743             /**************************
744              * CALCULATE INTERACTIONS *
745              **************************/
746
747             r10              = _mm_mul_pd(rsq10,rinv10);
748
749             /* Compute parameters for interactions between i and j atoms */
750             qq10             = _mm_mul_pd(iq1,jq0);
751
752             /* Calculate table index by multiplying r with table scale and truncate to integer */
753             rt               = _mm_mul_pd(r10,vftabscale);
754             vfitab           = _mm_cvttpd_epi32(rt);
755 #ifdef __XOP__
756             vfeps            = _mm_frcz_pd(rt);
757 #else
758             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
759 #endif
760             twovfeps         = _mm_add_pd(vfeps,vfeps);
761             vfitab           = _mm_slli_epi32(vfitab,2);
762
763             /* CUBIC SPLINE TABLE ELECTROSTATICS */
764             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
765             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
766             GMX_MM_TRANSPOSE2_PD(Y,F);
767             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
768             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
769             GMX_MM_TRANSPOSE2_PD(G,H);
770             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
771             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
772             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
773
774             fscal            = felec;
775
776             /* Update vectorial force */
777             fix1             = _mm_macc_pd(dx10,fscal,fix1);
778             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
779             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
780             
781             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
782             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
783             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
784
785             /**************************
786              * CALCULATE INTERACTIONS *
787              **************************/
788
789             r20              = _mm_mul_pd(rsq20,rinv20);
790
791             /* Compute parameters for interactions between i and j atoms */
792             qq20             = _mm_mul_pd(iq2,jq0);
793
794             /* Calculate table index by multiplying r with table scale and truncate to integer */
795             rt               = _mm_mul_pd(r20,vftabscale);
796             vfitab           = _mm_cvttpd_epi32(rt);
797 #ifdef __XOP__
798             vfeps            = _mm_frcz_pd(rt);
799 #else
800             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
801 #endif
802             twovfeps         = _mm_add_pd(vfeps,vfeps);
803             vfitab           = _mm_slli_epi32(vfitab,2);
804
805             /* CUBIC SPLINE TABLE ELECTROSTATICS */
806             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
807             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
808             GMX_MM_TRANSPOSE2_PD(Y,F);
809             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
810             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
811             GMX_MM_TRANSPOSE2_PD(G,H);
812             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
813             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
814             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
815
816             fscal            = felec;
817
818             /* Update vectorial force */
819             fix2             = _mm_macc_pd(dx20,fscal,fix2);
820             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
821             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
822             
823             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
824             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
825             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
826
827             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
828
829             /* Inner loop uses 129 flops */
830         }
831
832         if(jidx<j_index_end)
833         {
834
835             jnrA             = jjnr[jidx];
836             j_coord_offsetA  = DIM*jnrA;
837
838             /* load j atom coordinates */
839             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
840                                               &jx0,&jy0,&jz0);
841
842             /* Calculate displacement vector */
843             dx00             = _mm_sub_pd(ix0,jx0);
844             dy00             = _mm_sub_pd(iy0,jy0);
845             dz00             = _mm_sub_pd(iz0,jz0);
846             dx10             = _mm_sub_pd(ix1,jx0);
847             dy10             = _mm_sub_pd(iy1,jy0);
848             dz10             = _mm_sub_pd(iz1,jz0);
849             dx20             = _mm_sub_pd(ix2,jx0);
850             dy20             = _mm_sub_pd(iy2,jy0);
851             dz20             = _mm_sub_pd(iz2,jz0);
852
853             /* Calculate squared distance and things based on it */
854             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
855             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
856             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
857
858             rinv00           = gmx_mm_invsqrt_pd(rsq00);
859             rinv10           = gmx_mm_invsqrt_pd(rsq10);
860             rinv20           = gmx_mm_invsqrt_pd(rsq20);
861
862             /* Load parameters for j particles */
863             jq0              = _mm_load_sd(charge+jnrA+0);
864
865             fjx0             = _mm_setzero_pd();
866             fjy0             = _mm_setzero_pd();
867             fjz0             = _mm_setzero_pd();
868
869             /**************************
870              * CALCULATE INTERACTIONS *
871              **************************/
872
873             r00              = _mm_mul_pd(rsq00,rinv00);
874
875             /* Compute parameters for interactions between i and j atoms */
876             qq00             = _mm_mul_pd(iq0,jq0);
877
878             /* Calculate table index by multiplying r with table scale and truncate to integer */
879             rt               = _mm_mul_pd(r00,vftabscale);
880             vfitab           = _mm_cvttpd_epi32(rt);
881 #ifdef __XOP__
882             vfeps            = _mm_frcz_pd(rt);
883 #else
884             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
885 #endif
886             twovfeps         = _mm_add_pd(vfeps,vfeps);
887             vfitab           = _mm_slli_epi32(vfitab,2);
888
889             /* CUBIC SPLINE TABLE ELECTROSTATICS */
890             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
891             F                = _mm_setzero_pd();
892             GMX_MM_TRANSPOSE2_PD(Y,F);
893             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
894             H                = _mm_setzero_pd();
895             GMX_MM_TRANSPOSE2_PD(G,H);
896             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
897             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
898             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
899
900             fscal            = felec;
901
902             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
903
904             /* Update vectorial force */
905             fix0             = _mm_macc_pd(dx00,fscal,fix0);
906             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
907             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
908             
909             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
910             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
911             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r10              = _mm_mul_pd(rsq10,rinv10);
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq10             = _mm_mul_pd(iq1,jq0);
921
922             /* Calculate table index by multiplying r with table scale and truncate to integer */
923             rt               = _mm_mul_pd(r10,vftabscale);
924             vfitab           = _mm_cvttpd_epi32(rt);
925 #ifdef __XOP__
926             vfeps            = _mm_frcz_pd(rt);
927 #else
928             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
929 #endif
930             twovfeps         = _mm_add_pd(vfeps,vfeps);
931             vfitab           = _mm_slli_epi32(vfitab,2);
932
933             /* CUBIC SPLINE TABLE ELECTROSTATICS */
934             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
935             F                = _mm_setzero_pd();
936             GMX_MM_TRANSPOSE2_PD(Y,F);
937             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
938             H                = _mm_setzero_pd();
939             GMX_MM_TRANSPOSE2_PD(G,H);
940             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
941             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
942             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
943
944             fscal            = felec;
945
946             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
947
948             /* Update vectorial force */
949             fix1             = _mm_macc_pd(dx10,fscal,fix1);
950             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
951             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
952             
953             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
954             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
955             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             r20              = _mm_mul_pd(rsq20,rinv20);
962
963             /* Compute parameters for interactions between i and j atoms */
964             qq20             = _mm_mul_pd(iq2,jq0);
965
966             /* Calculate table index by multiplying r with table scale and truncate to integer */
967             rt               = _mm_mul_pd(r20,vftabscale);
968             vfitab           = _mm_cvttpd_epi32(rt);
969 #ifdef __XOP__
970             vfeps            = _mm_frcz_pd(rt);
971 #else
972             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
973 #endif
974             twovfeps         = _mm_add_pd(vfeps,vfeps);
975             vfitab           = _mm_slli_epi32(vfitab,2);
976
977             /* CUBIC SPLINE TABLE ELECTROSTATICS */
978             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
979             F                = _mm_setzero_pd();
980             GMX_MM_TRANSPOSE2_PD(Y,F);
981             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
982             H                = _mm_setzero_pd();
983             GMX_MM_TRANSPOSE2_PD(G,H);
984             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
985             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
986             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
987
988             fscal            = felec;
989
990             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
991
992             /* Update vectorial force */
993             fix2             = _mm_macc_pd(dx20,fscal,fix2);
994             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
995             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
996             
997             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
998             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
999             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1000
1001             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1002
1003             /* Inner loop uses 129 flops */
1004         }
1005
1006         /* End of innermost loop */
1007
1008         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1009                                               f+i_coord_offset,fshift+i_shift_offset);
1010
1011         /* Increment number of inner iterations */
1012         inneriter                  += j_index_end - j_index_start;
1013
1014         /* Outer loop uses 18 flops */
1015     }
1016
1017     /* Increment number of outer iterations */
1018     outeriter        += nri;
1019
1020     /* Update outer/inner flops */
1021
1022     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*129);
1023 }