e1b56a42965c013b64c1abb3da2aa0797359e456
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     __m128i          vfitab;
88     __m128i          ifour       = _mm_set1_epi32(4);
89     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
90     real             *vftab;
91     __m128d          dummy_mask,cutoff_mask;
92     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
93     __m128d          one     = _mm_set1_pd(1.0);
94     __m128d          two     = _mm_set1_pd(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_pd(fr->epsfac);
107     charge           = mdatoms->chargeA;
108
109     vftab            = kernel_data->table_elec->data;
110     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
111
112     /* Avoid stupid compiler warnings */
113     jnrA = jnrB = 0;
114     j_coord_offsetA = 0;
115     j_coord_offsetB = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     /* Start outer loop over neighborlists */
121     for(iidx=0; iidx<nri; iidx++)
122     {
123         /* Load shift vector for this list */
124         i_shift_offset   = DIM*shiftidx[iidx];
125
126         /* Load limits for loop over neighbors */
127         j_index_start    = jindex[iidx];
128         j_index_end      = jindex[iidx+1];
129
130         /* Get outer coordinate index */
131         inr              = iinr[iidx];
132         i_coord_offset   = DIM*inr;
133
134         /* Load i particle coords and add shift vector */
135         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
136
137         fix0             = _mm_setzero_pd();
138         fiy0             = _mm_setzero_pd();
139         fiz0             = _mm_setzero_pd();
140
141         /* Load parameters for i particles */
142         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
143
144         /* Reset potential sums */
145         velecsum         = _mm_setzero_pd();
146
147         /* Start inner kernel loop */
148         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
149         {
150
151             /* Get j neighbor index, and coordinate index */
152             jnrA             = jjnr[jidx];
153             jnrB             = jjnr[jidx+1];
154             j_coord_offsetA  = DIM*jnrA;
155             j_coord_offsetB  = DIM*jnrB;
156
157             /* load j atom coordinates */
158             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
159                                               &jx0,&jy0,&jz0);
160
161             /* Calculate displacement vector */
162             dx00             = _mm_sub_pd(ix0,jx0);
163             dy00             = _mm_sub_pd(iy0,jy0);
164             dz00             = _mm_sub_pd(iz0,jz0);
165
166             /* Calculate squared distance and things based on it */
167             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
168
169             rinv00           = gmx_mm_invsqrt_pd(rsq00);
170
171             /* Load parameters for j particles */
172             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
173
174             /**************************
175              * CALCULATE INTERACTIONS *
176              **************************/
177
178             r00              = _mm_mul_pd(rsq00,rinv00);
179
180             /* Compute parameters for interactions between i and j atoms */
181             qq00             = _mm_mul_pd(iq0,jq0);
182
183             /* Calculate table index by multiplying r with table scale and truncate to integer */
184             rt               = _mm_mul_pd(r00,vftabscale);
185             vfitab           = _mm_cvttpd_epi32(rt);
186 #ifdef __XOP__
187             vfeps            = _mm_frcz_pd(rt);
188 #else
189             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
190 #endif
191             twovfeps         = _mm_add_pd(vfeps,vfeps);
192             vfitab           = _mm_slli_epi32(vfitab,2);
193
194             /* CUBIC SPLINE TABLE ELECTROSTATICS */
195             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
196             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
197             GMX_MM_TRANSPOSE2_PD(Y,F);
198             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
199             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
200             GMX_MM_TRANSPOSE2_PD(G,H);
201             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
202             VV               = _mm_macc_pd(vfeps,Fp,Y);
203             velec            = _mm_mul_pd(qq00,VV);
204             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
205             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
206
207             /* Update potential sum for this i atom from the interaction with this j atom. */
208             velecsum         = _mm_add_pd(velecsum,velec);
209
210             fscal            = felec;
211
212             /* Update vectorial force */
213             fix0             = _mm_macc_pd(dx00,fscal,fix0);
214             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
215             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
216             
217             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
218                                                    _mm_mul_pd(dx00,fscal),
219                                                    _mm_mul_pd(dy00,fscal),
220                                                    _mm_mul_pd(dz00,fscal));
221
222             /* Inner loop uses 46 flops */
223         }
224
225         if(jidx<j_index_end)
226         {
227
228             jnrA             = jjnr[jidx];
229             j_coord_offsetA  = DIM*jnrA;
230
231             /* load j atom coordinates */
232             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
233                                               &jx0,&jy0,&jz0);
234
235             /* Calculate displacement vector */
236             dx00             = _mm_sub_pd(ix0,jx0);
237             dy00             = _mm_sub_pd(iy0,jy0);
238             dz00             = _mm_sub_pd(iz0,jz0);
239
240             /* Calculate squared distance and things based on it */
241             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
242
243             rinv00           = gmx_mm_invsqrt_pd(rsq00);
244
245             /* Load parameters for j particles */
246             jq0              = _mm_load_sd(charge+jnrA+0);
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             r00              = _mm_mul_pd(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             qq00             = _mm_mul_pd(iq0,jq0);
256
257             /* Calculate table index by multiplying r with table scale and truncate to integer */
258             rt               = _mm_mul_pd(r00,vftabscale);
259             vfitab           = _mm_cvttpd_epi32(rt);
260 #ifdef __XOP__
261             vfeps            = _mm_frcz_pd(rt);
262 #else
263             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
264 #endif
265             twovfeps         = _mm_add_pd(vfeps,vfeps);
266             vfitab           = _mm_slli_epi32(vfitab,2);
267
268             /* CUBIC SPLINE TABLE ELECTROSTATICS */
269             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
270             F                = _mm_setzero_pd();
271             GMX_MM_TRANSPOSE2_PD(Y,F);
272             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
273             H                = _mm_setzero_pd();
274             GMX_MM_TRANSPOSE2_PD(G,H);
275             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
276             VV               = _mm_macc_pd(vfeps,Fp,Y);
277             velec            = _mm_mul_pd(qq00,VV);
278             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
279             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
283             velecsum         = _mm_add_pd(velecsum,velec);
284
285             fscal            = felec;
286
287             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
288
289             /* Update vectorial force */
290             fix0             = _mm_macc_pd(dx00,fscal,fix0);
291             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
292             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
293             
294             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
295                                                    _mm_mul_pd(dx00,fscal),
296                                                    _mm_mul_pd(dy00,fscal),
297                                                    _mm_mul_pd(dz00,fscal));
298
299             /* Inner loop uses 46 flops */
300         }
301
302         /* End of innermost loop */
303
304         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
305                                               f+i_coord_offset,fshift+i_shift_offset);
306
307         ggid                        = gid[iidx];
308         /* Update potential energies */
309         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
310
311         /* Increment number of inner iterations */
312         inneriter                  += j_index_end - j_index_start;
313
314         /* Outer loop uses 8 flops */
315     }
316
317     /* Increment number of outer iterations */
318     outeriter        += nri;
319
320     /* Update outer/inner flops */
321
322     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*46);
323 }
324 /*
325  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_128_fma_double
326  * Electrostatics interaction: CubicSplineTable
327  * VdW interaction:            None
328  * Geometry:                   Particle-Particle
329  * Calculate force/pot:        Force
330  */
331 void
332 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_128_fma_double
333                     (t_nblist                    * gmx_restrict       nlist,
334                      rvec                        * gmx_restrict          xx,
335                      rvec                        * gmx_restrict          ff,
336                      t_forcerec                  * gmx_restrict          fr,
337                      t_mdatoms                   * gmx_restrict     mdatoms,
338                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
339                      t_nrnb                      * gmx_restrict        nrnb)
340 {
341     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
342      * just 0 for non-waters.
343      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
344      * jnr indices corresponding to data put in the four positions in the SIMD register.
345      */
346     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
347     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
348     int              jnrA,jnrB;
349     int              j_coord_offsetA,j_coord_offsetB;
350     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
351     real             rcutoff_scalar;
352     real             *shiftvec,*fshift,*x,*f;
353     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
354     int              vdwioffset0;
355     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
356     int              vdwjidx0A,vdwjidx0B;
357     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
358     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
359     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
360     real             *charge;
361     __m128i          vfitab;
362     __m128i          ifour       = _mm_set1_epi32(4);
363     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
364     real             *vftab;
365     __m128d          dummy_mask,cutoff_mask;
366     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
367     __m128d          one     = _mm_set1_pd(1.0);
368     __m128d          two     = _mm_set1_pd(2.0);
369     x                = xx[0];
370     f                = ff[0];
371
372     nri              = nlist->nri;
373     iinr             = nlist->iinr;
374     jindex           = nlist->jindex;
375     jjnr             = nlist->jjnr;
376     shiftidx         = nlist->shift;
377     gid              = nlist->gid;
378     shiftvec         = fr->shift_vec[0];
379     fshift           = fr->fshift[0];
380     facel            = _mm_set1_pd(fr->epsfac);
381     charge           = mdatoms->chargeA;
382
383     vftab            = kernel_data->table_elec->data;
384     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
385
386     /* Avoid stupid compiler warnings */
387     jnrA = jnrB = 0;
388     j_coord_offsetA = 0;
389     j_coord_offsetB = 0;
390
391     outeriter        = 0;
392     inneriter        = 0;
393
394     /* Start outer loop over neighborlists */
395     for(iidx=0; iidx<nri; iidx++)
396     {
397         /* Load shift vector for this list */
398         i_shift_offset   = DIM*shiftidx[iidx];
399
400         /* Load limits for loop over neighbors */
401         j_index_start    = jindex[iidx];
402         j_index_end      = jindex[iidx+1];
403
404         /* Get outer coordinate index */
405         inr              = iinr[iidx];
406         i_coord_offset   = DIM*inr;
407
408         /* Load i particle coords and add shift vector */
409         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
410
411         fix0             = _mm_setzero_pd();
412         fiy0             = _mm_setzero_pd();
413         fiz0             = _mm_setzero_pd();
414
415         /* Load parameters for i particles */
416         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
417
418         /* Start inner kernel loop */
419         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
420         {
421
422             /* Get j neighbor index, and coordinate index */
423             jnrA             = jjnr[jidx];
424             jnrB             = jjnr[jidx+1];
425             j_coord_offsetA  = DIM*jnrA;
426             j_coord_offsetB  = DIM*jnrB;
427
428             /* load j atom coordinates */
429             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
430                                               &jx0,&jy0,&jz0);
431
432             /* Calculate displacement vector */
433             dx00             = _mm_sub_pd(ix0,jx0);
434             dy00             = _mm_sub_pd(iy0,jy0);
435             dz00             = _mm_sub_pd(iz0,jz0);
436
437             /* Calculate squared distance and things based on it */
438             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
439
440             rinv00           = gmx_mm_invsqrt_pd(rsq00);
441
442             /* Load parameters for j particles */
443             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             r00              = _mm_mul_pd(rsq00,rinv00);
450
451             /* Compute parameters for interactions between i and j atoms */
452             qq00             = _mm_mul_pd(iq0,jq0);
453
454             /* Calculate table index by multiplying r with table scale and truncate to integer */
455             rt               = _mm_mul_pd(r00,vftabscale);
456             vfitab           = _mm_cvttpd_epi32(rt);
457 #ifdef __XOP__
458             vfeps            = _mm_frcz_pd(rt);
459 #else
460             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
461 #endif
462             twovfeps         = _mm_add_pd(vfeps,vfeps);
463             vfitab           = _mm_slli_epi32(vfitab,2);
464
465             /* CUBIC SPLINE TABLE ELECTROSTATICS */
466             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
467             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
468             GMX_MM_TRANSPOSE2_PD(Y,F);
469             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
470             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
471             GMX_MM_TRANSPOSE2_PD(G,H);
472             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
473             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
474             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
475
476             fscal            = felec;
477
478             /* Update vectorial force */
479             fix0             = _mm_macc_pd(dx00,fscal,fix0);
480             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
481             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
482             
483             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
484                                                    _mm_mul_pd(dx00,fscal),
485                                                    _mm_mul_pd(dy00,fscal),
486                                                    _mm_mul_pd(dz00,fscal));
487
488             /* Inner loop uses 42 flops */
489         }
490
491         if(jidx<j_index_end)
492         {
493
494             jnrA             = jjnr[jidx];
495             j_coord_offsetA  = DIM*jnrA;
496
497             /* load j atom coordinates */
498             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
499                                               &jx0,&jy0,&jz0);
500
501             /* Calculate displacement vector */
502             dx00             = _mm_sub_pd(ix0,jx0);
503             dy00             = _mm_sub_pd(iy0,jy0);
504             dz00             = _mm_sub_pd(iz0,jz0);
505
506             /* Calculate squared distance and things based on it */
507             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
508
509             rinv00           = gmx_mm_invsqrt_pd(rsq00);
510
511             /* Load parameters for j particles */
512             jq0              = _mm_load_sd(charge+jnrA+0);
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             r00              = _mm_mul_pd(rsq00,rinv00);
519
520             /* Compute parameters for interactions between i and j atoms */
521             qq00             = _mm_mul_pd(iq0,jq0);
522
523             /* Calculate table index by multiplying r with table scale and truncate to integer */
524             rt               = _mm_mul_pd(r00,vftabscale);
525             vfitab           = _mm_cvttpd_epi32(rt);
526 #ifdef __XOP__
527             vfeps            = _mm_frcz_pd(rt);
528 #else
529             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
530 #endif
531             twovfeps         = _mm_add_pd(vfeps,vfeps);
532             vfitab           = _mm_slli_epi32(vfitab,2);
533
534             /* CUBIC SPLINE TABLE ELECTROSTATICS */
535             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
536             F                = _mm_setzero_pd();
537             GMX_MM_TRANSPOSE2_PD(Y,F);
538             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
539             H                = _mm_setzero_pd();
540             GMX_MM_TRANSPOSE2_PD(G,H);
541             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
542             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
543             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
544
545             fscal            = felec;
546
547             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
548
549             /* Update vectorial force */
550             fix0             = _mm_macc_pd(dx00,fscal,fix0);
551             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
552             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
553             
554             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
555                                                    _mm_mul_pd(dx00,fscal),
556                                                    _mm_mul_pd(dy00,fscal),
557                                                    _mm_mul_pd(dz00,fscal));
558
559             /* Inner loop uses 42 flops */
560         }
561
562         /* End of innermost loop */
563
564         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
565                                               f+i_coord_offset,fshift+i_shift_offset);
566
567         /* Increment number of inner iterations */
568         inneriter                  += j_index_end - j_index_start;
569
570         /* Outer loop uses 7 flops */
571     }
572
573     /* Increment number of outer iterations */
574     outeriter        += nri;
575
576     /* Update outer/inner flops */
577
578     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*42);
579 }