Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_128_fma_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
107     real             *vftab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
164
165         fix0             = _mm_setzero_pd();
166         fiy0             = _mm_setzero_pd();
167         fiz0             = _mm_setzero_pd();
168         fix1             = _mm_setzero_pd();
169         fiy1             = _mm_setzero_pd();
170         fiz1             = _mm_setzero_pd();
171         fix2             = _mm_setzero_pd();
172         fiy2             = _mm_setzero_pd();
173         fiz2             = _mm_setzero_pd();
174         fix3             = _mm_setzero_pd();
175         fiy3             = _mm_setzero_pd();
176         fiz3             = _mm_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_pd();
180         vvdwsum          = _mm_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_pd(ix0,jx0);
198             dy00             = _mm_sub_pd(iy0,jy0);
199             dz00             = _mm_sub_pd(iz0,jz0);
200             dx10             = _mm_sub_pd(ix1,jx0);
201             dy10             = _mm_sub_pd(iy1,jy0);
202             dz10             = _mm_sub_pd(iz1,jz0);
203             dx20             = _mm_sub_pd(ix2,jx0);
204             dy20             = _mm_sub_pd(iy2,jy0);
205             dz20             = _mm_sub_pd(iz2,jz0);
206             dx30             = _mm_sub_pd(ix3,jx0);
207             dy30             = _mm_sub_pd(iy3,jy0);
208             dz30             = _mm_sub_pd(iz3,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
214             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
215
216             rinv10           = gmx_mm_invsqrt_pd(rsq10);
217             rinv20           = gmx_mm_invsqrt_pd(rsq20);
218             rinv30           = gmx_mm_invsqrt_pd(rsq30);
219
220             rinvsq00         = gmx_mm_inv_pd(rsq00);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226
227             fjx0             = _mm_setzero_pd();
228             fjy0             = _mm_setzero_pd();
229             fjz0             = _mm_setzero_pd();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             /* Compute parameters for interactions between i and j atoms */
236             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
237                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
238
239             /* LENNARD-JONES DISPERSION/REPULSION */
240
241             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
242             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
243             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
244             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
245             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
249
250             fscal            = fvdw;
251
252             /* Update vectorial force */
253             fix0             = _mm_macc_pd(dx00,fscal,fix0);
254             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
255             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
256             
257             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
258             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
259             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
260
261             /**************************
262              * CALCULATE INTERACTIONS *
263              **************************/
264
265             r10              = _mm_mul_pd(rsq10,rinv10);
266
267             /* Compute parameters for interactions between i and j atoms */
268             qq10             = _mm_mul_pd(iq1,jq0);
269
270             /* Calculate table index by multiplying r with table scale and truncate to integer */
271             rt               = _mm_mul_pd(r10,vftabscale);
272             vfitab           = _mm_cvttpd_epi32(rt);
273 #ifdef __XOP__
274             vfeps            = _mm_frcz_pd(rt);
275 #else
276             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
277 #endif
278             twovfeps         = _mm_add_pd(vfeps,vfeps);
279             vfitab           = _mm_slli_epi32(vfitab,2);
280
281             /* CUBIC SPLINE TABLE ELECTROSTATICS */
282             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
283             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
284             GMX_MM_TRANSPOSE2_PD(Y,F);
285             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
286             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
287             GMX_MM_TRANSPOSE2_PD(G,H);
288             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
289             VV               = _mm_macc_pd(vfeps,Fp,Y);
290             velec            = _mm_mul_pd(qq10,VV);
291             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
292             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velecsum         = _mm_add_pd(velecsum,velec);
296
297             fscal            = felec;
298
299             /* Update vectorial force */
300             fix1             = _mm_macc_pd(dx10,fscal,fix1);
301             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
302             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
303             
304             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
305             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
306             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             r20              = _mm_mul_pd(rsq20,rinv20);
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq20             = _mm_mul_pd(iq2,jq0);
316
317             /* Calculate table index by multiplying r with table scale and truncate to integer */
318             rt               = _mm_mul_pd(r20,vftabscale);
319             vfitab           = _mm_cvttpd_epi32(rt);
320 #ifdef __XOP__
321             vfeps            = _mm_frcz_pd(rt);
322 #else
323             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
324 #endif
325             twovfeps         = _mm_add_pd(vfeps,vfeps);
326             vfitab           = _mm_slli_epi32(vfitab,2);
327
328             /* CUBIC SPLINE TABLE ELECTROSTATICS */
329             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
330             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
331             GMX_MM_TRANSPOSE2_PD(Y,F);
332             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
333             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
334             GMX_MM_TRANSPOSE2_PD(G,H);
335             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
336             VV               = _mm_macc_pd(vfeps,Fp,Y);
337             velec            = _mm_mul_pd(qq20,VV);
338             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
339             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Update vectorial force */
347             fix2             = _mm_macc_pd(dx20,fscal,fix2);
348             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
349             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
350             
351             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
352             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
353             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             r30              = _mm_mul_pd(rsq30,rinv30);
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq30             = _mm_mul_pd(iq3,jq0);
363
364             /* Calculate table index by multiplying r with table scale and truncate to integer */
365             rt               = _mm_mul_pd(r30,vftabscale);
366             vfitab           = _mm_cvttpd_epi32(rt);
367 #ifdef __XOP__
368             vfeps            = _mm_frcz_pd(rt);
369 #else
370             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
371 #endif
372             twovfeps         = _mm_add_pd(vfeps,vfeps);
373             vfitab           = _mm_slli_epi32(vfitab,2);
374
375             /* CUBIC SPLINE TABLE ELECTROSTATICS */
376             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
377             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
378             GMX_MM_TRANSPOSE2_PD(Y,F);
379             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
380             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
381             GMX_MM_TRANSPOSE2_PD(G,H);
382             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
383             VV               = _mm_macc_pd(vfeps,Fp,Y);
384             velec            = _mm_mul_pd(qq30,VV);
385             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
386             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velecsum         = _mm_add_pd(velecsum,velec);
390
391             fscal            = felec;
392
393             /* Update vectorial force */
394             fix3             = _mm_macc_pd(dx30,fscal,fix3);
395             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
396             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
397             
398             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
399             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
400             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
401
402             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
403
404             /* Inner loop uses 176 flops */
405         }
406
407         if(jidx<j_index_end)
408         {
409
410             jnrA             = jjnr[jidx];
411             j_coord_offsetA  = DIM*jnrA;
412
413             /* load j atom coordinates */
414             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
415                                               &jx0,&jy0,&jz0);
416
417             /* Calculate displacement vector */
418             dx00             = _mm_sub_pd(ix0,jx0);
419             dy00             = _mm_sub_pd(iy0,jy0);
420             dz00             = _mm_sub_pd(iz0,jz0);
421             dx10             = _mm_sub_pd(ix1,jx0);
422             dy10             = _mm_sub_pd(iy1,jy0);
423             dz10             = _mm_sub_pd(iz1,jz0);
424             dx20             = _mm_sub_pd(ix2,jx0);
425             dy20             = _mm_sub_pd(iy2,jy0);
426             dz20             = _mm_sub_pd(iz2,jz0);
427             dx30             = _mm_sub_pd(ix3,jx0);
428             dy30             = _mm_sub_pd(iy3,jy0);
429             dz30             = _mm_sub_pd(iz3,jz0);
430
431             /* Calculate squared distance and things based on it */
432             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
433             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
434             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
435             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
436
437             rinv10           = gmx_mm_invsqrt_pd(rsq10);
438             rinv20           = gmx_mm_invsqrt_pd(rsq20);
439             rinv30           = gmx_mm_invsqrt_pd(rsq30);
440
441             rinvsq00         = gmx_mm_inv_pd(rsq00);
442
443             /* Load parameters for j particles */
444             jq0              = _mm_load_sd(charge+jnrA+0);
445             vdwjidx0A        = 2*vdwtype[jnrA+0];
446
447             fjx0             = _mm_setzero_pd();
448             fjy0             = _mm_setzero_pd();
449             fjz0             = _mm_setzero_pd();
450
451             /**************************
452              * CALCULATE INTERACTIONS *
453              **************************/
454
455             /* Compute parameters for interactions between i and j atoms */
456             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
457
458             /* LENNARD-JONES DISPERSION/REPULSION */
459
460             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
461             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
462             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
463             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
464             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
465
466             /* Update potential sum for this i atom from the interaction with this j atom. */
467             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
468             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
469
470             fscal            = fvdw;
471
472             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
473
474             /* Update vectorial force */
475             fix0             = _mm_macc_pd(dx00,fscal,fix0);
476             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
477             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
478             
479             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
480             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
481             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             r10              = _mm_mul_pd(rsq10,rinv10);
488
489             /* Compute parameters for interactions between i and j atoms */
490             qq10             = _mm_mul_pd(iq1,jq0);
491
492             /* Calculate table index by multiplying r with table scale and truncate to integer */
493             rt               = _mm_mul_pd(r10,vftabscale);
494             vfitab           = _mm_cvttpd_epi32(rt);
495 #ifdef __XOP__
496             vfeps            = _mm_frcz_pd(rt);
497 #else
498             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
499 #endif
500             twovfeps         = _mm_add_pd(vfeps,vfeps);
501             vfitab           = _mm_slli_epi32(vfitab,2);
502
503             /* CUBIC SPLINE TABLE ELECTROSTATICS */
504             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
505             F                = _mm_setzero_pd();
506             GMX_MM_TRANSPOSE2_PD(Y,F);
507             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
508             H                = _mm_setzero_pd();
509             GMX_MM_TRANSPOSE2_PD(G,H);
510             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
511             VV               = _mm_macc_pd(vfeps,Fp,Y);
512             velec            = _mm_mul_pd(qq10,VV);
513             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
514             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
515
516             /* Update potential sum for this i atom from the interaction with this j atom. */
517             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
518             velecsum         = _mm_add_pd(velecsum,velec);
519
520             fscal            = felec;
521
522             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
523
524             /* Update vectorial force */
525             fix1             = _mm_macc_pd(dx10,fscal,fix1);
526             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
527             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
528             
529             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
530             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
531             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             r20              = _mm_mul_pd(rsq20,rinv20);
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq20             = _mm_mul_pd(iq2,jq0);
541
542             /* Calculate table index by multiplying r with table scale and truncate to integer */
543             rt               = _mm_mul_pd(r20,vftabscale);
544             vfitab           = _mm_cvttpd_epi32(rt);
545 #ifdef __XOP__
546             vfeps            = _mm_frcz_pd(rt);
547 #else
548             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
549 #endif
550             twovfeps         = _mm_add_pd(vfeps,vfeps);
551             vfitab           = _mm_slli_epi32(vfitab,2);
552
553             /* CUBIC SPLINE TABLE ELECTROSTATICS */
554             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
555             F                = _mm_setzero_pd();
556             GMX_MM_TRANSPOSE2_PD(Y,F);
557             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
558             H                = _mm_setzero_pd();
559             GMX_MM_TRANSPOSE2_PD(G,H);
560             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
561             VV               = _mm_macc_pd(vfeps,Fp,Y);
562             velec            = _mm_mul_pd(qq20,VV);
563             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
564             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
565
566             /* Update potential sum for this i atom from the interaction with this j atom. */
567             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
568             velecsum         = _mm_add_pd(velecsum,velec);
569
570             fscal            = felec;
571
572             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
573
574             /* Update vectorial force */
575             fix2             = _mm_macc_pd(dx20,fscal,fix2);
576             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
577             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
578             
579             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
580             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
581             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
582
583             /**************************
584              * CALCULATE INTERACTIONS *
585              **************************/
586
587             r30              = _mm_mul_pd(rsq30,rinv30);
588
589             /* Compute parameters for interactions between i and j atoms */
590             qq30             = _mm_mul_pd(iq3,jq0);
591
592             /* Calculate table index by multiplying r with table scale and truncate to integer */
593             rt               = _mm_mul_pd(r30,vftabscale);
594             vfitab           = _mm_cvttpd_epi32(rt);
595 #ifdef __XOP__
596             vfeps            = _mm_frcz_pd(rt);
597 #else
598             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
599 #endif
600             twovfeps         = _mm_add_pd(vfeps,vfeps);
601             vfitab           = _mm_slli_epi32(vfitab,2);
602
603             /* CUBIC SPLINE TABLE ELECTROSTATICS */
604             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
605             F                = _mm_setzero_pd();
606             GMX_MM_TRANSPOSE2_PD(Y,F);
607             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
608             H                = _mm_setzero_pd();
609             GMX_MM_TRANSPOSE2_PD(G,H);
610             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
611             VV               = _mm_macc_pd(vfeps,Fp,Y);
612             velec            = _mm_mul_pd(qq30,VV);
613             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
614             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
615
616             /* Update potential sum for this i atom from the interaction with this j atom. */
617             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
618             velecsum         = _mm_add_pd(velecsum,velec);
619
620             fscal            = felec;
621
622             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
623
624             /* Update vectorial force */
625             fix3             = _mm_macc_pd(dx30,fscal,fix3);
626             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
627             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
628             
629             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
630             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
631             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
632
633             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
634
635             /* Inner loop uses 176 flops */
636         }
637
638         /* End of innermost loop */
639
640         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
641                                               f+i_coord_offset,fshift+i_shift_offset);
642
643         ggid                        = gid[iidx];
644         /* Update potential energies */
645         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
646         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
647
648         /* Increment number of inner iterations */
649         inneriter                  += j_index_end - j_index_start;
650
651         /* Outer loop uses 26 flops */
652     }
653
654     /* Increment number of outer iterations */
655     outeriter        += nri;
656
657     /* Update outer/inner flops */
658
659     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*176);
660 }
661 /*
662  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_128_fma_double
663  * Electrostatics interaction: CubicSplineTable
664  * VdW interaction:            LennardJones
665  * Geometry:                   Water4-Particle
666  * Calculate force/pot:        Force
667  */
668 void
669 nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_avx_128_fma_double
670                     (t_nblist                    * gmx_restrict       nlist,
671                      rvec                        * gmx_restrict          xx,
672                      rvec                        * gmx_restrict          ff,
673                      t_forcerec                  * gmx_restrict          fr,
674                      t_mdatoms                   * gmx_restrict     mdatoms,
675                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
676                      t_nrnb                      * gmx_restrict        nrnb)
677 {
678     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
679      * just 0 for non-waters.
680      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
681      * jnr indices corresponding to data put in the four positions in the SIMD register.
682      */
683     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
684     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
685     int              jnrA,jnrB;
686     int              j_coord_offsetA,j_coord_offsetB;
687     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
688     real             rcutoff_scalar;
689     real             *shiftvec,*fshift,*x,*f;
690     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
691     int              vdwioffset0;
692     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
693     int              vdwioffset1;
694     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
695     int              vdwioffset2;
696     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
697     int              vdwioffset3;
698     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
699     int              vdwjidx0A,vdwjidx0B;
700     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
701     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
702     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
703     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
704     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
705     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
706     real             *charge;
707     int              nvdwtype;
708     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
709     int              *vdwtype;
710     real             *vdwparam;
711     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
712     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
713     __m128i          vfitab;
714     __m128i          ifour       = _mm_set1_epi32(4);
715     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
716     real             *vftab;
717     __m128d          dummy_mask,cutoff_mask;
718     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
719     __m128d          one     = _mm_set1_pd(1.0);
720     __m128d          two     = _mm_set1_pd(2.0);
721     x                = xx[0];
722     f                = ff[0];
723
724     nri              = nlist->nri;
725     iinr             = nlist->iinr;
726     jindex           = nlist->jindex;
727     jjnr             = nlist->jjnr;
728     shiftidx         = nlist->shift;
729     gid              = nlist->gid;
730     shiftvec         = fr->shift_vec[0];
731     fshift           = fr->fshift[0];
732     facel            = _mm_set1_pd(fr->epsfac);
733     charge           = mdatoms->chargeA;
734     nvdwtype         = fr->ntype;
735     vdwparam         = fr->nbfp;
736     vdwtype          = mdatoms->typeA;
737
738     vftab            = kernel_data->table_elec->data;
739     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
740
741     /* Setup water-specific parameters */
742     inr              = nlist->iinr[0];
743     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
744     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
745     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
746     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
747
748     /* Avoid stupid compiler warnings */
749     jnrA = jnrB = 0;
750     j_coord_offsetA = 0;
751     j_coord_offsetB = 0;
752
753     outeriter        = 0;
754     inneriter        = 0;
755
756     /* Start outer loop over neighborlists */
757     for(iidx=0; iidx<nri; iidx++)
758     {
759         /* Load shift vector for this list */
760         i_shift_offset   = DIM*shiftidx[iidx];
761
762         /* Load limits for loop over neighbors */
763         j_index_start    = jindex[iidx];
764         j_index_end      = jindex[iidx+1];
765
766         /* Get outer coordinate index */
767         inr              = iinr[iidx];
768         i_coord_offset   = DIM*inr;
769
770         /* Load i particle coords and add shift vector */
771         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
772                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
773
774         fix0             = _mm_setzero_pd();
775         fiy0             = _mm_setzero_pd();
776         fiz0             = _mm_setzero_pd();
777         fix1             = _mm_setzero_pd();
778         fiy1             = _mm_setzero_pd();
779         fiz1             = _mm_setzero_pd();
780         fix2             = _mm_setzero_pd();
781         fiy2             = _mm_setzero_pd();
782         fiz2             = _mm_setzero_pd();
783         fix3             = _mm_setzero_pd();
784         fiy3             = _mm_setzero_pd();
785         fiz3             = _mm_setzero_pd();
786
787         /* Start inner kernel loop */
788         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
789         {
790
791             /* Get j neighbor index, and coordinate index */
792             jnrA             = jjnr[jidx];
793             jnrB             = jjnr[jidx+1];
794             j_coord_offsetA  = DIM*jnrA;
795             j_coord_offsetB  = DIM*jnrB;
796
797             /* load j atom coordinates */
798             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
799                                               &jx0,&jy0,&jz0);
800
801             /* Calculate displacement vector */
802             dx00             = _mm_sub_pd(ix0,jx0);
803             dy00             = _mm_sub_pd(iy0,jy0);
804             dz00             = _mm_sub_pd(iz0,jz0);
805             dx10             = _mm_sub_pd(ix1,jx0);
806             dy10             = _mm_sub_pd(iy1,jy0);
807             dz10             = _mm_sub_pd(iz1,jz0);
808             dx20             = _mm_sub_pd(ix2,jx0);
809             dy20             = _mm_sub_pd(iy2,jy0);
810             dz20             = _mm_sub_pd(iz2,jz0);
811             dx30             = _mm_sub_pd(ix3,jx0);
812             dy30             = _mm_sub_pd(iy3,jy0);
813             dz30             = _mm_sub_pd(iz3,jz0);
814
815             /* Calculate squared distance and things based on it */
816             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
817             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
818             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
819             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
820
821             rinv10           = gmx_mm_invsqrt_pd(rsq10);
822             rinv20           = gmx_mm_invsqrt_pd(rsq20);
823             rinv30           = gmx_mm_invsqrt_pd(rsq30);
824
825             rinvsq00         = gmx_mm_inv_pd(rsq00);
826
827             /* Load parameters for j particles */
828             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
829             vdwjidx0A        = 2*vdwtype[jnrA+0];
830             vdwjidx0B        = 2*vdwtype[jnrB+0];
831
832             fjx0             = _mm_setzero_pd();
833             fjy0             = _mm_setzero_pd();
834             fjz0             = _mm_setzero_pd();
835
836             /**************************
837              * CALCULATE INTERACTIONS *
838              **************************/
839
840             /* Compute parameters for interactions between i and j atoms */
841             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
842                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
843
844             /* LENNARD-JONES DISPERSION/REPULSION */
845
846             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
847             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
848
849             fscal            = fvdw;
850
851             /* Update vectorial force */
852             fix0             = _mm_macc_pd(dx00,fscal,fix0);
853             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
854             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
855             
856             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
857             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
858             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
859
860             /**************************
861              * CALCULATE INTERACTIONS *
862              **************************/
863
864             r10              = _mm_mul_pd(rsq10,rinv10);
865
866             /* Compute parameters for interactions between i and j atoms */
867             qq10             = _mm_mul_pd(iq1,jq0);
868
869             /* Calculate table index by multiplying r with table scale and truncate to integer */
870             rt               = _mm_mul_pd(r10,vftabscale);
871             vfitab           = _mm_cvttpd_epi32(rt);
872 #ifdef __XOP__
873             vfeps            = _mm_frcz_pd(rt);
874 #else
875             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
876 #endif
877             twovfeps         = _mm_add_pd(vfeps,vfeps);
878             vfitab           = _mm_slli_epi32(vfitab,2);
879
880             /* CUBIC SPLINE TABLE ELECTROSTATICS */
881             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
882             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
883             GMX_MM_TRANSPOSE2_PD(Y,F);
884             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
885             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
886             GMX_MM_TRANSPOSE2_PD(G,H);
887             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
888             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
889             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
890
891             fscal            = felec;
892
893             /* Update vectorial force */
894             fix1             = _mm_macc_pd(dx10,fscal,fix1);
895             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
896             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
897             
898             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
899             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
900             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
901
902             /**************************
903              * CALCULATE INTERACTIONS *
904              **************************/
905
906             r20              = _mm_mul_pd(rsq20,rinv20);
907
908             /* Compute parameters for interactions between i and j atoms */
909             qq20             = _mm_mul_pd(iq2,jq0);
910
911             /* Calculate table index by multiplying r with table scale and truncate to integer */
912             rt               = _mm_mul_pd(r20,vftabscale);
913             vfitab           = _mm_cvttpd_epi32(rt);
914 #ifdef __XOP__
915             vfeps            = _mm_frcz_pd(rt);
916 #else
917             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
918 #endif
919             twovfeps         = _mm_add_pd(vfeps,vfeps);
920             vfitab           = _mm_slli_epi32(vfitab,2);
921
922             /* CUBIC SPLINE TABLE ELECTROSTATICS */
923             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
924             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
925             GMX_MM_TRANSPOSE2_PD(Y,F);
926             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
927             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
928             GMX_MM_TRANSPOSE2_PD(G,H);
929             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
930             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
931             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
932
933             fscal            = felec;
934
935             /* Update vectorial force */
936             fix2             = _mm_macc_pd(dx20,fscal,fix2);
937             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
938             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
939             
940             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
941             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
942             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             r30              = _mm_mul_pd(rsq30,rinv30);
949
950             /* Compute parameters for interactions between i and j atoms */
951             qq30             = _mm_mul_pd(iq3,jq0);
952
953             /* Calculate table index by multiplying r with table scale and truncate to integer */
954             rt               = _mm_mul_pd(r30,vftabscale);
955             vfitab           = _mm_cvttpd_epi32(rt);
956 #ifdef __XOP__
957             vfeps            = _mm_frcz_pd(rt);
958 #else
959             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
960 #endif
961             twovfeps         = _mm_add_pd(vfeps,vfeps);
962             vfitab           = _mm_slli_epi32(vfitab,2);
963
964             /* CUBIC SPLINE TABLE ELECTROSTATICS */
965             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
966             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
967             GMX_MM_TRANSPOSE2_PD(Y,F);
968             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
969             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
970             GMX_MM_TRANSPOSE2_PD(G,H);
971             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
972             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
973             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
974
975             fscal            = felec;
976
977             /* Update vectorial force */
978             fix3             = _mm_macc_pd(dx30,fscal,fix3);
979             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
980             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
981             
982             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
983             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
984             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
985
986             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
987
988             /* Inner loop uses 159 flops */
989         }
990
991         if(jidx<j_index_end)
992         {
993
994             jnrA             = jjnr[jidx];
995             j_coord_offsetA  = DIM*jnrA;
996
997             /* load j atom coordinates */
998             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
999                                               &jx0,&jy0,&jz0);
1000
1001             /* Calculate displacement vector */
1002             dx00             = _mm_sub_pd(ix0,jx0);
1003             dy00             = _mm_sub_pd(iy0,jy0);
1004             dz00             = _mm_sub_pd(iz0,jz0);
1005             dx10             = _mm_sub_pd(ix1,jx0);
1006             dy10             = _mm_sub_pd(iy1,jy0);
1007             dz10             = _mm_sub_pd(iz1,jz0);
1008             dx20             = _mm_sub_pd(ix2,jx0);
1009             dy20             = _mm_sub_pd(iy2,jy0);
1010             dz20             = _mm_sub_pd(iz2,jz0);
1011             dx30             = _mm_sub_pd(ix3,jx0);
1012             dy30             = _mm_sub_pd(iy3,jy0);
1013             dz30             = _mm_sub_pd(iz3,jz0);
1014
1015             /* Calculate squared distance and things based on it */
1016             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1017             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1018             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1019             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1020
1021             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1022             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1023             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1024
1025             rinvsq00         = gmx_mm_inv_pd(rsq00);
1026
1027             /* Load parameters for j particles */
1028             jq0              = _mm_load_sd(charge+jnrA+0);
1029             vdwjidx0A        = 2*vdwtype[jnrA+0];
1030
1031             fjx0             = _mm_setzero_pd();
1032             fjy0             = _mm_setzero_pd();
1033             fjz0             = _mm_setzero_pd();
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             /* Compute parameters for interactions between i and j atoms */
1040             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1041
1042             /* LENNARD-JONES DISPERSION/REPULSION */
1043
1044             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1045             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1046
1047             fscal            = fvdw;
1048
1049             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1050
1051             /* Update vectorial force */
1052             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1053             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1054             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1055             
1056             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1057             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1058             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1059
1060             /**************************
1061              * CALCULATE INTERACTIONS *
1062              **************************/
1063
1064             r10              = _mm_mul_pd(rsq10,rinv10);
1065
1066             /* Compute parameters for interactions between i and j atoms */
1067             qq10             = _mm_mul_pd(iq1,jq0);
1068
1069             /* Calculate table index by multiplying r with table scale and truncate to integer */
1070             rt               = _mm_mul_pd(r10,vftabscale);
1071             vfitab           = _mm_cvttpd_epi32(rt);
1072 #ifdef __XOP__
1073             vfeps            = _mm_frcz_pd(rt);
1074 #else
1075             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1076 #endif
1077             twovfeps         = _mm_add_pd(vfeps,vfeps);
1078             vfitab           = _mm_slli_epi32(vfitab,2);
1079
1080             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1081             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1082             F                = _mm_setzero_pd();
1083             GMX_MM_TRANSPOSE2_PD(Y,F);
1084             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1085             H                = _mm_setzero_pd();
1086             GMX_MM_TRANSPOSE2_PD(G,H);
1087             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1088             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1089             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1090
1091             fscal            = felec;
1092
1093             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1094
1095             /* Update vectorial force */
1096             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1097             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1098             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1099             
1100             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1101             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1102             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1103
1104             /**************************
1105              * CALCULATE INTERACTIONS *
1106              **************************/
1107
1108             r20              = _mm_mul_pd(rsq20,rinv20);
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             qq20             = _mm_mul_pd(iq2,jq0);
1112
1113             /* Calculate table index by multiplying r with table scale and truncate to integer */
1114             rt               = _mm_mul_pd(r20,vftabscale);
1115             vfitab           = _mm_cvttpd_epi32(rt);
1116 #ifdef __XOP__
1117             vfeps            = _mm_frcz_pd(rt);
1118 #else
1119             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1120 #endif
1121             twovfeps         = _mm_add_pd(vfeps,vfeps);
1122             vfitab           = _mm_slli_epi32(vfitab,2);
1123
1124             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1125             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1126             F                = _mm_setzero_pd();
1127             GMX_MM_TRANSPOSE2_PD(Y,F);
1128             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1129             H                = _mm_setzero_pd();
1130             GMX_MM_TRANSPOSE2_PD(G,H);
1131             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1132             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1133             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1134
1135             fscal            = felec;
1136
1137             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1138
1139             /* Update vectorial force */
1140             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1141             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1142             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1143             
1144             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1145             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1146             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1147
1148             /**************************
1149              * CALCULATE INTERACTIONS *
1150              **************************/
1151
1152             r30              = _mm_mul_pd(rsq30,rinv30);
1153
1154             /* Compute parameters for interactions between i and j atoms */
1155             qq30             = _mm_mul_pd(iq3,jq0);
1156
1157             /* Calculate table index by multiplying r with table scale and truncate to integer */
1158             rt               = _mm_mul_pd(r30,vftabscale);
1159             vfitab           = _mm_cvttpd_epi32(rt);
1160 #ifdef __XOP__
1161             vfeps            = _mm_frcz_pd(rt);
1162 #else
1163             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1164 #endif
1165             twovfeps         = _mm_add_pd(vfeps,vfeps);
1166             vfitab           = _mm_slli_epi32(vfitab,2);
1167
1168             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1169             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1170             F                = _mm_setzero_pd();
1171             GMX_MM_TRANSPOSE2_PD(Y,F);
1172             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1173             H                = _mm_setzero_pd();
1174             GMX_MM_TRANSPOSE2_PD(G,H);
1175             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1176             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1177             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1178
1179             fscal            = felec;
1180
1181             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1182
1183             /* Update vectorial force */
1184             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1185             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1186             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1187             
1188             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1189             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1190             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1191
1192             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1193
1194             /* Inner loop uses 159 flops */
1195         }
1196
1197         /* End of innermost loop */
1198
1199         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1200                                               f+i_coord_offset,fshift+i_shift_offset);
1201
1202         /* Increment number of inner iterations */
1203         inneriter                  += j_index_end - j_index_start;
1204
1205         /* Outer loop uses 24 flops */
1206     }
1207
1208     /* Increment number of outer iterations */
1209     outeriter        += nri;
1210
1211     /* Update outer/inner flops */
1212
1213     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*159);
1214 }