Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_128_fma_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_elec->data;
127     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
161
162         fix0             = _mm_setzero_pd();
163         fiy0             = _mm_setzero_pd();
164         fiz0             = _mm_setzero_pd();
165         fix1             = _mm_setzero_pd();
166         fiy1             = _mm_setzero_pd();
167         fiz1             = _mm_setzero_pd();
168         fix2             = _mm_setzero_pd();
169         fiy2             = _mm_setzero_pd();
170         fiz2             = _mm_setzero_pd();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_pd();
174         vvdwsum          = _mm_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185
186             /* load j atom coordinates */
187             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_pd(ix0,jx0);
192             dy00             = _mm_sub_pd(iy0,jy0);
193             dz00             = _mm_sub_pd(iz0,jz0);
194             dx10             = _mm_sub_pd(ix1,jx0);
195             dy10             = _mm_sub_pd(iy1,jy0);
196             dz10             = _mm_sub_pd(iz1,jz0);
197             dx20             = _mm_sub_pd(ix2,jx0);
198             dy20             = _mm_sub_pd(iy2,jy0);
199             dz20             = _mm_sub_pd(iz2,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
203             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
204             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
205
206             rinv00           = gmx_mm_invsqrt_pd(rsq00);
207             rinv10           = gmx_mm_invsqrt_pd(rsq10);
208             rinv20           = gmx_mm_invsqrt_pd(rsq20);
209
210             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216
217             fjx0             = _mm_setzero_pd();
218             fjy0             = _mm_setzero_pd();
219             fjz0             = _mm_setzero_pd();
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm_mul_pd(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm_mul_pd(iq0,jq0);
229             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
230                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
231
232             /* Calculate table index by multiplying r with table scale and truncate to integer */
233             rt               = _mm_mul_pd(r00,vftabscale);
234             vfitab           = _mm_cvttpd_epi32(rt);
235 #ifdef __XOP__
236             vfeps            = _mm_frcz_pd(rt);
237 #else
238             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
239 #endif
240             twovfeps         = _mm_add_pd(vfeps,vfeps);
241             vfitab           = _mm_slli_epi32(vfitab,2);
242
243             /* CUBIC SPLINE TABLE ELECTROSTATICS */
244             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
245             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
246             GMX_MM_TRANSPOSE2_PD(Y,F);
247             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
248             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
249             GMX_MM_TRANSPOSE2_PD(G,H);
250             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
251             VV               = _mm_macc_pd(vfeps,Fp,Y);
252             velec            = _mm_mul_pd(qq00,VV);
253             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
254             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
255
256             /* LENNARD-JONES DISPERSION/REPULSION */
257
258             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
259             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
260             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
261             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
262             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velecsum         = _mm_add_pd(velecsum,velec);
266             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
267
268             fscal            = _mm_add_pd(felec,fvdw);
269
270             /* Update vectorial force */
271             fix0             = _mm_macc_pd(dx00,fscal,fix0);
272             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
273             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
274             
275             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
276             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
277             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             r10              = _mm_mul_pd(rsq10,rinv10);
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq10             = _mm_mul_pd(iq1,jq0);
287
288             /* Calculate table index by multiplying r with table scale and truncate to integer */
289             rt               = _mm_mul_pd(r10,vftabscale);
290             vfitab           = _mm_cvttpd_epi32(rt);
291 #ifdef __XOP__
292             vfeps            = _mm_frcz_pd(rt);
293 #else
294             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
295 #endif
296             twovfeps         = _mm_add_pd(vfeps,vfeps);
297             vfitab           = _mm_slli_epi32(vfitab,2);
298
299             /* CUBIC SPLINE TABLE ELECTROSTATICS */
300             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
301             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
302             GMX_MM_TRANSPOSE2_PD(Y,F);
303             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
304             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
305             GMX_MM_TRANSPOSE2_PD(G,H);
306             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
307             VV               = _mm_macc_pd(vfeps,Fp,Y);
308             velec            = _mm_mul_pd(qq10,VV);
309             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
310             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm_add_pd(velecsum,velec);
314
315             fscal            = felec;
316
317             /* Update vectorial force */
318             fix1             = _mm_macc_pd(dx10,fscal,fix1);
319             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
320             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
321             
322             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
323             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
324             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             r20              = _mm_mul_pd(rsq20,rinv20);
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq20             = _mm_mul_pd(iq2,jq0);
334
335             /* Calculate table index by multiplying r with table scale and truncate to integer */
336             rt               = _mm_mul_pd(r20,vftabscale);
337             vfitab           = _mm_cvttpd_epi32(rt);
338 #ifdef __XOP__
339             vfeps            = _mm_frcz_pd(rt);
340 #else
341             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
342 #endif
343             twovfeps         = _mm_add_pd(vfeps,vfeps);
344             vfitab           = _mm_slli_epi32(vfitab,2);
345
346             /* CUBIC SPLINE TABLE ELECTROSTATICS */
347             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
348             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
349             GMX_MM_TRANSPOSE2_PD(Y,F);
350             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
351             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
352             GMX_MM_TRANSPOSE2_PD(G,H);
353             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
354             VV               = _mm_macc_pd(vfeps,Fp,Y);
355             velec            = _mm_mul_pd(qq20,VV);
356             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
357             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _mm_add_pd(velecsum,velec);
361
362             fscal            = felec;
363
364             /* Update vectorial force */
365             fix2             = _mm_macc_pd(dx20,fscal,fix2);
366             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
367             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
368             
369             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
370             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
371             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
372
373             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
374
375             /* Inner loop uses 154 flops */
376         }
377
378         if(jidx<j_index_end)
379         {
380
381             jnrA             = jjnr[jidx];
382             j_coord_offsetA  = DIM*jnrA;
383
384             /* load j atom coordinates */
385             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
386                                               &jx0,&jy0,&jz0);
387
388             /* Calculate displacement vector */
389             dx00             = _mm_sub_pd(ix0,jx0);
390             dy00             = _mm_sub_pd(iy0,jy0);
391             dz00             = _mm_sub_pd(iz0,jz0);
392             dx10             = _mm_sub_pd(ix1,jx0);
393             dy10             = _mm_sub_pd(iy1,jy0);
394             dz10             = _mm_sub_pd(iz1,jz0);
395             dx20             = _mm_sub_pd(ix2,jx0);
396             dy20             = _mm_sub_pd(iy2,jy0);
397             dz20             = _mm_sub_pd(iz2,jz0);
398
399             /* Calculate squared distance and things based on it */
400             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
401             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
402             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
403
404             rinv00           = gmx_mm_invsqrt_pd(rsq00);
405             rinv10           = gmx_mm_invsqrt_pd(rsq10);
406             rinv20           = gmx_mm_invsqrt_pd(rsq20);
407
408             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
409
410             /* Load parameters for j particles */
411             jq0              = _mm_load_sd(charge+jnrA+0);
412             vdwjidx0A        = 2*vdwtype[jnrA+0];
413
414             fjx0             = _mm_setzero_pd();
415             fjy0             = _mm_setzero_pd();
416             fjz0             = _mm_setzero_pd();
417
418             /**************************
419              * CALCULATE INTERACTIONS *
420              **************************/
421
422             r00              = _mm_mul_pd(rsq00,rinv00);
423
424             /* Compute parameters for interactions between i and j atoms */
425             qq00             = _mm_mul_pd(iq0,jq0);
426             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
427
428             /* Calculate table index by multiplying r with table scale and truncate to integer */
429             rt               = _mm_mul_pd(r00,vftabscale);
430             vfitab           = _mm_cvttpd_epi32(rt);
431 #ifdef __XOP__
432             vfeps            = _mm_frcz_pd(rt);
433 #else
434             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
435 #endif
436             twovfeps         = _mm_add_pd(vfeps,vfeps);
437             vfitab           = _mm_slli_epi32(vfitab,2);
438
439             /* CUBIC SPLINE TABLE ELECTROSTATICS */
440             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
441             F                = _mm_setzero_pd();
442             GMX_MM_TRANSPOSE2_PD(Y,F);
443             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
444             H                = _mm_setzero_pd();
445             GMX_MM_TRANSPOSE2_PD(G,H);
446             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
447             VV               = _mm_macc_pd(vfeps,Fp,Y);
448             velec            = _mm_mul_pd(qq00,VV);
449             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
450             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
451
452             /* LENNARD-JONES DISPERSION/REPULSION */
453
454             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
455             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
456             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
457             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
458             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
459
460             /* Update potential sum for this i atom from the interaction with this j atom. */
461             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
462             velecsum         = _mm_add_pd(velecsum,velec);
463             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
464             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
465
466             fscal            = _mm_add_pd(felec,fvdw);
467
468             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
469
470             /* Update vectorial force */
471             fix0             = _mm_macc_pd(dx00,fscal,fix0);
472             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
473             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
474             
475             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
476             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
477             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
478
479             /**************************
480              * CALCULATE INTERACTIONS *
481              **************************/
482
483             r10              = _mm_mul_pd(rsq10,rinv10);
484
485             /* Compute parameters for interactions between i and j atoms */
486             qq10             = _mm_mul_pd(iq1,jq0);
487
488             /* Calculate table index by multiplying r with table scale and truncate to integer */
489             rt               = _mm_mul_pd(r10,vftabscale);
490             vfitab           = _mm_cvttpd_epi32(rt);
491 #ifdef __XOP__
492             vfeps            = _mm_frcz_pd(rt);
493 #else
494             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
495 #endif
496             twovfeps         = _mm_add_pd(vfeps,vfeps);
497             vfitab           = _mm_slli_epi32(vfitab,2);
498
499             /* CUBIC SPLINE TABLE ELECTROSTATICS */
500             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
501             F                = _mm_setzero_pd();
502             GMX_MM_TRANSPOSE2_PD(Y,F);
503             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
504             H                = _mm_setzero_pd();
505             GMX_MM_TRANSPOSE2_PD(G,H);
506             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
507             VV               = _mm_macc_pd(vfeps,Fp,Y);
508             velec            = _mm_mul_pd(qq10,VV);
509             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
510             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
511
512             /* Update potential sum for this i atom from the interaction with this j atom. */
513             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
514             velecsum         = _mm_add_pd(velecsum,velec);
515
516             fscal            = felec;
517
518             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
519
520             /* Update vectorial force */
521             fix1             = _mm_macc_pd(dx10,fscal,fix1);
522             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
523             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
524             
525             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
526             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
527             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r20              = _mm_mul_pd(rsq20,rinv20);
534
535             /* Compute parameters for interactions between i and j atoms */
536             qq20             = _mm_mul_pd(iq2,jq0);
537
538             /* Calculate table index by multiplying r with table scale and truncate to integer */
539             rt               = _mm_mul_pd(r20,vftabscale);
540             vfitab           = _mm_cvttpd_epi32(rt);
541 #ifdef __XOP__
542             vfeps            = _mm_frcz_pd(rt);
543 #else
544             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
545 #endif
546             twovfeps         = _mm_add_pd(vfeps,vfeps);
547             vfitab           = _mm_slli_epi32(vfitab,2);
548
549             /* CUBIC SPLINE TABLE ELECTROSTATICS */
550             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
551             F                = _mm_setzero_pd();
552             GMX_MM_TRANSPOSE2_PD(Y,F);
553             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
554             H                = _mm_setzero_pd();
555             GMX_MM_TRANSPOSE2_PD(G,H);
556             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
557             VV               = _mm_macc_pd(vfeps,Fp,Y);
558             velec            = _mm_mul_pd(qq20,VV);
559             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
560             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
564             velecsum         = _mm_add_pd(velecsum,velec);
565
566             fscal            = felec;
567
568             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
569
570             /* Update vectorial force */
571             fix2             = _mm_macc_pd(dx20,fscal,fix2);
572             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
573             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
574             
575             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
576             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
577             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
578
579             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
580
581             /* Inner loop uses 154 flops */
582         }
583
584         /* End of innermost loop */
585
586         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
587                                               f+i_coord_offset,fshift+i_shift_offset);
588
589         ggid                        = gid[iidx];
590         /* Update potential energies */
591         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
592         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
593
594         /* Increment number of inner iterations */
595         inneriter                  += j_index_end - j_index_start;
596
597         /* Outer loop uses 20 flops */
598     }
599
600     /* Increment number of outer iterations */
601     outeriter        += nri;
602
603     /* Update outer/inner flops */
604
605     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
606 }
607 /*
608  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_128_fma_double
609  * Electrostatics interaction: CubicSplineTable
610  * VdW interaction:            LennardJones
611  * Geometry:                   Water3-Particle
612  * Calculate force/pot:        Force
613  */
614 void
615 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_128_fma_double
616                     (t_nblist                    * gmx_restrict       nlist,
617                      rvec                        * gmx_restrict          xx,
618                      rvec                        * gmx_restrict          ff,
619                      t_forcerec                  * gmx_restrict          fr,
620                      t_mdatoms                   * gmx_restrict     mdatoms,
621                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
622                      t_nrnb                      * gmx_restrict        nrnb)
623 {
624     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
625      * just 0 for non-waters.
626      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
627      * jnr indices corresponding to data put in the four positions in the SIMD register.
628      */
629     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
630     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
631     int              jnrA,jnrB;
632     int              j_coord_offsetA,j_coord_offsetB;
633     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
634     real             rcutoff_scalar;
635     real             *shiftvec,*fshift,*x,*f;
636     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
637     int              vdwioffset0;
638     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
639     int              vdwioffset1;
640     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
641     int              vdwioffset2;
642     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
643     int              vdwjidx0A,vdwjidx0B;
644     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
645     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
646     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
647     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
648     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
649     real             *charge;
650     int              nvdwtype;
651     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
652     int              *vdwtype;
653     real             *vdwparam;
654     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
655     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
656     __m128i          vfitab;
657     __m128i          ifour       = _mm_set1_epi32(4);
658     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
659     real             *vftab;
660     __m128d          dummy_mask,cutoff_mask;
661     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
662     __m128d          one     = _mm_set1_pd(1.0);
663     __m128d          two     = _mm_set1_pd(2.0);
664     x                = xx[0];
665     f                = ff[0];
666
667     nri              = nlist->nri;
668     iinr             = nlist->iinr;
669     jindex           = nlist->jindex;
670     jjnr             = nlist->jjnr;
671     shiftidx         = nlist->shift;
672     gid              = nlist->gid;
673     shiftvec         = fr->shift_vec[0];
674     fshift           = fr->fshift[0];
675     facel            = _mm_set1_pd(fr->epsfac);
676     charge           = mdatoms->chargeA;
677     nvdwtype         = fr->ntype;
678     vdwparam         = fr->nbfp;
679     vdwtype          = mdatoms->typeA;
680
681     vftab            = kernel_data->table_elec->data;
682     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
683
684     /* Setup water-specific parameters */
685     inr              = nlist->iinr[0];
686     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
687     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
688     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
689     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
690
691     /* Avoid stupid compiler warnings */
692     jnrA = jnrB = 0;
693     j_coord_offsetA = 0;
694     j_coord_offsetB = 0;
695
696     outeriter        = 0;
697     inneriter        = 0;
698
699     /* Start outer loop over neighborlists */
700     for(iidx=0; iidx<nri; iidx++)
701     {
702         /* Load shift vector for this list */
703         i_shift_offset   = DIM*shiftidx[iidx];
704
705         /* Load limits for loop over neighbors */
706         j_index_start    = jindex[iidx];
707         j_index_end      = jindex[iidx+1];
708
709         /* Get outer coordinate index */
710         inr              = iinr[iidx];
711         i_coord_offset   = DIM*inr;
712
713         /* Load i particle coords and add shift vector */
714         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
715                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
716
717         fix0             = _mm_setzero_pd();
718         fiy0             = _mm_setzero_pd();
719         fiz0             = _mm_setzero_pd();
720         fix1             = _mm_setzero_pd();
721         fiy1             = _mm_setzero_pd();
722         fiz1             = _mm_setzero_pd();
723         fix2             = _mm_setzero_pd();
724         fiy2             = _mm_setzero_pd();
725         fiz2             = _mm_setzero_pd();
726
727         /* Start inner kernel loop */
728         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
729         {
730
731             /* Get j neighbor index, and coordinate index */
732             jnrA             = jjnr[jidx];
733             jnrB             = jjnr[jidx+1];
734             j_coord_offsetA  = DIM*jnrA;
735             j_coord_offsetB  = DIM*jnrB;
736
737             /* load j atom coordinates */
738             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
739                                               &jx0,&jy0,&jz0);
740
741             /* Calculate displacement vector */
742             dx00             = _mm_sub_pd(ix0,jx0);
743             dy00             = _mm_sub_pd(iy0,jy0);
744             dz00             = _mm_sub_pd(iz0,jz0);
745             dx10             = _mm_sub_pd(ix1,jx0);
746             dy10             = _mm_sub_pd(iy1,jy0);
747             dz10             = _mm_sub_pd(iz1,jz0);
748             dx20             = _mm_sub_pd(ix2,jx0);
749             dy20             = _mm_sub_pd(iy2,jy0);
750             dz20             = _mm_sub_pd(iz2,jz0);
751
752             /* Calculate squared distance and things based on it */
753             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
754             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
755             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
756
757             rinv00           = gmx_mm_invsqrt_pd(rsq00);
758             rinv10           = gmx_mm_invsqrt_pd(rsq10);
759             rinv20           = gmx_mm_invsqrt_pd(rsq20);
760
761             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
762
763             /* Load parameters for j particles */
764             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
765             vdwjidx0A        = 2*vdwtype[jnrA+0];
766             vdwjidx0B        = 2*vdwtype[jnrB+0];
767
768             fjx0             = _mm_setzero_pd();
769             fjy0             = _mm_setzero_pd();
770             fjz0             = _mm_setzero_pd();
771
772             /**************************
773              * CALCULATE INTERACTIONS *
774              **************************/
775
776             r00              = _mm_mul_pd(rsq00,rinv00);
777
778             /* Compute parameters for interactions between i and j atoms */
779             qq00             = _mm_mul_pd(iq0,jq0);
780             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
781                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
782
783             /* Calculate table index by multiplying r with table scale and truncate to integer */
784             rt               = _mm_mul_pd(r00,vftabscale);
785             vfitab           = _mm_cvttpd_epi32(rt);
786 #ifdef __XOP__
787             vfeps            = _mm_frcz_pd(rt);
788 #else
789             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
790 #endif
791             twovfeps         = _mm_add_pd(vfeps,vfeps);
792             vfitab           = _mm_slli_epi32(vfitab,2);
793
794             /* CUBIC SPLINE TABLE ELECTROSTATICS */
795             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
796             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
797             GMX_MM_TRANSPOSE2_PD(Y,F);
798             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
799             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
800             GMX_MM_TRANSPOSE2_PD(G,H);
801             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
802             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
803             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
804
805             /* LENNARD-JONES DISPERSION/REPULSION */
806
807             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
808             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
809
810             fscal            = _mm_add_pd(felec,fvdw);
811
812             /* Update vectorial force */
813             fix0             = _mm_macc_pd(dx00,fscal,fix0);
814             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
815             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
816             
817             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
818             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
819             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
820
821             /**************************
822              * CALCULATE INTERACTIONS *
823              **************************/
824
825             r10              = _mm_mul_pd(rsq10,rinv10);
826
827             /* Compute parameters for interactions between i and j atoms */
828             qq10             = _mm_mul_pd(iq1,jq0);
829
830             /* Calculate table index by multiplying r with table scale and truncate to integer */
831             rt               = _mm_mul_pd(r10,vftabscale);
832             vfitab           = _mm_cvttpd_epi32(rt);
833 #ifdef __XOP__
834             vfeps            = _mm_frcz_pd(rt);
835 #else
836             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
837 #endif
838             twovfeps         = _mm_add_pd(vfeps,vfeps);
839             vfitab           = _mm_slli_epi32(vfitab,2);
840
841             /* CUBIC SPLINE TABLE ELECTROSTATICS */
842             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
843             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
844             GMX_MM_TRANSPOSE2_PD(Y,F);
845             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
846             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
847             GMX_MM_TRANSPOSE2_PD(G,H);
848             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
849             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
850             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
851
852             fscal            = felec;
853
854             /* Update vectorial force */
855             fix1             = _mm_macc_pd(dx10,fscal,fix1);
856             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
857             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
858             
859             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
860             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
861             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
862
863             /**************************
864              * CALCULATE INTERACTIONS *
865              **************************/
866
867             r20              = _mm_mul_pd(rsq20,rinv20);
868
869             /* Compute parameters for interactions between i and j atoms */
870             qq20             = _mm_mul_pd(iq2,jq0);
871
872             /* Calculate table index by multiplying r with table scale and truncate to integer */
873             rt               = _mm_mul_pd(r20,vftabscale);
874             vfitab           = _mm_cvttpd_epi32(rt);
875 #ifdef __XOP__
876             vfeps            = _mm_frcz_pd(rt);
877 #else
878             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
879 #endif
880             twovfeps         = _mm_add_pd(vfeps,vfeps);
881             vfitab           = _mm_slli_epi32(vfitab,2);
882
883             /* CUBIC SPLINE TABLE ELECTROSTATICS */
884             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
885             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
886             GMX_MM_TRANSPOSE2_PD(Y,F);
887             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
888             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
889             GMX_MM_TRANSPOSE2_PD(G,H);
890             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
891             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
892             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
893
894             fscal            = felec;
895
896             /* Update vectorial force */
897             fix2             = _mm_macc_pd(dx20,fscal,fix2);
898             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
899             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
900             
901             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
902             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
903             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
904
905             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
906
907             /* Inner loop uses 137 flops */
908         }
909
910         if(jidx<j_index_end)
911         {
912
913             jnrA             = jjnr[jidx];
914             j_coord_offsetA  = DIM*jnrA;
915
916             /* load j atom coordinates */
917             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
918                                               &jx0,&jy0,&jz0);
919
920             /* Calculate displacement vector */
921             dx00             = _mm_sub_pd(ix0,jx0);
922             dy00             = _mm_sub_pd(iy0,jy0);
923             dz00             = _mm_sub_pd(iz0,jz0);
924             dx10             = _mm_sub_pd(ix1,jx0);
925             dy10             = _mm_sub_pd(iy1,jy0);
926             dz10             = _mm_sub_pd(iz1,jz0);
927             dx20             = _mm_sub_pd(ix2,jx0);
928             dy20             = _mm_sub_pd(iy2,jy0);
929             dz20             = _mm_sub_pd(iz2,jz0);
930
931             /* Calculate squared distance and things based on it */
932             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
933             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
934             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
935
936             rinv00           = gmx_mm_invsqrt_pd(rsq00);
937             rinv10           = gmx_mm_invsqrt_pd(rsq10);
938             rinv20           = gmx_mm_invsqrt_pd(rsq20);
939
940             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
941
942             /* Load parameters for j particles */
943             jq0              = _mm_load_sd(charge+jnrA+0);
944             vdwjidx0A        = 2*vdwtype[jnrA+0];
945
946             fjx0             = _mm_setzero_pd();
947             fjy0             = _mm_setzero_pd();
948             fjz0             = _mm_setzero_pd();
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             r00              = _mm_mul_pd(rsq00,rinv00);
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq00             = _mm_mul_pd(iq0,jq0);
958             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
959
960             /* Calculate table index by multiplying r with table scale and truncate to integer */
961             rt               = _mm_mul_pd(r00,vftabscale);
962             vfitab           = _mm_cvttpd_epi32(rt);
963 #ifdef __XOP__
964             vfeps            = _mm_frcz_pd(rt);
965 #else
966             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
967 #endif
968             twovfeps         = _mm_add_pd(vfeps,vfeps);
969             vfitab           = _mm_slli_epi32(vfitab,2);
970
971             /* CUBIC SPLINE TABLE ELECTROSTATICS */
972             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
973             F                = _mm_setzero_pd();
974             GMX_MM_TRANSPOSE2_PD(Y,F);
975             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
976             H                = _mm_setzero_pd();
977             GMX_MM_TRANSPOSE2_PD(G,H);
978             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
979             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
980             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
981
982             /* LENNARD-JONES DISPERSION/REPULSION */
983
984             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
985             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
986
987             fscal            = _mm_add_pd(felec,fvdw);
988
989             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
990
991             /* Update vectorial force */
992             fix0             = _mm_macc_pd(dx00,fscal,fix0);
993             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
994             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
995             
996             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
997             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
998             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             r10              = _mm_mul_pd(rsq10,rinv10);
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq10             = _mm_mul_pd(iq1,jq0);
1008
1009             /* Calculate table index by multiplying r with table scale and truncate to integer */
1010             rt               = _mm_mul_pd(r10,vftabscale);
1011             vfitab           = _mm_cvttpd_epi32(rt);
1012 #ifdef __XOP__
1013             vfeps            = _mm_frcz_pd(rt);
1014 #else
1015             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1016 #endif
1017             twovfeps         = _mm_add_pd(vfeps,vfeps);
1018             vfitab           = _mm_slli_epi32(vfitab,2);
1019
1020             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1021             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1022             F                = _mm_setzero_pd();
1023             GMX_MM_TRANSPOSE2_PD(Y,F);
1024             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1025             H                = _mm_setzero_pd();
1026             GMX_MM_TRANSPOSE2_PD(G,H);
1027             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1028             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1029             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1030
1031             fscal            = felec;
1032
1033             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1034
1035             /* Update vectorial force */
1036             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1037             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1038             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1039             
1040             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1041             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1042             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1043
1044             /**************************
1045              * CALCULATE INTERACTIONS *
1046              **************************/
1047
1048             r20              = _mm_mul_pd(rsq20,rinv20);
1049
1050             /* Compute parameters for interactions between i and j atoms */
1051             qq20             = _mm_mul_pd(iq2,jq0);
1052
1053             /* Calculate table index by multiplying r with table scale and truncate to integer */
1054             rt               = _mm_mul_pd(r20,vftabscale);
1055             vfitab           = _mm_cvttpd_epi32(rt);
1056 #ifdef __XOP__
1057             vfeps            = _mm_frcz_pd(rt);
1058 #else
1059             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1060 #endif
1061             twovfeps         = _mm_add_pd(vfeps,vfeps);
1062             vfitab           = _mm_slli_epi32(vfitab,2);
1063
1064             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1065             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1066             F                = _mm_setzero_pd();
1067             GMX_MM_TRANSPOSE2_PD(Y,F);
1068             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1069             H                = _mm_setzero_pd();
1070             GMX_MM_TRANSPOSE2_PD(G,H);
1071             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1072             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1073             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1074
1075             fscal            = felec;
1076
1077             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1078
1079             /* Update vectorial force */
1080             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1081             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1082             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1083             
1084             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1085             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1086             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1087
1088             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1089
1090             /* Inner loop uses 137 flops */
1091         }
1092
1093         /* End of innermost loop */
1094
1095         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1096                                               f+i_coord_offset,fshift+i_shift_offset);
1097
1098         /* Increment number of inner iterations */
1099         inneriter                  += j_index_end - j_index_start;
1100
1101         /* Outer loop uses 18 flops */
1102     }
1103
1104     /* Increment number of outer iterations */
1105     outeriter        += nri;
1106
1107     /* Update outer/inner flops */
1108
1109     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1110 }